

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc888cm-6ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2009-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XC886/888CLM

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P3		I/O		Port 3 Port 3 is an 8 I/O port. It ca for CCU6, U/	B-bit bidirectional general purpose on be used as alternate functions ART1, Timer 21 and MultiCAN.
P3.0	35/43		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0 UART1 Transmit Data Output
P3.1	36/44		Hi-Z	CCPOS0_2 CC61_2 COUT60_0	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1 Output of Capture/Compare
				TXD1_1	UART1 Transmit Data Output/Clock Output
P3.2	37/49		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0	CCU6 Hall Input 2 MultiCAN Node 1 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1
P3.3	38/50		Hi-Z	COUT61_0 TXDC1_1	Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output
P3.4	39/51		Hi-Z	CC62_0 RXDC0_1 T2EX1_0	Input/Output of Capture/Compare channel 2 MultiCAN Node 0 Receiver Input Timer 21 External Trigger Input
P3.5	40/52		Hi-Z	COUT62_0 EXF21_0 TXDC0_1	Output of Capture/Compare channel 2 Timer 21 External Flag Output MultiCAN Node 0 Transmitter Output
P3.6	33/41		PD	CTRAP 0	CCU6 Trap Input

Table 3Pin Definitions and Functions (cont'd)

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function				
P5		I/O		Port 5 Port 5 is an 8-bit bidirectional general purpolic I/O port. It can be used as alternate function for UART, UART1 and JTAG.				
P5.0	-/8		PU	EXINT1_1	External Interrupt Input 1			
P5.1	-/9		PU	EXINT2_1	External Interrupt Input 2			
P5.2	-/12		PU	RXD_2	UART Receive Data Input			
P5.3	-/13		PU	TXD_2	UART Transmit Data Output/Clock Output			
P5.4	_/14		PU	RXDO_2	UART Transmit Data Output			
P5.5	-/15		PU	TDO_2 TXD1_2	JTAG Serial Data Output UART1 Transmit Data Output/ Clock Output			
P5.6	-/19		PU	TCK_2 RXDO1_2	JTAG Clock Input UART1 Transmit Data Output			
P5.7	-/20		PU	TDI_2 RXD1_2	JTAG Serial Data Input UART1 Receive Data Input			

Table 3Pin Definitions and Functions (cont'd)

 Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE

(this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

Figure 10 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC886/888 supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
A8 _H	IEN0 Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0
	Interrupt Enable Register 0	Туре	rw	r	rw	rw	rw	rw	rw	rw
B8 _H	IP Reset: 00 _H	Bit Field	(0	PT2	PS	PT1	PX1	PT0	PX0
	Interrupt Priority Register	Туре		r	rw	rw	rw	rw	rw	rw
в9 _Н	IPH Reset: 00 _H	Bit Field	(0	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
	Interrupt Priority High Register	Туре		r	rw	rw	rw	rw	rw	rw
D0 _H	PSW Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р
	Program Status Word Register	Туре	rwh	rwh	rw	rw	rw	rwh	rw	rh
E0 _H	ACC Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0
	Accumulator Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
E8 _H	IEN1 Reset: 00 _H Interrupt Enable Register 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F0 _H	B Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Reset: 00 _H Interrupt Priority 1 Register	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Reset: 00 _H Interrupt Priority 1 High Register	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSC H	PADC H
		Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 5CPU Register Overview (cont'd)

3.2.4.2 MDU Registers

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 6MDU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1									
в0 _Н	MDUSTAT Reset: 00 _H	Bit Field		0 B						IRDY
	MDU Status Register	Туре			r			rh	rwh	rwh
в1 _Н	MDUCON Reset: 00 _H MDU Control Register	Bit Field	IE	IR	RSEL	STAR T		OPCODE		
		Туре	rw	rw	rw	rwh	rw			
B2 _H	MD0 Reset: 00 _H	Bit Field	DATA							
	MDU Operand Register 0	Туре	rw							
B2 _H	MR0 Reset: 00 _H	Bit Field	DATA							
	MDU Result Register 0	Туре	rh							
B3 _H	MD1 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 1	Туре				r	w			

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
BEH	COCON Reset: 00 _H Clock Output Control Register	Bit Field	0 TLEN			COUT S	COREL			
		Туре		r	rw	rw		r	w	
E9 _H	MISC_CON Reset: 00 _H Miscellaneous Control Register	Bit Field				0				DFLAS HEN
		Туре				r				rwh
RMAP =	= 0, PAGE 3									
вз _Н	XADDRH Reset: F0 _H	Bit Field				ADI	ORH			
	On-chip XRAM Address Higher Order	Туре				r	w			
B4 _H IRCON3 Reset: 00 _H Interrupt Request Register 3		Bit Field	0		CANS RC5	CCU6 SR1	0		CANS RC4	CCU6 SR0
		Туре	r		rwh	rwh	r		rwh	rwh
в5 _Н	IRCON4 Reset: 00 _H Interrupt Request Register 4	Bit Field	0		CANS RC7	CCU6 SR3	0		CANS RC6	CCU6 SR2
		Туре	r		rwh	rwh	r		rwh	rwh
в7 _Н	MODPISEL1 Reset: 00 _H Peripheral Input Select Register	Bit Field	EXINT 0 6IS		0	UR1RIS T21EX IS			JTAGT DIS1	JTAGT CKS1
	1	Туре	rw		r	rw		rw	rw	rw
ва _Н	MODPISEL2 Reset: 00 _H	Bit Field			0		T21IS	T2IS	T1IS	TOIS
	2 2	Туре			r		rw	rw	rw	rw
вв _Н	PMCON2 Reset: 00 _H Power Mode Control Register 2	Bit Field	(0			UART 1_DIS	T21_D IS	
		Туре	r				rw			rw
BD _H N N	MODSUSP Reset: 01 _H Module Suspend Control Register	Bit Field		0		T21SU SP	T2SUS P	T13SU SP	T12SU SP	WDTS USP
		Туре		r		rw	rw	rw	rw	rw

Table 8SCU Register Overview (cont'd)

3.2.4.5 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 9WDT Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	1									
вв _Н	WDTCON Reset: 00 _H Watchdog Timer Control	Bit Field		eld 0		WDTP R	0	WDTE N	WDTR S	WDTI N
	Register	Туре		r	rw	rh	r	rw	rwh	rw
вс _Н	WDTREL Reset: 00 _H	Bit Field	WDTREL							
	Watchdog Timer Reload Register	Туре		rw						
вd _Н	WDTWINB Reset: 00 _H	Bit Field	WDTWINB							
	Vvatchdog window-Boundary Count Register	Туре	rw							

3.3 Flash Memory

The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The sectorization of the Flash memory allows each sector to be erased independently.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width¹⁾ of 32-byte for D-Flash and 64-byte for P-Flash
- 1-sector minimum erase width
- 1-byte read access
- Flash is delivered in erased state (read all zeros)
- Operating supply voltage: 2.5 V ± 7.5 %
- Read access time: $3 \times t_{CCLK} = 125 \text{ ns}^{2}$
- Program time: 248256 / $f_{SYS}^{(3)}$ = 2.6 ms³⁾
- Erase time: 9807360 / f_{SYS} = 102 ms³⁾

¹⁾ P-Flash: 64-byte wordline can only be programmed once, i.e., one gate disturb allowed. D-Flash: 32-byte wordline can be programmed twice, i.e., two gate disturbs allowed.

²⁾ Values shown here are typical values. f_{sys} = 96 MHz ± 7.5% (f_{CCLK} = 24 MHz ± 7.5 %) is the maximum frequency range for Flash read access.

³⁾ Values shown here are typical values. $f_{sys} = 96 \text{ MHz} \pm 7.5\%$ is the only frequency range for Flash programming and erasing. f_{sysmin} is used for obtaining the worst case timing.

3.7 Reset Control

The XC886/888 has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When the XC886/888 is first powered up, the status of certain pins (see **Table 23**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

In order to power up the system properly, the external reset pin $\overrightarrow{\text{RESET}}$ must be asserted until V_{DDC} reaches 0.9* V_{DDC} . The delay of external reset can be realized by an external capacitor at $\overrightarrow{\text{RESET}}$ pin. This capacitor value must be selected so that V_{RESET} reaches 0.4 V, but not before V_{DDC} reaches 0.9* V_{DDC} .

A typical application example is shown in Figure 22. The V_{DDP} capacitor value is 100 nF while the V_{DDC} capacitor value is 220 nF. The capacitor connected to RESET pin is 100 nF.

Typically, the time taken for V_{DDC} to reach 0.9^*V_{DDC} is less than 50 µs once V_{DDP} reaches 2.3V. Hence, based on the condition that 10% to 90% V_{DDP} (slew rate) is less than 500 µs, the RESET pin should be held low for 500 µs typically. See Figure 23.

Figure 22 Reset Circuitry

Figure 25 External Oscillator Circuitry

Note: For crystal operation, it is strongly recommended to measure the negative resistance in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the minimum and maximum values of the negative resistance specified by the crystal supplier.

Figure 29 WDT Timing Diagram

Table 27 lists the possible watchdog time ranges that can be achieved using a certain module clock. Some numbers are rounded to 3 significant digits.

Table 27Watchdog Time Ranges

Reload value	Prescaler for <i>f</i> _{PCLK}							
In WDTREL	2 (WDTIN = 0)	128 (WDTIN = 1)						
	24 MHz	24 MHz						
FF _H	21.3 μs	1.37 ms						
7F _H	2.75 ms	176 ms						
00 _H	5.46 ms	350 ms						

3.17 Timer 0 and Timer 1

Timer 0 and Timer 1 can function as both timers or counters. When functioning as a timer, Timer 0 and Timer 1 are incremented every machine cycle, i.e. every 2 input clocks (or 2 PCLKs). When functioning as a counter, Timer 0 and Timer 1 are incremented in response to a 1-to-0 transition (falling edge) at their respective external input pins, T0 or T1.

Timer 0 and 1 are fully compatible and can be configured in four different operating modes for use in a variety of applications, see **Table 32**. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized.

Mode	Operation
0	13-bit timer The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices.
1	16-bit timer The timer registers, TLx and THx, are concatenated to form a 16-bit counter.
2	8-bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow.
3	Timer 0 operates as two 8-bit timersThe timer registers, TL0 and TH0, operate as two separate 8-bit counters.Timer 1 is halted and retains its count even if enabled.

Table 32Timer 0 and Timer 1 Modes

3.18 Timer 2 and Timer 21

Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode, see **Table 33**. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled).

Table 33	Timer 2 Modes						
Mode	Description						
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition Reload event triggered by underflow condition 						
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event 						

XC886/888CLM

Functional Description

Figure 33 CCU6 Block Diagram

- CAN functionality according to CAN specification V2.0 B active.
- Dedicated control registers are provided for each CAN node.
- A data transfer rate up to 1 MBaud is supported.
- Flexible and powerful message transfer control and error handling capabilities are implemented.
- Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter.
- Full-CAN functionality: A set of 32 message objects can be individually
 - allocated (assigned) to any CAN node
 - configured as transmit or receive object
 - setup to handle frames with 11-bit or 29-bit identifier
 - counted or assigned a timestamp via a frame counter
 - configured to remote monitoring mode
- Advanced Acceptance Filtering:
 - Each message object provides an individual acceptance mask to filter incoming frames.
 - A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames.
 - Message objects can be grouped into 4 priority classes.
 - The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules.
- Advanced Message Object Functionality:
 - Message Objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects.
 - Message objects can be linked to form a gateway to automatically transfer frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined.
- Advanced Data Management:
 - The Message objects are organized in double chained lists.
 - List reorganizations may be performed any time, even during full operation of the CAN nodes.
 - A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list.
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation.
 - Static Allocation Commands offer compatibility with TwinCAN applications, which are not list based.
- Advanced Interrupt Handling:
 - Up to 8 interrupt output lines are available. Most interrupt requests can be individually routed to one of the 8 interrupt output lines.
 - Message postprocessing notifications can be flexibly aggregated into a dedicated register field of 64 notification bits.

3.22.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID register contents for the XC886/888 Flash devices are given in Table 35.

Device Type	Device Name	JTAG ID	
Flash	XC886/888*-8FF	1012 0083 _H	
	XC886/888*-6FF	1012 5083 _H	
ROM	XC886/888*-8RF	1013 C083 _H	
	XC886/888*-6RF	1013 D083 _H	

Table 35JTAG ID Summary

Note: The asterisk (*) above denotes all possible device configurations.

103

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number						
	AA-Step	AB-Step	AC-Step				
XC886LM-6RFA 3V3	22411522 _H	-	-				
XC888LM-6RFA 3V3	22411523 _H	-	-				
XC886CM-8RFA 3V3	22480502 _H	-	-				
XC888CM-8RFA 3V3	22480503 _H	-	-				
XC886C-8RFA 3V3	22480542 _H	-	-				
XC888C-8RFA 3V3	22480543 _H	-	-				
XC886-8RFA 3V3	22480562 _H	-	-				
XC888-8RFA 3V3	22480563 _H	-	-				
XC886CM-6RFA 3V3	22491502 _H	-	-				
XC888CM-6RFA 3V3	22491503 _H	-	-				
XC886C-6RFA 3V3	22491542 _H	-	-				
XC888C-6RFA 3V3	22491543 _H	-	-				
XC886-6RFA 3V3	22491562 _H	-	-				
XC888-6RFA 3V3	22491563 _H	-	-				
XC886CLM-8RFA 5V	22800502 _H	-	-				
XC888CLM-8RFA 5V	22800503 _H	-	-				
XC886LM-8RFA 5V	22800522 _H	-	-				
XC888LM-8RFA 5V	22800523 _H	-	-				
XC886CLM-6RFA 5V	22811502 _H	-	-				
XC888CLM-6RFA 5V	22811503 _H	-	-				
XC886LM-6RFA 5V	22811522 _H	-	-				
XC888LM-6RFA 5V	22811523 _H	-	-				
XC886CM-8RFA 5V	22880502 _H	-	-				
XC888CM-8RFA 5V	22880503 _H	-	-				
XC886C-8RFA 5V	22880542 _H	-	-				
XC888C-8RFA 5V	22880543 _H	-	-				
XC886-8RFA 5V	22880562 _H	-	-				
XC888-8RFA 5V	22880563 _H	-	-				
XC886CM-6RFA 5V	22891502 _H	-	-				

Table 37

Electrical Parameters

Operating Conditions 4.1.3

The following operating conditions must not be exceeded in order to ensure correct operation of the XC886/888. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

Parameter			Symbol	Limi	t Values	Unit	Notes/	
				min.	max.		Condit	
B: II I			17	4 -				

Operating Condition Parameters

		min.	max.		Conditions	
Digital power supply voltage	V _{DDP}	4.5	5.5	V	5V Device	
Digital power supply voltage	V _{DDP}	3.0	3.6	V	3.3V Device	
Digital ground voltage	V _{SS}	0		V		
Digital core supply voltage	V _{DDC}	2.3	2.7	V		
System Clock Frequency ¹⁾	f _{sys}	88.8	103.2	MHz		
Ambient temperature	T _A	-40	85	°C	SAF- XC886/888	
		-40	125	°C	SAK- XC886/888	

1) f_{SYS} is the PLL output clock. During normal operating mode, CPU clock is f_{SYS} / 4. Please refer to Figure 26 for detailed description.

Electrical Parameters

Table 44Power Down Current (Operating Conditions apply; $V_{DDP} = 3.3V$
range)

Parameter	Symbol	mbol Limit Values		Unit	Test Condition			
		typ. ¹⁾	max. ²⁾					
V_{DDP} = 3.3V Range								
Power-Down Mode	I _{PDP}	1	10	μA	$T_{A} = + 25 \ ^{\circ}C^{3)4)}$			
		-	30	μA	$T_{A} = + 85 \ ^{\circ}C^{4)5)}$			
	- $ +$ V $ 0.0$	1			•			

1) The typical I_{PDP} values are measured at V_{DDP} = 3.3 V.

2) The maximum $I_{\rm PDP}$ values are measured at $V_{\rm DDP}$ = 3.6 V.

3) I_{PDP} has a maximum value of 200 μ A at T_A = + 125 °C.

4) I_{PDP} is measured with: $\overline{RESET} = V_{DDP}$, $V_{AGND} = V_{SS}$, RXD/INT0 = V_{DDP} ; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

5) Not subjected to production test, verified by design/characterization.

Electrical Parameters

4.3.3 Power-on Reset and PLL Timing

Table 49 provides the characteristics of the power-on reset and PLL timing in the XC886/888.

Table 46	Power-On Reset and PLL Timing (Operating Conditions appl	ly)

Parameter	Symbol		Limit Values			Unit	Test Conditions	
			min.	typ.	max.	-		
Pad operating voltage	V _{PAD}	CC	2.3	_	-	V	1)	
On-Chip Oscillator start-up time	t _{OSCST}	CC	_	_	500	ns	1)	
Flash initialization time	t _{FINIT}	CC	_	160	-	μS	1)	
RESET hold time	t _{RST}	SR	_	500	_	μS	$V_{\rm DDP}$ rise time (10% – 90%) \leq 500µs ¹⁾²⁾	
PLL lock-in in time	t _{LOCK}	CC	_	_	200	μS	1)	
PLL accumulated jitter	D _P		_	-	0.7	ns	1)3)	

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

2) RESET signal has to be active (low) until V_{DDC} has reached 90% of its maximum value (typ. 2.5 V).

3) PLL lock at 96 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 48 and P = 1.

Package and Quality Declaration

Figure 49 PG-TQFP-64 Package Outline