

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc888cm-8ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC886/888CLM

General Device Information

Figure 5 XC888 Pin Configuration, PG-TQFP-64 Package (top view)

Figure 9 Address Extension by Paging

In order to access a register located in a page different from the actual one, the current page must be exited. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

• Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or

Table 9WDT Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
ве _Н	WDTL Reset: 00 _H	Bit Field	WDT							
Watchdog Timer Register Low	Туре	rh								
bf _H	WDTH Reset: 00 _H	Bit Field	d WDT							
Watchdog	Watchdog Timer Register High	Туре	rh							

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Name	e	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0										
B2 _H	PORT_PAGE	Reset: 00 _H	Bit Field	С	P	STNR		0 PAGE		PAGE	
	Page Register		Туре	w		v	v	r		rw	
RMAP =	= 0, PAGE 0							•	•		
80 _H	P0_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
86 _H	P0_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Registe	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
90 _H	P1_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	Pi Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw	
91 _H	1 _H P1_DIR Reset: 00_H P1 Direction Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0	
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
92 _H	P5_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0	
P5 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
93 _H	P5_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0	
	P5 Direction Registe	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
A0 _H	P2_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
A1 _H	P2_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Direction Registe	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
во _Н	P3_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
в1 _Н	P3_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Registe	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
C8 _H	P4_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C9 _H	P4_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Registe	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
D3 _H	ADC_RESR3H Reset: 00 _H	Bit Field				RES	SULT				
	Result Register 3 High	Туре				r	h				
RMAP =	0, PAGE 3										
CA _H	ADC_RESRA0L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR		
	Result Register 0, View A Low	Туре		rh		rh	rh		rh		
св _Н	ADC_RESRA0H Reset: 00 _H	Bit Field				RES	SULT	•			
	Result Register 0, View A High	Туре				r	h				
сс _Н	ADC_RESRA1L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR		
	Result Register 1, View A Low	Туре		rh		rh	rh		rh		
CD _H	ADC_RESRA1H Reset: 00 _H	RESRA1H Reset: 00 _H Bit Field			RES	SULT					
	Result Register 1, View A High	Туре				r	h				
CEH	ADC_RESRA2L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR		
	Result Register 2, View A Low	Туре		rh rh rh		rh					
CF _H	ADC_RESRA2H Reset: 00 _H	Bit Field	RESULT								
	Result Register 2, View A High	Туре				r	ו				
D2 _H	ADC_RESRA3L Reset: 00 _H	Bit Field		RESULT		VF	DRC CHNF		CHNR	NR	
	Result Register 3, View A Low	Туре		rh		rh	rh rh				
D3 _H	ADC_RESRA3H Reset: 00 _H	Bit Field				RES	SULT fr				
	Result Register 3, View A High	Туре				r					
RMAP =	= 0, PAGE 4										
са _Н	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R	
		Туре	rw	rw	r	rw		r		rw	
св _Н	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R	
		Туре	rw	rw	r	rw		r		rw	
сс ^н	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R	
		Туре	rw	rw	r	rw		r		rw	
CD _H	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R	
		Туре	rw	rw	r	rw		r	-	rw	
CEH	ADC_VFCR Reset: 00 _H	Bit Field		()		VFC3	VFC2	VFC1	VFC0	
	Valid Flag Clear Register	Туре			r		w	w	w	w	
RMAP =	= 0, PAGE 5										
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0	
		Туре	rh								
св _Н	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0	
		Туре	w	w	w	w	w	w	w	w	

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
cc ^H	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0
		Туре	w	w	w	w	w	w	w	w
CD _H	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0
	Register	Туре	rw							
CeH	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	(0	EVINF 1	EVINF 0
		Туре	rh	rh	rh	rh		r		rh
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	(0	EVINC 1	EVINC 0
	Register	Туре	w	w	w	w		r	w	w
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	0 EV		EVINS 1	EVINS 0
		Туре	w	w	w	w		r	w	w
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	0 r		EVINP 1	EVINP 0
	Register	Туре	rw	rw	rw	rw			rw	rw
RMAP =	= 0, PAGE 6	_	-							
са _Н	ADC_CRCR1 Reset: 00 _H	Bit Field	CH7	CH6	CH5	CH4	0 r			
	Register 1	Туре	rwh	rwh	rwh	rwh			r	
св _Н	ADC_CRPR1 Reset: 00 _H	Bit Field	CHP7	CHP6	CHP5	CHP4		()	
	Register 1	Туре	rwh	rwh	rwh	rwh		l	r	
cc ^H	ADC_CRMR1 Reset: 00 _H Conversion Request Mode	Bit Field	Rsv	LDEV	CLRP ND	SCAN	ENSI	ENTR	0	ENGT
	Register 1	Туре	r	w	w	rw	rw	rw	r	rw
CDH	ADC_QMR0 Reset: 00 _H Queue Mode Register 0	Bit Field	CEV	TREV	FLUS H	CLRV	0	ENTR	0	ENGT
		Туре	w	w	w	w	r	rw	r	rw
CEH	ADC_QSR0 Reset: 20 _H Queue Status Register 0	Bit Field	Rsv	0	EMPT Y	EV	(D	FI	LL
		Туре	r	r	rh	rh	rh r		r	h
CFH	ADC_Q0R0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२
		Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QBUR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२
	Queue Dackup Register U	Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QINR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	()	F	REQCHN	ર
		Туре	w	w	w		r w			

3.2.4.8 Timer 2 Registers

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

									1	
Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
с₀Н	T2_T2CONReset: 00Timer 2 Control Register	Bit Field	TF2	EXF2	0		EXEN 2	TR2	C/T2	CP/ RL2
		Туре	rwh	rwh		r	rw	rwh	rw	rw
C1 _H	T2_T2MODReset: 00Timer 2 Mode Register	Reset: 00HBit FieldT2RET2RHEDGEPRENRegisterGSENSEL		PREN	T2PRE DCI			DCEN		
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H T2_RC2L Reset: 00	T2_RC2L Reset: 00 _H	Bit Field				R	C2			
	Register Low	Туре	rwh							
C3 _H	T2_RC2H Reset: 00 _H	Bit Field	RC2							
	Register High	Туре	rwh							
C4 _H	T2_T2L Reset: 00 _H	Bit Field				T⊦	IL2			
	Timer 2 Register Low	Туре				rv	vh			
C5 _H	T2_T2H Reset: 00 _H	Bit Field				T⊦	IL2			
	i imer 2 Register High	Туре				rv	vh			

Table 12T2 Register Overview

3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 13T21 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: : 1			•	•	•				
c₀ _H	T21_T2CONReset: 00HBit FieldTF2EXF20Timer 2 Control RegisterEXF20		EXEN 2	TR2	C/T2	<u>CP/</u> RL2				
		Туре	rwh	rwh		r	rw	rwh	rw	rw
C1 _H	T21_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	EDGE PREN SEL		T2PRE [DCEN
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H	T21_RC2L Reset: 00 _H	Bit Field	Field RC2							
	Timer 2 Reload/Capture Register Low	Туре	rwh							
C3 _H	T21_RC2H Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register High	Туре				rv	vh			
C4 _H	T21_T2L Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register Low	Туре				rv	/h			

3.3.3 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see **Figure 12**)

Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert FNMIWDT) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value ($\langle WDTREL \rangle * 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- The input frequency to the WDT can be selected to be either $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$
- The reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, $P_{\rm WDT}$, between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1 + WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^8)}{f_{PCLK}}$$

(3.4)

If the Window-Boundary Refresh feature of the WDT is enabled, the period $P_{\rm WDT}$ between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 29**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB cannot be smaller than WDTREL.

3.12 CORDIC Coprocessor

The CORDIC Coprocessor provides CPU with hardware support for the solving of circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions.

Features

- Modes of operation
 - Supports all CORDIC operating modes for solving circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions
 - Integrated look-up tables (LUTs) for all operating modes
- Circular vectoring mode: Extended support for values of initial X and Y data up to full range of [-2¹⁵,(2¹⁵-1)] for solving angle and magnitude
- Circular rotation mode: Extended support for values of initial Z data up to full range of $[-2^{15},(2^{15}-1)]$, representing angles in the range $[-\pi,((2^{15}-1)/2^{15})\pi]$ for solving trigonometry
- Implementation-dependent operational frequency of up to 80 MHz
- Gated clock input to support disabling of module
- 16-bit accessible data width
 - 24-bit kernel data width plus 2 overflow bits for X and Y each
 - 20-bit kernel data width plus 1 overflow bit for Z
 - With KEEP bit to retain the last value in the kernel register for a new calculation
- 16 iterations per calculation: Approximately 41 clock-cycles or less, from set of start (ST) bit to set of end-of-calculation flag, excluding time taken for write and read access of data bytes.
- Twos complement data processing
- Only exception: X result data with user selectable option for unsigned result
- X and Y data generally accepted as integer or rational number; X and Y must be of the same data form
- Entries of LUTs are 20-bit signed integers
 - Entries of atan and atanh LUTs are integer representations (S19) of angles with the scaling such that $[-2^{15},(2^{15}-1)]$ represents the range $[-\pi,((2^{15}-1)/2^{15})\pi]$
 - Accessible Z result data for circular and hyperbolic functions is integer in data form of S15
- Emulated LUT for linear function
 - Data form is 1 integer bit and 15-bit fractional part (1.15)
 - Accessible Z result data for linear function is rational number with fixed data form of S4.11 (signed 4Q16)
- Truncation Error
 - The result of a CORDIC calculation may return an approximation due to truncation of LSBs
 - Good accuracy of the CORDIC calculated result data, especially in circular mode
- Interrupt
 - On completion of a calculation

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 30**.

Figure 30 Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

The following formulas calculate the final baud rate without and with the fractional divider respectively:

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR VALUE + 1)}$$
 where $2^{BRPRE} \times (BR_VALUE + 1) > 1$

(3.5)

baud rate = $\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)} \times \frac{STEP}{256}$

(3.6)

The maximum baud rate that can be generated is limited to $f_{\text{PCLK}}/32$. Hence, for a module clock of 24 MHz, the maximum achievable baud rate is 0.75 MBaud.

Standard LIN protocol can support a maximum baud rate of 20 kHz, the baud rate accuracy is not critical and the fractional divider can be disabled. Only the prescaler is used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of 20 kHz to 115.2 kHz, the higher baud rates require the use of the fractional divider for greater accuracy.

Table 30 lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 24 MHz is used.

Baud rate	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	Deviation Error
19.2 kBaud	1 (BRPRE=000 _B)	78 (4E _H)	0.17 %
9600 Baud	1 (BRPRE=000 _B)	156 (9C _H)	0.17 %
4800 Baud	2 (BRPRE=001 _B)	156 (9C _H)	0.17 %
2400 Baud	4 (BRPRE=010 _B)	156 (9C _H)	0.17 %

 Table 30
 Typical Baud rates for UART with Fractional Divider disabled

The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. **Table 31** lists the resulting deviation errors from generating a baud rate of 115.2 kHz, using different module clock frequencies. The fractional divider is enabled (fractional divider mode) and the corresponding parameter settings are shown.

3.22.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID register contents for the XC886/888 Flash devices are given in Table 35.

Device Type	Device Name	JTAG ID	
Flash	XC886/888*-8FF	1012 0083 _H	
	XC886/888*-6FF	1012 5083 _H	
ROM	XC886/888*-8RF	1013 C083 _H	
	XC886/888*-6RF	1013 D083 _H	

Table 35JTAG ID Summary

Note: The asterisk (*) above denotes all possible device configurations.

103

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number							
	AA-Step	AB-Step	AC-Step					
XC886LM-6RFA 3V3	22411522 _H	-	-					
XC888LM-6RFA 3V3	22411523 _H	-	-					
XC886CM-8RFA 3V3	22480502 _H	-	-					
XC888CM-8RFA 3V3	22480503 _H	-	-					
XC886C-8RFA 3V3	22480542 _H	-	-					
XC888C-8RFA 3V3	22480543 _H	-	-					
XC886-8RFA 3V3	22480562 _H	-	-					
XC888-8RFA 3V3	22480563 _H	-	-					
XC886CM-6RFA 3V3	22491502 _H	-	-					
XC888CM-6RFA 3V3	22491503 _H	-	-					
XC886C-6RFA 3V3	22491542 _H	-	-					
XC888C-6RFA 3V3	22491543 _H	-	-					
XC886-6RFA 3V3	22491562 _H	-	-					
XC888-6RFA 3V3	22491563 _H	-	-					
XC886CLM-8RFA 5V	22800502 _H	-	-					
XC888CLM-8RFA 5V	22800503 _H	-	-					
XC886LM-8RFA 5V	22800522 _H	-	-					
XC888LM-8RFA 5V	22800523 _H	-	-					
XC886CLM-6RFA 5V	22811502 _H	-	-					
XC888CLM-6RFA 5V	22811503 _H	-	-					
XC886LM-6RFA 5V	22811522 _H	-	-					
XC888LM-6RFA 5V	22811523 _H	-	-					
XC886CM-8RFA 5V	22880502 _H	-	-					
XC888CM-8RFA 5V	22880503 _H	-	-					
XC886C-8RFA 5V	22880542 _H	-	-					
XC888C-8RFA 5V	22880543 _H	-	-					
XC886-8RFA 5V	22880562 _H	-	-					
XC888-8RFA 5V	22880563 _H	-	-					
XC886CM-6RFA 5V	22891502 _H	-	-					

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC886/888 can be subjected to without permanent damage.

Parameter	Symbol	Limit V	Values	Unit	Notes	
		min.	max.			
Ambient temperature	T _A	-40	125	°C	under bias	
Storage temperature	T _{ST}	-65	150	°C	1)	
Junction temperature	TJ	-40	150	°C	under bias ¹⁾	
Voltage on power supply pin with respect to $V_{\rm SS}$	V _{DDP}	-0.5	6	V	1)	
Voltage on any pin with respect to $V_{\rm SS}$	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	whichever is lower ¹⁾	
Input current on any pin during overload condition	I _{IN}	-10	10	mA	1)	
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	_	50	mA	1)	

Table 4-1	Absolute	Maximum	Rating	Parameters
-----------	----------	---------	--------	-------------------

1) Not subjected to production test, verified by design/characterization.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Parameter	Symbol		Limit	Values	Unit	Test Conditions	
			min.	max.			
Maximum current out of $V_{\rm SS}$	I _{MVSS}	SR	-	120	mA	3)	
V_{DDP} = 3.3 V Range							
Output low voltage	V_{OL}	CC	_	1.0	V	I _{OL} = 8 mA	
			-	0.4	V	I _{OL} = 2.5 mA	
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{OH} = -8 mA	
			V _{DDP} - 0.4	-	V	I _{OH} = -2.5 mA	
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
Input low voltage on P0.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 \times V_{ m DDP}$	V	CMOS Mode	
Input low voltage on RESET pin	V_{ILR}	SR	-	$0.3 \times V_{ m DDP}$	V	CMOS Mode	
Input low voltage on TMS pin	V _{ILT}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
Input high voltage on port pins (all except P0.0 & P0.1)	V _{IHP}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode	
Input high voltage on P0.0 & P0.1	V _{IHP0}	SR	$0.7 \times V_{\text{DDP}}$	V _{DDP}	V	CMOS Mode	
Input high voltage on RESET pin	V_{IHR}	SR	$0.7 \times V_{ m DDP}$	-	V	CMOS Mode	
Input high voltage on TMS pin	V _{IHT}	SR	$0.75 \times V_{ m DDP}$	-	V	CMOS Mode	
Input Hysteresis	HYS	CC	$0.03 \times V_{ m DDP}$	-	V	CMOS Mode ¹⁾	
Input Hysteresis on XTAL1	HYSX	CC	$0.07 \times V_{ m DDC}$	-	V	1)	
Input low voltage at XTAL1	V _{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{ m DDC}$	V		

4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. The ADC can be used with an analog power supply down to 3 V. But in this case, the analog parameters may show a reduced performance. All ground pins ($V_{\rm SS}$) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

Parameter	Symbol		Lir	nit Val	ues	Unit	Test Conditions/
			min.	typ.	max.		Remarks
Analog reference voltage	V _{AREF}	SR	V _{AGND} + 1	V _{DDP}	V _{DDP} + 0.05	V	1)
Analog reference ground	V_{AGND}	SR	V _{SS} - 0.05	V _{SS}	V _{AREF} - 1	V	1)
Analog input voltage range	V_{AIN}	SR	V_{AGND}	_	V_{AREF}	V	
ADC clocks	$f_{\sf ADC}$		-	24	25.8	MHz	module clock ¹⁾
	f _{adci}		_	_	10	MHz	internal analog clock ¹⁾ See Figure 35
Sample time	t _S	CC	(2 + INPCR0.STC) × t_{ADCI}		μS	1)	
Conversion time	t _C	CC	See Se	ection	4.2.3.1	μS	1)
Total unadjusted	TUE	CC	-	-	1	LSB	8-bit conversion ²⁾
error			-	-	2	LSB	10-bit conversion ²⁾
Differential Nonlinearity	$ EA_{DNL} $	СС	_	1	-	LSB	10-bit conversion ¹⁾
Integral Nonlinearity	EA _{INL}	CC	_	1	_	LSB	10-bit conversion ¹⁾
Offset	$ EA_{OFF} $	CC	-	1	-	LSB	10-bit conversion ¹⁾
Gain	$ EA_{GAIN} $	CC	_	1	-	LSB	10-bit conversion ¹⁾
Overload current coupling factor for	K _{OVA}	СС	_	_	1.0 x 10 ⁻⁴	_	$I_{\rm OV} > 0^{1)3)}$
analog inputs			_	_	1.5 x 10 ⁻³	_	$I_{\rm OV} < 0^{1)3)}$

Table 40ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

4.2.4 **Power Supply Current**

 Table 41, Table 42, Table 43 and Table 44 provide the characteristics of the power supply current in the XC886/888.

Table 41Power Supply Current Parameters (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit	Values	Unit	Test Condition			
		typ. ¹⁾). ¹⁾ max. ²⁾					
V _{DDP} = 5V Range								
Active Mode	I _{DDP}	27.2	32.8	mA	Flash Device ³⁾			
		24.3	29.8	mA	ROM Device ³⁾			
Idle Mode	I _{DDP}	21.1	25.3	mA	Flash Device ⁴⁾			
		18.2	21.6	mA	ROM Device ⁴⁾			
Active Mode with slow-down	I _{DDP}	14.1	17.0	mA	Flash Device ⁵⁾			
enabled		11.9	14.3	mA	ROM Device ⁵⁾			
Idle Mode with slow-down	I _{DDP}	11.7	15.0	mA	Flash Device ⁶⁾			
enabled		9.7	11.9	mA	ROM Device ⁶⁾			

1) The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

2) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 5.5 V).

3) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001_B), RESET = V_{DDP} , no load on ports.

4) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} , no load on ports.

5) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

6) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

Table 43Power Supply Current Parameters (Operating Conditions apply;
 V_{DDP} = 3.3V range)

Parameter	Symbol	Limit	Values	Unit	Test Condition
		typ. ¹⁾	max. ²⁾		
V_{DDP} = 3.3V Range					
Active Mode	I _{DDP}	25.6	31.0	mA	Flash Device ³⁾
		23.4	28.6	mA	ROM Device ³⁾
Idle Mode	$I_{\rm DDP}$	19.9	24.7	mA	Flash Device ⁴⁾
		17.5	20.7	mA	ROM Device ⁴⁾
Active Mode with slow-down	I _{DDP}	13.3	16.2	mA	Flash Device ⁵⁾
enabled		11.5	13.7	mA	ROM Device ⁵⁾
Idle Mode with slow-down	I _{DDP}	11.1	14.4	mA	Flash Device ⁶⁾
enabled		9.3	11.4	mA	ROM Device ⁶⁾

1) The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 3.3 V.

2) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 3.6 V).

3) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001_B), RESET = V_{DDP} , no load on ports.

4) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} , no load on ports.

5) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

6) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110_B,, RESET = V_{DDP} , no load on ports.

4.3.2 Output Rise/Fall Times

Table 45 provides the characteristics of the output rise/fall times in the XC886/888.

Table 45 Output Rise/Fall Times Parameters (Operating Conditions apply)

Parameter	Symbol Limit Values		imit alues	Unit	Test Conditions	
		min.				
$V_{\rm DDP}$ = 5V Range						
Rise/fall times	t _R , t _F	_	10	ns	20 pF. ¹⁾²⁾³⁾	
V _{DDP} = 3.3V Range						
Rise/fall times	t _R , t _F	-	10	ns	20 pF. ¹⁾²⁾⁴⁾	
					1	

1) Rise/Fall time measurements are taken with 10% - 90% of pad supply.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) Additional rise/fall time valid for $C_{\rm L}$ = 20pF - 100pF @ 0.125 ns/pF.

4) Additional rise/fall time valid for $C_{\rm L}$ = 20pF - 100pF @ 0.225 ns/pF.

Figure 43 Rise/Fall Times Parameters