

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc888lm-8ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2.2 Logic Symbol

The logic symbols of the XC886/888 are shown in Figure 3.

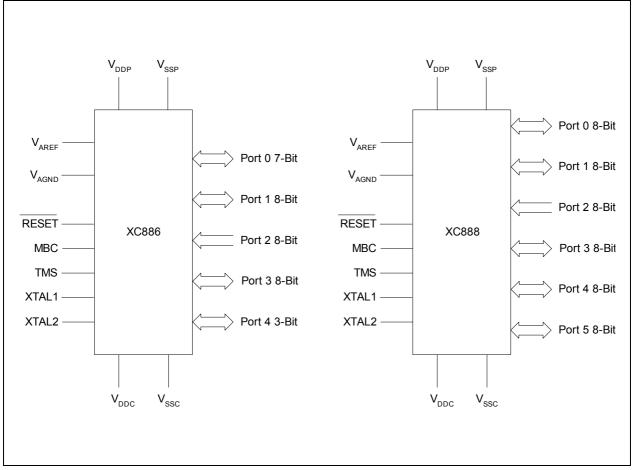


Figure 3 XC886/888 Logic Symbol

General Device Information

2.4 Pin Definitions and Functions

The functions and default states of the XC886/888 external pins are provided in Table 3.

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function				
P0		I/O		Port 0 Port 0 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate function for the JTAG, CCU6, UART, UART1, Timer Timer 21, MultiCAN and SSC.				
P0.0	11/17		Hi-Z	TCK_0 T12HR_1 CC61_1 CLKOUT_0 RXDO_1	JTAG Clock Input CCU6 Timer 12 Hardware Run Input Input/Output of Capture/Compare channel 1 Clock Output UART Transmit Data Output			
P0.1	13/21		Hi-Z	TDI_0 T13HR_1 RXD_1 RXDC1_0 COUT61_1 EXF2_1	JTAG Serial Data Input CCU6 Timer 13 Hardware Run Input UART Receive Data Input MultiCAN Node 1 Receiver Input Output of Capture/Compare channel 1 Timer 2 External Flag Output			
P0.2	12/18		PU	CTRAP_2 TDO_0 TXD_1 TXDC1_0	CCU6 Trap Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 1 Transmitter Output			
P0.3	48/63		Hi-Z	SCK_1 COUT63_1 RXDO1_0	SSC Clock Input/Output Output of Capture/Compare channel 3 UART1 Transmit Data Output			

 Table 3
 Pin Definitions and Functions

XC886/888CLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function			
P1.6	8/10		PU	CCPOS1_1 T12HR_0	•		
				EXINT6_0 RXDC0_2 T21_1	• •		
P1.7	9/11		PU	CCPOS2_1 T13HR_0 T2 1	CCU6 Hall Input 2 CCU6 Timer 13 Hardware Run Input Timer 2 Input		
				TXDC0_2	•		
				P1.5 and P1.6 can be used as a software chip select output for the SSC.			

XC886/888CLM

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function				
Р3		I/O		Port 3 Port 3 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for CCU6, UART1, Timer 21 and MultiCAN.				
P3.0	35/43		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0 UART1 Transmit Data Output			
P3.1	36/44		Hi-Z	CCPOS0_2 CC61_2 COUT60_0 TXD1_1	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1 Output of Capture/Compare channel 0 UART1 Transmit Data Output/Clock Output			
P3.2	37/49		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0	CCU6 Hall Input 2 MultiCAN Node 1 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1			
P3.3	38/50		Hi-Z	COUT61_0 TXDC1_1	Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output			
P3.4	39/51		Hi-Z	CC62_0 RXDC0_1 T2EX1_0	Input/Output of Capture/Compare channel 2 MultiCAN Node 0 Receiver Input Timer 21 External Trigger Input			
P3.5	40/52		Hi-Z	COUT62_0 EXF21_0 TXDC0_1	Output of Capture/Compare channel 2 Timer 21 External Flag Output MultiCAN Node 0 Transmitter Output			
P3.6	33/41		PD	CTRAP_0	CCU6 Trap Input			

Table 3Pin Definitions and Functions (cont'd)

XC886/888CLM

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function
V _{DDP}	7, 17, 43/ 7, 25, 55	_	-	I/O Port Supply (3.3 or 5.0 V) Also used by EVR and analog modules. All pins must be connected.
$V_{\rm SSP}$	18, 42/26, 54	_	-	I/O Port Ground All pins must be connected.
V_{DDC}	6/6	_	_	Core Supply Monitor (2.5 V)
V _{SSC}	5/5	_	_	Core Supply Ground
V_{AREF}	24/32	_	_	ADC Reference Voltage
V_{AGND}	23/31	_	_	ADC Reference Ground
XTAL1	4/4	I	Hi-Z	External Oscillator Input (backup for on-chip OSC, normally NC)
XTAL2	3/3	0	Hi-Z	External Oscillator Output (backup for on-chip OSC, normally NC)
TMS	10/16	1	PD	Test Mode Select
RESET	41/53	1	PU	Reset Input
MBC ¹⁾	44/58	1	PU	Monitor & BootStrap Loader Control
NC	-/56, 57	_	-	No Connection

Table 3Pin Definitions and Functions (cont'd)

1) An external pull-up device in the range of 4.7 k Ω to 100 k Ω . is required to enter user mode. Alternatively MBC can be tied to high if alternate functions (for debugging) of the pin are not utilized.

code or data. Therefore, even though the ROM device contains either a 24-Kbyte or 32-Kbyte ROM, the maximum size of code that can be placed in the ROM is the given size less four bytes.

3.2.1 Memory Protection Strategy

The XC886/888 memory protection strategy includes:

- Read-out protection: The user is able to protect the contents in the Flash (for Flash devices) and ROM (for ROM devices) memory from being read
 - Flash protection is enabled by programming a valid password (8-bit non-zero value) via BSL mode 6.
 - ROM protection is fixed with the ROM mask and is always enabled.
- Flash program and erase protection: This feature is available only for Flash devices.

3.2.1.1 Flash Memory Protection

As long as a valid password is available, all external access to the device, including the Flash, will be blocked.

For additional security, the Flash hardware protection can be enabled to implement a second layer of read-out protection, as well as to enable program and erase protection.

Flash hardware protection is available only for Flash devices and comes in two modes:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected
- Mode 1: Both the P-Flash and D-Flash are protected

The selection of each protection mode and the restrictions imposed are summarized in **Table 4**.

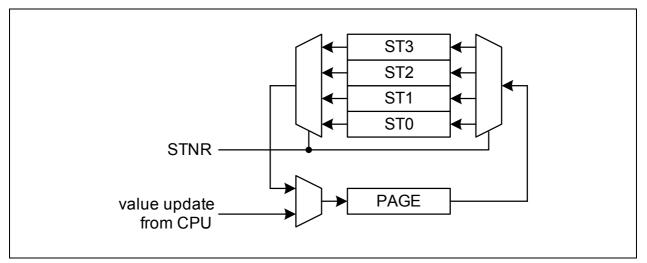

Flash Protection	Without hardware protection	With hardware protection						
Hardware Protection Mode	-	0	1					
Activation	Program a valid password via BSL mode 6							
Selection	Bit 4 of password = 0	Bit 4 of password = 1 MSB of password = 0	Bit 4 of password = 1 MSB of password = 1					
P-Flash contents can be read by	Read instructions in any program memory	Read instructions in the P-Flash	Read instructions in the P-Flash or D- Flash					
External access to P-Flash	Not possible	Not possible	Not possible					

Table 4Flash Protection Modes

 Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE

(this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

Figure 10 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC886/888 supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

The page register has the following definition:

MOD_PAGE Page Register for module MOD

Reset Value: 00_H

7	6	5	4	3	2	1	0
0	Ρ	STNR		0			
v	V	Ŵ		r		rw	I

Field	Bits	Туре	Description
PAGE	[2:0]	rw	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.
STNR	[5:4]	W	Storage NumberThis number indicates which storage bit field is the target of the operation defined by bit field OP.If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value.If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.00ST0 is selected. 0101ST1 is selected. 1010ST2 is selected. 1111ST3 is selected.

3.2.4.12 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
A9 _H	SSC_PISEL Reset: 00 _H	Bit Field			0			CIS	SIS	MIS
	Port Input Select Register	Туре			r			rw	rw	rw
AA _H	SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М	
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw		n	w	
AA _H	SSC_CONL Reset: 00 _H	Bit Field		()			В	С	
	Control Register Low Operating Mode	Туре		l	r		rh			
ав _Н	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN
	Control Register High Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw
ав _Н	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh
ac _h	SSC_TBL Reset: 00 _H	Bit Field	TB_VALUE							
	Transmitter Buffer Register Low	Туре	rw							
ad _H	SSC_RBL Reset: 00 _H	Bit Field	RB_VALUE							
	Receiver Buffer Register Low	Туре	rh							
ае _Н	SSC_BRL Reset: 00 _H	Bit Field	BR_VALUE							
	Baud Rate Timer Reload Register Low	Туре	rw							
af _h	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer Reload Register High					n	N			

Table 16 SSC Register Overview

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	RMAP = 0									
D8 _H	ADCON Reset: 00 _H	Bit Field	V3	V2	V1	V0	AU	AD	BSY	RWEN
	CAN Address/Data Control Register	Туре	rw	rw	rw	rw	rw		rh	rw
D9 _H	ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2
	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
da _h	ADH Reset: 00 _H	Bit Field		()		CA13	CA12	CA11	CA10
	CAN Address Register High				ſ		rwh	rwh	rwh	rwh

3.4 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC886/888 interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source.

3.4.1 Interrupt Source

Figure 13 to **Figure 17** give a general overview of the interrupt sources and nodes, and their corresponding control and status flags.

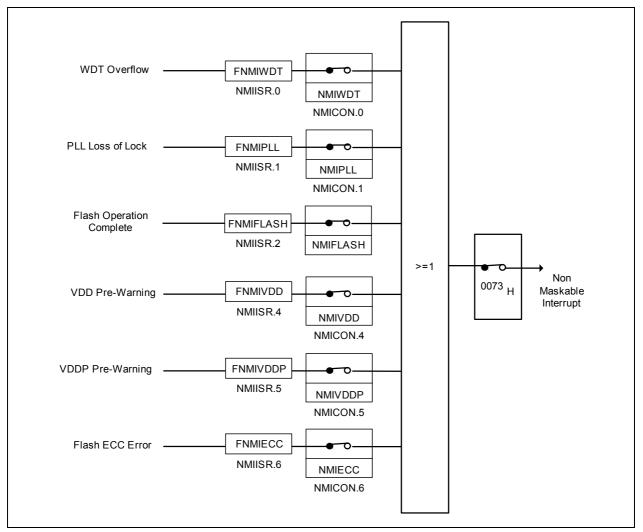


Figure 13 Non-Maskable Interrupt Request Sources

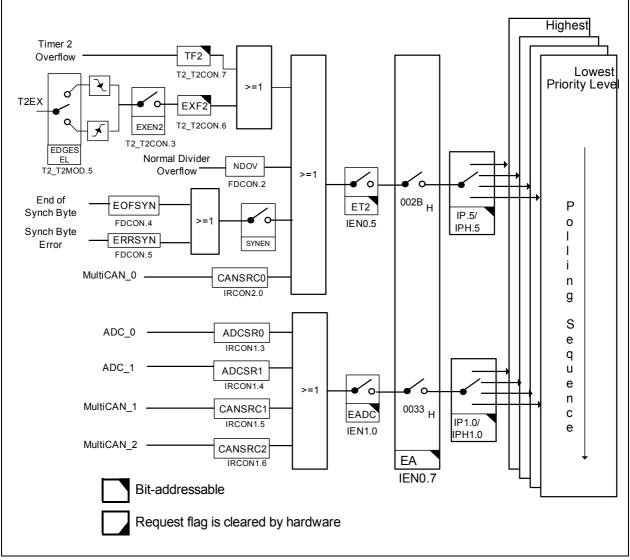
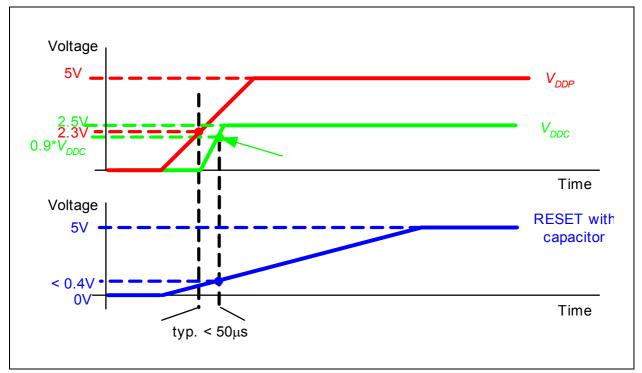



Figure 15 Interrupt Request Sources (Part 2)

Figure 23 V_{DDP} , V_{DDC} and V_{RESET} during Power-on Reset

The second type of reset in XC886/888 is the hardware reset. This reset function can be used during normal operation or when the chip is in power-down mode. A reset input pin RESET is provided for the hardware reset.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects a malfunction in the system.

Another type of reset that needs to be detected is a reset while the device is in power-down mode (wake-up reset). While the contents of the static RAM are undefined after a power-on reset, they are well defined after a wake-up reset from power-down mode.

3.8.2 Clock Management

The CGU generates all clock signals required within the microcontroller from a single clock, f_{sys} . During normal system operation, the typical frequencies of the different modules are as follow:

- CPU clock: CCLK, SCLK = 24 MHz
- Fast clock (used by MultiCAN): FCLK = 24 or 48 MHz
- Peripheral clock: PCLK = 24 MHz
- Flash Interface clock: CCLK2 = 48 MHz and CCLK = 24 MHz

In addition, different clock frequencies can be output to pin CLKOUT (P0.0 or P0.7). The clock output frequency, which is derived from the clock output divider (bit COREL), can further be divided by 2 using toggle latch (bit TLEN is set to 1). The resulting output frequency has a 50% duty cycle. **Figure 26** shows the clock distribution of the XC886/888.

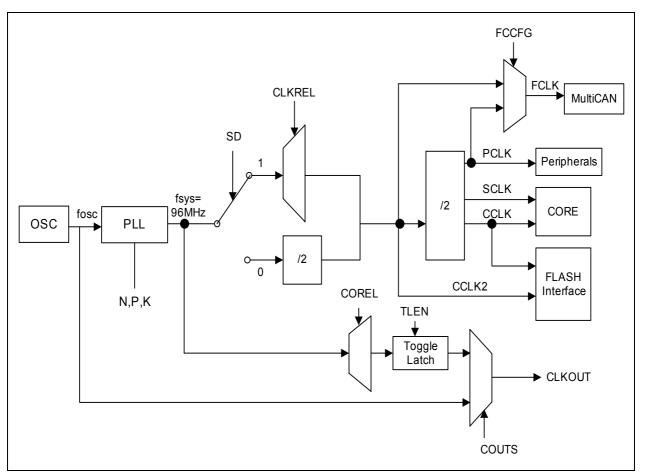


Figure 26 Clock Generation from f_{sys}

For power saving purposes, the clocks may be disabled or slowed down according to **Table 26**.

Table 26System frequency (f_{sys} = 96 MHz)

Power Saving Mode	Action
Idle	Clock to the CPU is disabled.
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.
Power-down	Oscillator and PLL are switched off.

- CAN functionality according to CAN specification V2.0 B active.
- Dedicated control registers are provided for each CAN node.
- A data transfer rate up to 1 MBaud is supported.
- Flexible and powerful message transfer control and error handling capabilities are implemented.
- Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter.
- Full-CAN functionality: A set of 32 message objects can be individually
 - allocated (assigned) to any CAN node
 - configured as transmit or receive object
 - setup to handle frames with 11-bit or 29-bit identifier
 - counted or assigned a timestamp via a frame counter
 - configured to remote monitoring mode
- Advanced Acceptance Filtering:
 - Each message object provides an individual acceptance mask to filter incoming frames.
 - A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames.
 - Message objects can be grouped into 4 priority classes.
 - The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules.
- Advanced Message Object Functionality:
 - Message Objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects.
 - Message objects can be linked to form a gateway to automatically transfer frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined.
- Advanced Data Management:
 - The Message objects are organized in double chained lists.
 - List reorganizations may be performed any time, even during full operation of the CAN nodes.
 - A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list.
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation.
 - Static Allocation Commands offer compatibility with TwinCAN applications, which are not list based.
- Advanced Interrupt Handling:
 - Up to 8 interrupt output lines are available. Most interrupt requests can be individually routed to one of the 8 interrupt output lines.
 - Message postprocessing notifications can be flexibly aggregated into a dedicated register field of 64 notification bits.

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC886/888 can be subjected to without permanent damage.

Parameter	Symbol	Limi	it Values	Unit	Notes
		min.	max.		
Ambient temperature	T _A	-40	125	°C	under bias
Storage temperature	T _{ST}	-65	150	°C	1)
Junction temperature	T _J	-40	150	°C	under bias ¹⁾
Voltage on power supply pin with respect to $V_{\rm SS}$	V _{DDP}	-0.5	6	V	1)
Voltage on any pin with respect to $V_{\rm SS}$	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	whichever is lower ¹⁾
Input current on any pin during overload condition	I _{IN}	-10	10	mA	1)
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	-	50	mA	1)

Table 4-1	Absolute Maximum Rating Parameters
-----------	------------------------------------

1) Not subjected to production test, verified by design/characterization.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Table 38 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit	Values	Unit	Test Conditions
			min. max.			
Input high voltage at XTAL1	V _{IHX}	SR	$0.7 \times V_{ m DDC}$	V _{DDC} + 0.5	V	
Pull-up current	$I_{\rm PU}$	SR	_	-5	μA	$V_{\mathrm{IHP,min}}$
			-50	_	μA	$V_{ILP,max}$
Pull-down current	$I_{\rm PD}$	SR	-	5	μA	V _{ILP,max}
			50	_	μA	V _{IHP,min}
Input leakage current	I _{OZ1}	СС	-1	1	μA	$0 < V_{IN} < V_{DDP}, T_A \le 125^{\circ}C^{2)}$
Input current at XTAL1	I_{ILX}	CC	- 10	10	μA	
Overload current on any pin	I _{OV}	SR	-5	5	mA	
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	SR	-	25	mA	3)
Voltage on any pin during $V_{\rm DDP}$ power off	V _{PO}	SR	-	0.3	V	4)
Maximum current per pin (excluding V_{DDP} and V_{SS})	I _M SR	SR	-	15	mA	
Maximum current for all pins (excluding V_{DDP} and V_{SS})	$\Sigma I_{M} $	SR	-	90	mA	
Maximum current into V_{DDP}	I _{MVDDP}	SR	-	120	mA	3)
Maximum current out of $V_{\rm SS}$	I _{MVSS}	SR	-	120	mA	3)

 Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

2) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. TMS pin and RESET pin have internal pull devices and are not included in the input leakage current characteristic.

3) Not subjected to production test, verified by design/characterization.

4) Not subjected to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. The ADC can be used with an analog power supply down to 3 V. But in this case, the analog parameters may show a reduced performance. All ground pins ($V_{\rm SS}$) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

Parameter	Symbol		Lir	nit Val	ues	Unit	Test Conditions/
			min. typ .		max.		Remarks
Analog reference voltage	V _{AREF}	SR	V _{AGND} + 1	V _{DDP}	V _{DDP} + 0.05	V	1)
Analog reference ground	V _{AGND}	SR	V _{SS} - 0.05	V _{SS}	V _{AREF} - 1	V	1)
Analog input voltage range	V_{AIN}	SR	V_{AGND}	_	V _{AREF}	V	
ADC clocks	f_{ADC}		-	24	25.8	MHz	module clock ¹⁾
	f _{adci}		-	_	10	MHz	internal analog clock ¹⁾ See Figure 35
Sample time	t _S	CC	$(2 + INPCR0.STC) \times t_{ADCI}$			μS	1)
Conversion time	t _C	CC	See S	ection	4.2.3.1	μS	1)
Total unadjusted	TUE	CC	-	-	1	LSB	8-bit conversion ²⁾
error			_	_	2	LSB	10-bit conversion ²⁾
Differential Nonlinearity	EA _{DNL}	CC	_	1	-	LSB	10-bit conversion ¹⁾
Integral Nonlinearity	EA _{INL}	CC	_	1	-	LSB	10-bit conversion ¹⁾
Offset	$ EA_{OFF} $	CC	_	1	_	LSB	10-bit conversion ¹⁾
Gain	$ EA_{GAIN} $	CC	_	1	-	LSB	10-bit conversion ¹⁾
Overload current coupling factor for	K _{OVA}	CC	_	_	1.0 x 10 ⁻⁴	-	$I_{\rm OV} > 0^{1/3}$
analog inputs			-	-	1.5 x 10 ⁻³	_	$I_{\rm OV} < 0^{1)3)}$

Table 40ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

4.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in **Figure 40**, **Figure 41** and **Figure 42**.

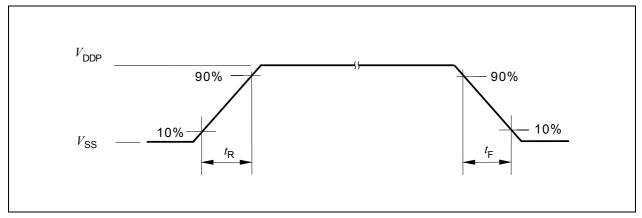


Figure 40 Rise/Fall Time Parameters

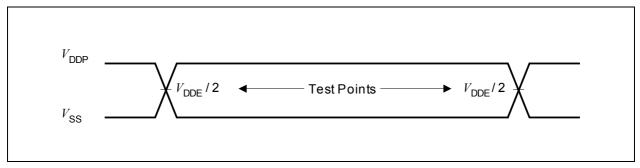


Figure 41 Testing Waveform, Output Delay

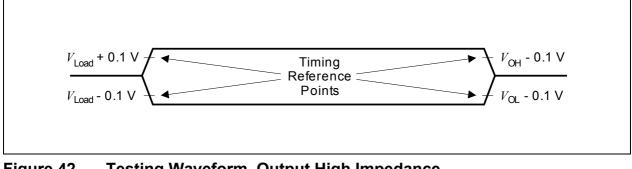


Figure 42 Testing Waveform, Output High Impedance

4.3.4 On-Chip Oscillator Characteristics

 Table 47 provides the characteristics of the on-chip oscillator in the XC886/888.

Table 47	On-chip Oscillator Characteristics (Operating Conditions apply)
----------	---

Parameter	Symbol		Limit Values			Unit	Test Conditions
			min.	typ.	max.		
Nominal frequency	f _{nom}	CC	9.36	9.6	9.84	MHz	under nominal conditions ¹⁾
Long term frequency deviation	Δf _{LT}	CC	-5.0	-	5.0	%	with respect to f_{NOM} , over lifetime and temperature (-10°C to 125°C), for one given device after trimming
			-6.0	-	0	%	with respect to f_{NOM} , over lifetime and temperature (-40°C to -10°C), for one given device after trimming
Short term frequency deviation	Δf_{ST}	CC	-1.0	-	1.0	%	within one LIN message (<10 ms 100 ms)

1) Nominal condition: V_{DDC} = 2.5 V, T_{A} = + 25°C.