

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc886-8ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2009-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

8-Bit

XC886/888CLM

8-Bit Single Chip Microcontroller

Data Sheet V1.2 2009-07

Microcontrollers

Summary of Features

Table 2Device Profile (cont'd)

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAK-XC886*/888*-8FFA 3V3	Flash	32	3.3	-40 to 125	Automotive
SAK-XC886*/888*-6FFA 3V3	Flash	24	3.3	-40 to 125	Automotive
SAF-XC886*/888*-8FFA 3V3	Flash	32	3.3	-40 to 85	Automotive
SAF-XC886*/888*-6FFA 3V3	Flash	24	3.3	-40 to 85	Automotive
SAF-XC886*/888*-8FFI 3V3	Flash	32	3.3	-40 to 85	Industrial
SAF-XC886*/888*-6FFI 3V3	Flash	24	3.3	-40 to 85	Industrial

- Note: The asterisk (*) above denotes the device configuration letters from **Table 1**. Corresponding ROM derivatives will be available on request.
- Note: For variants with LIN BSL support, only LIN BSL is available regardless of the availability of the CAN module.

As this document refers to all the derivatives, some description may not apply to a specific product. For simplicity, all versions are referred to by the term XC886/888 throughout this document.

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- The package and the type of delivery

For the available ordering codes for the XC886/888, please refer to your responsible sales representative or your local distributor.

Note: The ordering codes for the Mask-ROM versions are defined for each product after verification of the respective ROM code.

General Device Information

2 General Device Information

Chapter 2 contains the block diagram, pin configurations, definitions and functions of the XC886/888.

2.1 Block Diagram

The block diagram of the XC886/888 is shown in Figure 2.

Figure 2 XC886/888 Block Diagram

General Device Information

2.4 Pin Definitions and Functions

The functions and default states of the XC886/888 external pins are provided in Table 3.

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P0		I/O		I/O port. It ca for the JTAG	B-bit bidirectional general purpose an be used as alternate functions 6, CCU6, UART, UART1, Timer 2, ultiCAN and SSC.
P0.0	11/17		Hi-Z	TCK_0 T12HR_1 CC61_1 CLKOUT_0 RXDO_1	JTAG Clock Input CCU6 Timer 12 Hardware Run Input Input/Output of Capture/Compare channel 1 Clock Output UART Transmit Data Output
P0.1	13/21		Hi-Z	TDI_0 T13HR_1 RXD_1 RXDC1_0 COUT61_1 EXF2_1	JTAG Serial Data Input CCU6 Timer 13 Hardware Run Input UART Receive Data Input MultiCAN Node 1 Receiver Input Output of Capture/Compare channel 1 Timer 2 External Flag Output
P0.2	12/18		PU	CTRAP_2 TDO_0 TXD_1 TXDC1_0	CCU6 Trap Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 1 Transmitter Output
P0.3	48/63		Hi-Z	SCK_1 COUT63_1 RXDO1_0	SSC Clock Input/Output Output of Capture/Compare channel 3 UART1 Transmit Data Output

 Table 3
 Pin Definitions and Functions

3.2 Memory Organization

The XC886/888 CPU operates in the following five address spaces:

- 12 Kbytes of Boot ROM program memory
- 256 bytes of internal RAM data memory
- 1.5 Kbytes of XRAM memory (XRAM can be read/written as program memory or external data memory)
- A 128-byte Special Function Register area
- 24/32 Kbytes of Flash program memory (Flash devices); or 24/32 Kbytes of ROM program memory, with additional 4 Kbytes of Flash (ROM devices)

Figure 7 illustrates the memory address spaces of the 32-Kbyte Flash devices. For the 24-Kbyte Flash devices, the shaded banks are not available.

Figure 7 Memory Map of XC886/888 Flash Device

For both 24-Kbyte and 32-Kbyte ROM devices, the last four bytes of the ROM from $7FFC_{H}$ to $7FFF_{H}$ are reserved for the ROM signature and cannot be used to store user

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
CDH	ADC_LCBR Reset: B7 _H	Bit Field		BOU	IND1			BOL	JND0	
	Limit Check Boundary Register	Туре		r	N			r	w	
CEH	ADC_INPCR0 Reset: 00 _H	Bit Field				S	тс			
	Input Class 0 Register	Туре				r	w			
CF _H	ADC_ETRCR Reset: 00 _H External Trigger Control	Bit Field	SYNE N1	SYNE N0		ETRSEL	1		ETRSEL0	
	Register	Туре	rw	rw		rw			rw	
RMAP =	0, PAGE 1				•					
CAH	ADC_CHCTR0 Reset: 00 _H	Bit Field	0		LCC		()	RESE	RSEL
	Channel Control Register 0	Туре	r		rw			r	n	N
св _Н	ADC_CHCTR1 Reset: 00 _H	Bit Field	0		LCC		(C	RESE	RSEL
	Channel Control Register 1	Туре	r		rw			r	n	N
сс _Н	ADC_CHCTR2 Reset: 00 _H	Bit Field	0		LCC		()	RESE	RSEL
	Channel Control Register 2	Туре	r		rw			r	n	N
CDH	ADC_CHCTR3 Reset: 00 _H	Bit Field	0		LCC		(C	RESE	RSEL
	Channel Control Register 3	Туре	r		rw			r	rw	
CEH	ADC_CHCTR4 Reset: 00 _H	Bit Field	0	LCC			()	RESRSEL	
	Channel Control Register 4	Туре	r	rw				r	n	N
CFH	ADC_CHCTR5 Reset: 00 _H	Bit Field	0	LCC			()	RESE	RSEL
	Channel Control Register 5	Туре	r	rw				r	n	N
D2 _H	ADC_CHCTR6 Reset: 00 _H	Bit Field	0		LCC		(C	RESE	RSEL
	Channel Control Register 6	Туре	r		rw		r		n	N
D3 _H	ADC_CHCTR7 Reset: 00 _H	Bit Field	0		LCC	0		0 RESR		RSEL
	Channel Control Register 7	Туре	r		rw	r		r	n	N
RMAP =	0, PAGE 2		•							
CA _H	ADC_RESR0L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 0 Low	Туре	r	h	r	rh	rh		rh	
св _Н	ADC_RESR0H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 0 High	Туре				I	ħ			
сс _Н	ADC_RESR1L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 1 Low	Туре	r	'n	r	rh	rh		rh	
CDH	ADC_RESR1H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 1 High	Туре					'n			
CEH	ADC_RESR2L Reset: 00 _H	Bit Field	RES	RESULT 0 VF DRC					CHNR	
	Result Register 2 Low	Туре	rh r rh rh rh					rh		
CF _H	ADC_RESR2H Reset: 00 _H	Bit Field	Field RESULT							
	Result Register 2 High	Туре					ħ			
D2 _H	ADC_RESR3L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC	CHNR		
	Result Register 3 Low	Туре	r	'n	r	rh	rh		rh	

3.2.4.8 Timer 2 Registers

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0										
c₀ _H	T2_T2CON Reset: 00 _H Timer 2 Control Register	Bit Field	TF2	EXF2	()	EXEN 2				
		Туре	rwh	rwh	I	r	rw	rw rwh rw			
C1 _H	T2_T2MOD Reset: 00 _H Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE			
		Туре	rw	rw	rw	rw	rw	rw rw rw			
C2 _H	T2_RC2L Reset: 00 _H	Bit Field				R	C2				
	Timer 2 Reload/Capture Register Low	Туре				rv	vh				
C3 _H	T2_RC2H Reset: 00 _H	Bit Field				R	C2				
	Timer 2 Reload/Capture Register High	Туре				rv	vh				
C4 _H	T2_T2L Reset: 00 _H	Bit Field				TH	IL2				
	Timer 2 Register Low	Туре	rwh								
C5 _H	T2_T2H Reset: 00 _H	Bit Field		THL2							
	Timer 2 Register High	Туре				rv	vh				

Table 12T2 Register Overview

3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 13T21 Register Overview

	0										
Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 1										
C0H	T21_T2CONReset: 00HTimer 2 Control Register	Bit Field	TF2	EXF2	(0	EXEN 2	CP/ RL2			
		Туре	rwh	rwh	I	r	rw	rw rwh rw			
C1 _H	T21_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		DCEN			
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
C2 _H	T21_RC2L Reset: 00 _H	Bit Field				R	C2				
	Timer 2 Reload/Capture Register Low	Туре				n	vh				
C3 _H	T21_RC2H Reset: 00 _H	Bit Field				R	C2				
	Timer 2 Reload/Capture Register High	Туре	rwh								
C4 _H	T21_T2L Reset: 00 _H	Bit Field	THL2								
	Timer 2 Register Low	Туре				٢٧	vh				

Table 13T21 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
C5 _H	- 1	Bit Field	THL2								
	Timer 2 Register High	Туре	rwh								

3.2.4.10 CCU6 Registers

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 14 CCU6 Register Overview

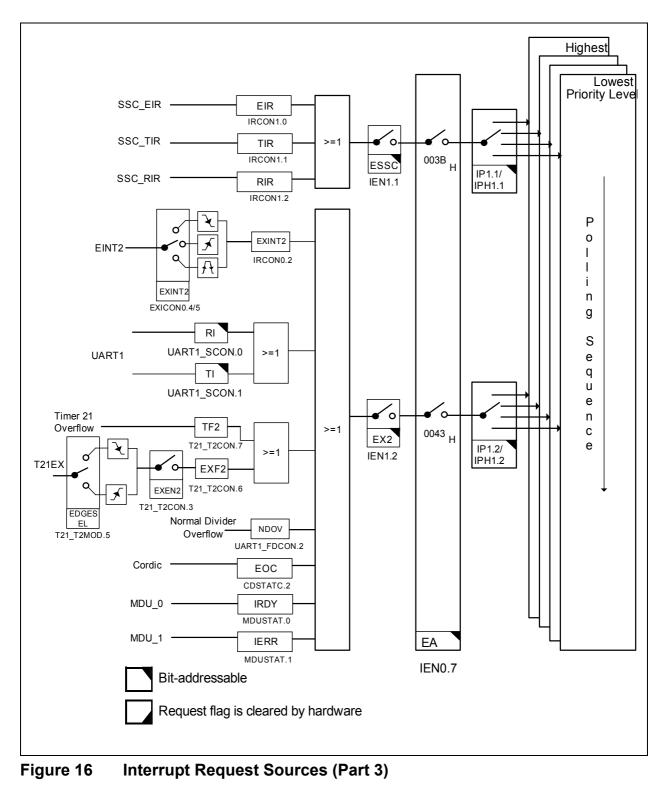
Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE	
	Page Register	Туре	١	N	١	N	r		rw	
RMAP =	= 0, PAGE 0									
9A _H	CCU6_CC63SRL Reset: 00 _H Capture/Compare Shadow Register	Bit Field				CC6	63SL			
	for Channel CC63 Low	Туре				r	w			
9B _H	CCU6_CC63SRH Reset: 00 _H	Bit Field				CC6	3SH			
	Capture/Compare Shadow Register for Channel CC63 High	Туре				r	w			
9CH	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR	(0	DT RES	T12 RES	T12R S	T12R R
		Туре	w	w		r	w	w	w	w
9D _H	CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR						T13R R
		Туре	w	w		r w w				w
9E _H	CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRM CM	0			MC	MPS		
	Register Low	Туре	w	r			r	w		
9F _H	CCU6_MCMOUTSH Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRH P	0		CURHS			EXPHS	
	Register High	Туре	w	r		rw			rw	
A4 _H	CCU6_ISRL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RT12 PM	RT12 OM	RCC6 2F	RCC6 2R	RCC6 1F	RCC6 1R	RCC6 0F	RCC6 0R
	Reset Register Low	Туре	w	w	w	w	w	w	w	w
A5 _H	CCU6_ISRH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RSTR	RIDLE	RWH E	RCHE	0	RTRP F	RT13 PM	RT13 CM
	Reset Register High	Туре	w	w	w	w	r	w	w	w
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3S						MCC6 0S
	Low	Туре	r	w	r w w				w	w
а7 _Н	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3R		0		MCC6 2R	MCC6 1R	MCC6 0R
	High	Туре	r	w		r		w	w	w

Table 14CCU6 Register Overview (cont'd)

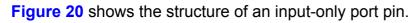
Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FA _H	CCU6_CC60SRL Reset: 00 _H	Bit Field			<u> </u>	CC6	OSL	<u> </u>	<u> </u>	
	Capture/Compare Shadow Register for Channel CC60 Low	Туре				rv	vh			
FB _H	CCU6_CC60SRH Reset: 00 _H	Bit Field				CC6	0SH			
	Capture/Compare Shadow Register for Channel CC60 High	Туре				rv	vh			
FC _H	CCU6_CC61SRL Reset: 00 _H	Bit Field				CC6	51SL			
	Capture/Compare Shadow Register for Channel CC61 Low	Туре				rv	vh			
FD _H	CCU6_CC61SRH Reset: 00 _H	Bit Field				CC6	1SH			
	Capture/Compare Shadow Register for Channel CC61 High	Туре				rv	vh			
Fe _H	CCU6_CC62SRL Reset: 00 _H	Bit Field				CC6	2SL			
	Capture/Compare Shadow Register for Channel CC62 Low	Туре				rv	vh			
FF _H	CCU6_CC62SRH Reset: 00 _H	Bit Field				CC6	2SH			
	Capture/Compare Shadow Register for Channel CC62 High	Туре				rv	vh			
RMAP =	0, PAGE 1									
9A _H	CCU6_CC63RL Reset: 00 _H	Bit Field				CC6	3VL			
	Capture/Compare Register for Channel CC63 Low	Туре				r	h			
98 _H	CCU6_CC63RH Reset: 00 _H	Bit Field				CC6	3VH			
	Capture/Compare Register for Channel CC63 High	Туре				r	h			
9CH	CCU6_T12PRL Reset: 00 _H	Bit Field				T12	PVL			
	Timer T12 Period Register Low	Туре				rv	vh			
9D _H	CCU6_T12PRH Reset: 00 _H Timer T12 Period Register High	Bit Field				T12	PVH			
		Туре				rv	vh			
9E _H	CCU6_T13PRLReset: 00HTimer T13 Period Register Low	Bit Field				T13	PVL			
		Туре				rv	vh			
9F _H	CCU6_T13PRH Reset: 00 _H Timer T13 Period Register High	Bit Field				T13	PVH			
		Туре				rv	vh			
A4 _H	CCU6_T12DTCL Reset: 00 _H Dead-Time Control Register for	Bit Field				D	ΓM			
	Timer T12 Low	Туре				r	N			
А5 _Н	CCU6_T12DTCH Reset: 00 _H Dead-Time Control Register for	Bit Field	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0
	Timer T12 High	Туре	r	rh	rh	rh	r	rw	rw	rw
A6 _H	CCU6_TCTR0L Reset: 00 _H Timer Control Register 0 Low	Bit Field	СТМ	CDIR	STE1 2	T12R	T12 PRE		T12CLK	
		Туре	rw	rh	rh	rh	rw		rw	
А7 _Н	CCU6_TCTR0H Reset: 00 _H Timer Control Register 0 High	Bit Field		0	STE1 3	T13R	T13 PRE		T13CLK	
		Туре		r	rh	rh	rw		rw	
FA _H	CCU6_CC60RL Reset: 00 _H	Bit Field				CC6	60VL			
	Capture/Compare Register for Channel CC60 Low	Туре				r	h			

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
Fe _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh


3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).


Table 15 UART1 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0							
RMAP =	= 1	1								1							
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI							
	Serial Channel Control Register	Туре	rw	rw rw rw rw rwh rwh						rwh							
C9 _H	SBUF Reset: 00 _H	Bit Field	VAL														
	Serial Data Buffer Register	Туре	rwh														
са _Н	BCON Reset: 00 _H	Bit Field	0 BRPRE R							0				R			
	Baud Rate Control Register	Туре	r rw rw							r				rw			
св _Н	BG Reset: 00 _H	Bit Field				BR_V	'ALUE										
	Baud Rate Timer/Reload Register	Туре				rv	vh										
сс _Н	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN							
	Fractional Divider Control Register	Туре			r			rwh	rw	rw							
CD _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP										
	Fractional Divider Reload Register	Туре	rw														
Ceh	FDRES Reset: 00 _H	Bit Field				RES	SULT										
	Fractional Divider Result Register	Туре				r	h										

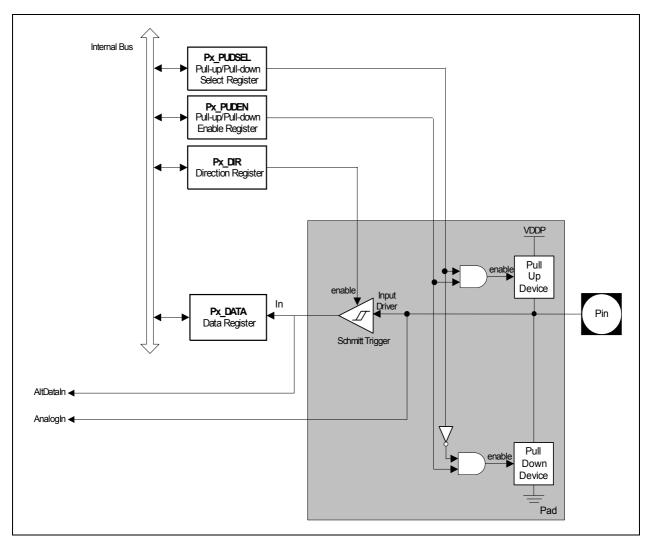



Figure 20 General Structure of Input Port

GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

Figure 35 ADC Clocking Scheme

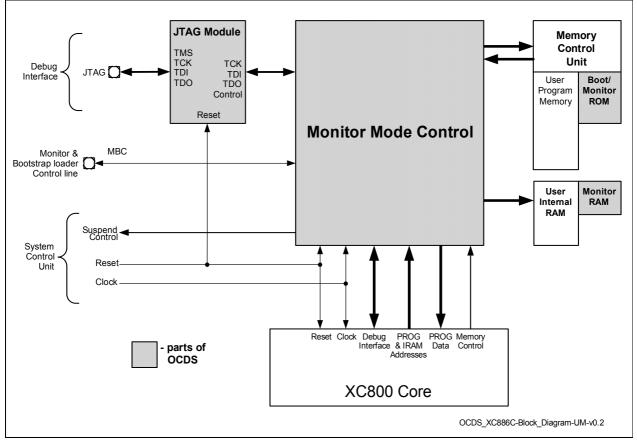

For module clock f_{ADC} = 24 MHz, the analog clock f_{ADCI} frequency can be selected as shown in **Table 34**.

Table 34	f _{ADCI} Frequency Selection
----------	---------------------------------------

Module Clock f_{ADC}	СТС	Prescaling Ratio	Analog Clock f_{ADCI}
24 MHz	00 _B	÷ 2	12 MHz (N.A)
	01 _B	÷ 3	8 MHz
	10 _B	÷ 4	6 MHz
	11 _B (default)	÷ 32	750 kHz

As $f_{\rm ADCI}$ cannot exceed 10 MHz, bit field CTC should not be set to $00_{\rm B}$ when $f_{\rm ADC}$ is 24 MHz. During slow-down mode where $f_{\rm ADC}$ may be reduced to 12 MHz, 6 MHz etc., CTC can be set to $00_{\rm B}$ as long as the divided analog clock $f_{\rm ADCI}$ does not exceed 10 MHz.

3.22.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID register contents for the XC886/888 Flash devices are given in Table 35.

Device Type	Device Name	JTAG ID	
Flash	XC886/888*-8FF	1012 0083 _H	
	XC886/888*-6FF	1012 5083 _H	
ROM	XC886/888*-8RF	1013 C083 _H	
	XC886/888*-6RF	1013 D083 _H	

Table 35JTAG ID Summary

Note: The asterisk (*) above denotes all possible device configurations.

103

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number							
	AA-Step	AB-Step	AC-Step					
XC886-6FFA 3V3	-	095D1562 _H	0B5D1562 _H					
XC888-6FFA 3V3	-	095D1563 _н	0B5D1563 _H					
XC886CLM-8FFA 5V	-	09900102 _H	0B900102 _H					
XC888CLM-8FFA 5V	-	09900103 _H	0B900103 _H					
XC886LM-8FFA 5V	-	09900122 _H	0B900122 _H					
XC888LM-8FFA 5V	-	09900123 _H	0B900123 _H					
XC886CLM-6FFA 5V	-	09951502 _H	0B951502 _H					
XC888CLM-6FFA 5V	-	09951503 _Н	0B951503 _H					
XC886LM-6FFA 5V	-	09951522 _H	0B951522 _H					
XC888LM-6FFA 5V	-	09951523 _Н	0B951523 _H					
XC886CM-8FFA 5V	-	09980102 _H	0B980102 _H					
XC888CM-8FFA 5V	-	09980103 _H	0B980103 _H					
XC886C-8FFA 5V	-	09980142 _H	0B980142 _H					
XC888C-8FFA 5V	-	09980143 _H	0B980143 _H					
XC886-8FFA 5V	-	09980162 _H	0B980162 _H					
XC888-8FFA 5V	-	09980163 _H	0B980163 _H					
XC886CM-6FFA 5V	-	099D1502 _H	0B9D1502 _H					
XC888CM-6FFA 5V	-	099D1503 _H	0B9D1503 _H					
XC886C-6FFA 5V	-	099D1542 _H	0B9D1542 _H					
XC888C-6FFA 5V	-	099D1543 _H	0B9D1543 _H					
XC886-6FFA 5V	-	099D1562 _H	0B9D1562 _H					
XC888-6FFA 5V	-	099D1563 _H	0B9D1563 _H					
ROM Devices	·		·					
XC886CLM-8RFA 3V3	22400502 _H	-	-					
XC888CLM-8RFA 3V3	22400503 _H	-	-					
XC886LM-8RFA 3V3	22400522 _H	-	-					
XC888LM-8RFA 3V3	22400523 _H	-	-					
XC886CLM-6RFA 3V3	22411502 _H	-	-					
XC888CLM-6RFA 3V3	22411503 _H	-	-					

Table 37

Electrical Parameters

Operating Conditions 4.1.3

The following operating conditions must not be exceeded in order to ensure correct operation of the XC886/888. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

	operating condition raranteers								
Parameter		Symbol	Limit	Values	Unit	Notes/ Condition			
			min.	max.					
Distigation		17	4 5		11				

Operating Condition Parameters

	•					
		min.	max.		Conditions	
Digital power supply voltage	V_{DDP}	4.5	5.5	V	5V Device	
Digital power supply voltage	V _{DDP}	3.0	3.6	V	3.3V Device	
Digital ground voltage	V _{SS}	0		V		
Digital core supply voltage	V _{DDC}	2.3	2.7	V		
System Clock Frequency ¹⁾	$f_{\rm SYS}$	88.8	103.2	MHz		
Ambient temperature	T _A	-40	85	°C	SAF- XC886/888	
		-40	125	°C	SAK- XC886/888	

1) f_{SYS} is the PLL output clock. During normal operating mode, CPU clock is f_{SYS} / 4. Please refer to Figure 26 for detailed description.

Electrical Parameters

Table 38 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit	Values	Unit	Test Conditions	
				min. max.			
Input high voltage at XTAL1	V _{IHX}	SR	$0.7 \times V_{ m DDC}$	V _{DDC} + 0.5	V		
Pull-up current	$I_{\rm PU}$	SR	_	-5	μA	$V_{\mathrm{IHP,min}}$	
			-50	_	μA	$V_{ILP,max}$	
Pull-down current	$I_{\rm PD}$	SR	-	5	μA	$V_{ILP,max}$	
			50	_	μA	V _{IHP,min}	
Input leakage current	I _{OZ1}	СС	-1	1	μA	$0 < V_{IN} < V_{DDP}, T_A \le 125^{\circ}C^{2)}$	
Input current at XTAL1	I_{ILX}	CC	- 10	10	μA		
Overload current on any pin	I _{OV}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	SR	-	25	mA	3)	
Voltage on any pin during $V_{\rm DDP}$ power off	V _{PO}	SR	-	0.3	V	4)	
Maximum current per pin (excluding V_{DDP} and V_{SS})	I _M SR	SR	-	15	mA		
Maximum current for all pins (excluding V_{DDP} and V_{SS})	$\Sigma I_{M} $	SR	-	90	mA		
Maximum current into V_{DDP}	I _{MVDDP}	SR	-	120	mA	3)	
Maximum current out of $V_{\rm SS}$	I _{MVSS}	SR	-	120	mA	3)	

 Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

2) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. TMS pin and RESET pin have internal pull devices and are not included in the input leakage current characteristic.

3) Not subjected to production test, verified by design/characterization.

4) Not subjected to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

Electrical Parameters

Table 40ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

						-	
Parameter	Symbol		Liı	nit Val	ues	Unit	Test Conditions/
			min.	typ .	max.		Remarks
Overload current coupling factor for	K _{OVD}	CC	_	-	5.0 x 10 ⁻³	-	$I_{\rm OV} > 0^{1)3)}$
digital I/O pins			_	-	1.0 x 10 ⁻²	-	$I_{\rm OV} < 0^{1)3)}$
Switched capacitance at the reference voltage input	CAREFSW	CC	_	10	20	pF	1)4)
Switched capacitance at the analog voltage inputs	C _{AINSW}	CC	_	5	7	pF	1)5)
Input resistance of the reference input	R _{AREF}	CC	_	1	2	kΩ	1)
Input resistance of the selected analog channel	R _{AIN}	CC	_	1	1.5	kΩ	1)

1) Not subjected to production test, verified by design/characterization

2) TUE is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{DDP} = 5.0 V.

- 3) An overload current (I_{OV}) through a pin injects a certain error current (I_{INJ}) into the adjacent pins. This error current adds to the respective pin's leakage current (I_{OZ}) . The amount of error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it. The total current through a pin is $|I_{TOT}| = |I_{OZ1}| + (|I_{OV}| \times K_{OV})$. The additional error current may distort the input voltage on analog inputs.
- 4) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.
- 5) The sampling capacity of the conversion C-Network is pre-charged to $V_{AREF}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{AREF}/2$.

Electrical Parameters

4.3.3 Power-on Reset and PLL Timing

Table 49 provides the characteristics of the power-on reset and PLL timing in the XC886/888.

Table 46	Power-On Reset and PLL Timing (Operating Conditions apply)

Parameter	Symbol		Lir	Limit Values			Test Conditions
			min.	typ.	max.		
Pad operating voltage	V_{PAD}	CC	2.3	-	-	V	1)
On-Chip Oscillator start-up time	t _{OSCST}	СС	-	-	500	ns	1)
Flash initialization time	t _{FINIT}	CC	_	160	_	μS	1)
RESET hold time	t _{RST}	SR	-	500	_	μS	$V_{\rm DDP}$ rise time (10% – 90%) \leq 500 μ s ¹⁾²⁾
PLL lock-in in time	t _{LOCK}	CC	-	-	200	μS	1)
PLL accumulated jitter	D_{P}		-	_	0.7	ns	1)3)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

2) RESET signal has to be active (low) until V_{DDC} has reached 90% of its maximum value (typ. 2.5 V).

3) PLL lock at 96 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 48 and P = 1.