

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc886c-6ffi-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

XC886/888 Variant Devices

The XC886/888 product family features devices with different configurations, program memory sizes, package options, power supply voltage, temperature and quality profiles (Automotive or Industrial), to offer cost-effective solutions for different application requirements.

The list of XC886/888 device configurations are summarized in **Table 1**. For each configuration, 2 types of packages are available:

- PG-TQFP-48, which is denoted by XC886 and;
- PG-TQFP-64, which is denoted by XC888.

Device Name	CAN Module	LIN BSL Support	MDU Module		
XC886/888	No	No	No		
XC886/888C	Yes	No	No		
XC886/888CM	Yes	No	Yes		
XC886/888LM	No	Yes	Yes		
XC886/888CLM	Yes	Yes	Yes		

Table 1Device Configuration

Note: For variants with LIN BSL support, only LIN BSL is available regardless of the availability of the CAN module.

From these 10 different combinations of configuration and package type, each are further made available in many sales types, which are grouped according to device type, program memory sizes, power supply voltage, temperature and quality profile (Automotive or Industrial), as shown in Table 2.

Table 2Device Profile

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAK-XC886*/888*-8FFA 5V	Flash	32	5.0	-40 to 125	Automotive
SAK-XC886*/888*-6FFA 5V	Flash	24	5.0	-40 to 125	Automotive
SAF-XC886*/888*-8FFA 5V	Flash	32	5.0	-40 to 85	Automotive
SAF-XC886*/888*-6FFA 5V	Flash	24	5.0	-40 to 85	Automotive
SAF-XC886*/888*-8FFI 5V	Flash	32	5.0	-40 to 85	Industrial
SAF-XC886*/888*-6FFI 5V	Flash	24	5.0	-40 to 85	Industrial

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P3.7	34/42		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
BEH	COCON Reset: 00 _H Clock Output Control Register	Bit Field		0	TLEN	COUT S		CO	REL			
		Туре	r r		rw	rw		r	w			
E9 _H	MISC_CON Reset: 00 _H Miscellaneous Control Register	Bit Field				0				DFLAS HEN		
		Туре				r				rwh		
RMAP =	= 0, PAGE 3											
вз _Н	XADDRH Reset: F0 _H	Bit Field				ADI	ORH					
	On-chip XRAM Address Higher Order		rw									
B4 _H	IRCON3 Reset: 00 _H Interrupt Request Register 3	H Bit Field 0		CANS RC5	CCU6 SR1	0		CANS RC4	CCU6 SR0			
		Туре	r		rwh	rwh	r		rwh	rwh		
в5 _Н	IRCON4 Reset: 00 _H Interrupt Request Register 4	Bit Field	0		CANS RC7	CCU6 SR3	0		CANS RC6	CCU6 SR2		
		Туре	r		rwh	rwh	r		rwh	rwh		
в7 _Н	MODPISEL1 Reset: 00 _H Peripheral Input Select Register	Bit Field	EXINT 6IS		0	UR1RIS T2		T21EX IS	JTAGT DIS1	JTAGT CKS1		
	1	Туре	rw		r	r	w	rw	rw	rw		
ва _Н	MODPISEL2 Reset: 00 _H	Bit Field		(0		T21IS	T2IS	T1IS	TOIS		
	2 2	Туре			r		rw	rw	rw	rw		
вв _Н	PMCON2 Reset: 00 _H Power Mode Control Register 2	Bit Field	(0			UART 1_DIS	T21_D IS		
		Туре				r			rw	rw		
вD _Н	MODSUSP Reset: 01 _H Module Suspend Control Register	Bit Field	0			T21SU SP	T2SUS P	T13SU SP	T12SU SP	WDTS USP		
		Туре		r		rw	rw	rw	rw	rw		

Table 8SCU Register Overview (cont'd)

3.2.4.5 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 9WDT Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0				
RMAP =	1													
BB _H W W Re	WDTCON Reset: 00 _H Watchdog Timer Control	Bit Field	0		WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N				
	Register	Туре		r	rw	rh	r	rw	rwh	rw				
вс _н	WDTREL Reset: 00 _H	Bit Field	WDTREL											
	Watchdog Timer Reload Register	Туре	rw											
вd _Н	WDTWINB Reset: 00 _H	Bit Field	WDTWINB											
	Vvatchdog window-Boundary Count Register	Туре				rw								

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
CD _H	ADC_LCBR Reset: B7 _H	Bit Field		BOL	IND1			BOL	IND0	
	Limit Check Boundary Register	Туре		r	w			r	w	
Ceh	ADC_INPCR0 Reset: 00 _H	Bit Field				S	ГС			
	Input Class 0 Register	Туре				r	N			
CF _H	ADC_ETRCR Reset: 00 _H External Trigger Control	Bit Field	SYNE SYNE ETRSEL			ETRSEL1			ETRSEL0	
	Register	Туре	rw	rw		rw			rw	
RMAP =	= 0, PAGE 1									
са _Н	ADC_CHCTR0 Reset: 00 _H	Bit Field	0		LCC		(0	RESF	RSEL
	Channel Control Register 0	Туре	r		rw			r	۲١	N
св _Н	ADC_CHCTR1 Reset: 00 _H	Bit Field	0		LCC		(0	RESF	RSEL
	Channel Control Register 1	Туре	r		rw			r	n	N
сс _Н	ADC_CHCTR2 Reset: 00 _H	Bit Field	0		LCC		(0	RESP	RSEL
	Channel Control Register 2	Туре	r		rw			r	۲١	N
CD _H	ADC_CHCTR3 Reset: 00 _H	Bit Field	0		LCC		(0	RESF	RSEL
	Channel Control Register 3	Туре	r	rw			r	۲١	N	
Ceh	ADC_CHCTR4 Reset: 00 _H Bit Field 0 LCC			0		RESF	RSEL			
	Channel Control Register 4	Туре	r	r rw		r		۲۱	N	
CF _H	ADC_CHCTR5 Reset: 00 _H	Bit Field	0		LCC		(0	RESF	RSEL
	Channel Control Register 5	Туре	r		rw			r	۲۱	N
D2 _H	ADC_CHCTR6 Reset: 00 _H	Bit Field	0		LCC		0		RESF	RSEL
	Channel Control Register 6	Туре	r		rw		r		۲۱	N
D3 _H	ADC_CHCTR7 Reset: 00 _H	Bit Field	0		LCC		0		RESF	RSEL
	Channel Control Register 7	Туре	r	rw			r		۳	N
RMAP =	= 0, PAGE 2		•	•						
CA _H	ADC_RESR0L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 0 Low	Туре	r	'n	r	rh	rh		rh	
св _Н	ADC_RESR0H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 0 High	Туре				r	h			
сс _н	ADC_RESR1L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 1 Low	Туре	r	'n	r	rh	rh		rh	
CD _H	ADC_RESR1H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 1 High	Туре				r	h			
Ceh	ADC_RESR2L Reset: 00 _H	Bit Field	RESULT		0	VF	DRC		CHNR	
	Result Register 2 Low	Туре	r	'n	r	rh	rh		rh	
CF _H	ADC_RESR2H Reset: 00 _H	Bit Field				RES	ULT			
	Result Register 2 High	Туре				r	h			
D2 _H	ADC_RESR3L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC	DRC CHNR		
	Result Register 3 Low	Туре	r	'n	r	rh	rh		rh	

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
Fe _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15 UART1 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	: 1										
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh	
C9 _H	SBUF Reset: 00 _H	Bit Field	VAL								
	Serial Data Buffer Register	Туре	rwh								
CA _H	BCON Reset: 00 _H	Bit Field		()			BRPRE		R	
	Baud Rate Control Register	Туре			r		rw			rw	
св _Н	BG Reset: 00 _H	Bit Field	BR_VALUE								
	Baud Rate Timer/Reload Register	Туре	rwh								
сс _Н	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN	
	Fractional Divider Control Register	Туре		r					rw	rw	
CD _H	FDSTEP Reset: 00 _H	Bit Field	Field STEP								
	Fractional Divider Reload Register	Туре	rw								
CeH	FDRES Reset: 00 _H	Bit Field				RES	ULT				
	Fractional Divider Result Register	Туре				r	h				

3.4.3 Interrupt Priority

An interrupt that is currently being serviced can only be interrupted by a higher-priority interrupt, but not by another interrupt of the same or lower priority. Hence, an interrupt of the highest priority cannot be interrupted by any other interrupt request.

If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority are received simultaneously, then an internal polling sequence determines which request is serviced first. Thus, within each priority level, there is a second priority structure determined by the polling sequence shown in **Table 21**.

Source	Level
Non-Maskable Interrupt (NMI)	(highest)
External Interrupt 0	1
Timer 0 Interrupt	2
External Interrupt 1	3
Timer 1 Interrupt	4
UART Interrupt	5
Timer 2,UART Normal Divider Overflow, MultiCAN, LIN Interrupt	6
ADC, MultiCAN Interrupt	7
SSC Interrupt	8
External Interrupt 2, Timer 21, UART1, UART1 Normal Divider Overflow, MDU, CORDIC Interrupt	9
External Interrupt [6:3], MultiCAN Interrupt	10
CCU6 Interrupt Node Pointer 0, MultiCAN interrupt	11
CCU6 Interrupt Node Pointer 1, MultiCAN Interrupt	12
CCU6 Interrupt Node Pointer 2, MultiCAN Interrupt	13
CCU6 Interrupt Node Pointer 3, MultiCAN Interrupt	14

Table 21 Priority Structure within Interrupt Level

3.5 Parallel Ports

The XC886 has 34 port pins organized into five parallel ports, Port 0 (P0) to Port 4 (P4), while the XC888 has 48 port pins organized into six parallel ports, Port 0 (P0) to Port 5 (P5). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. Ports P0, P1, P3, P4 and P5 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected. Port P2 is an input-only port, providing general purpose input functions, alternate input functions for the on-chip peripherals. Converter (ADC).

Bidirectional Port Features

- Configurable pin direction
- Configurable pull-up/pull-down devices
- Configurable open drain mode
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

Input Port Features

- Configurable input driver
- Configurable pull-up/pull-down devices
- Receive of data through digital input (general purpose input)
- Alternate input for on-chip peripherals
- Analog input for ADC module

Figure 19 General Structure of Bidirectional Port

Figure 24 CGU Block Diagram

PLL Base Mode

When the oscillator is disconnected from the PLL, the system clock is derived from the VCO base (free running) frequency clock (**Table 25**) divided by the K factor.

$$f_{SYS} = f_{VCObase} \times \frac{1}{K}$$

(3.1)

Prescaler Mode (VCO Bypass Operation)

In VCO bypass operation, the system clock is derived from the oscillator clock, divided by the P and K factors.

$$f_{SYS} = f_{OSC} \times \frac{1}{P \times K}$$

(3.2)

PLL Mode

The system clock is derived from the oscillator clock, multiplied by the N factor, and divided by the P and K factors. Both VCO bypass and PLL bypass must be inactive for this PLL mode. The PLL mode is used during normal system operation.

$$f_{SYS} = f_{OSC} \times \frac{N}{P \times K}$$

(3.3)

System Frequency Selection

For the XC886/888, the value of P is fixed to 1. In order to obtain the required fsys, the value of N and K can be selected by bits NDIV and KDIV respectively for different oscillator inputs. The output frequency must always be configured for 96 MHz. Table 24 provides examples on how $f_{\rm sys}$ = 96 MHz can be obtained for the different oscillator sources.

Table 24	System frequency (<i>f</i> _{svs} = 96 MHz)
----------	--

Oscillator	Fosc	Ν	Ρ	κ	Fsys	
On-chip	9.6 MHz	20	1	2	96 MHz	
External	8 MHz	24	1	2	96 MHz	
	6 MHz	32	1	2	96 MHz	
	4 MHz	48	1	2	96 MHz	

3.8.2 Clock Management

The CGU generates all clock signals required within the microcontroller from a single clock, f_{sys} . During normal system operation, the typical frequencies of the different modules are as follow:

- CPU clock: CCLK, SCLK = 24 MHz
- Fast clock (used by MultiCAN): FCLK = 24 or 48 MHz
- Peripheral clock: PCLK = 24 MHz
- Flash Interface clock: CCLK2 = 48 MHz and CCLK = 24 MHz

In addition, different clock frequencies can be output to pin CLKOUT (P0.0 or P0.7). The clock output frequency, which is derived from the clock output divider (bit COREL), can further be divided by 2 using toggle latch (bit TLEN is set to 1). The resulting output frequency has a 50% duty cycle. **Figure 26** shows the clock distribution of the XC886/888.

Figure 26 Clock Generation from f_{sys}

For power saving purposes, the clocks may be disabled or slowed down according to **Table 26**.

Table 26System frequency (f_{sys} = 96 MHz)

Power Saving Mode	Action						
Idle	Clock to the CPU is disabled.						
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.						
Power-down	Oscillator and PLL are switched off.						

3.9 Power Saving Modes

The power saving modes of the XC886/888 provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 27**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- Idle mode
- Slow-down mode
- Power-down mode

Figure 27 Transition between Power Saving Modes

- CAN functionality according to CAN specification V2.0 B active.
- Dedicated control registers are provided for each CAN node.
- A data transfer rate up to 1 MBaud is supported.
- Flexible and powerful message transfer control and error handling capabilities are implemented.
- Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter.
- Full-CAN functionality: A set of 32 message objects can be individually
 - allocated (assigned) to any CAN node
 - configured as transmit or receive object
 - setup to handle frames with 11-bit or 29-bit identifier
 - counted or assigned a timestamp via a frame counter
 - configured to remote monitoring mode
- Advanced Acceptance Filtering:
 - Each message object provides an individual acceptance mask to filter incoming frames.
 - A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames.
 - Message objects can be grouped into 4 priority classes.
 - The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules.
- Advanced Message Object Functionality:
 - Message Objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects.
 - Message objects can be linked to form a gateway to automatically transfer frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined.
- Advanced Data Management:
 - The Message objects are organized in double chained lists.
 - List reorganizations may be performed any time, even during full operation of the CAN nodes.
 - A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list.
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation.
 - Static Allocation Commands offer compatibility with TwinCAN applications, which are not list based.
- Advanced Interrupt Handling:
 - Up to 8 interrupt output lines are available. Most interrupt requests can be individually routed to one of the 8 interrupt output lines.
 - Message postprocessing notifications can be flexibly aggregated into a dedicated register field of 64 notification bits.

4 Electrical Parameters

Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the XC886/888.

4.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in **Section 4.2** and **Section 4.3**.

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC886/888 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

These parameters indicate **C**ontroller **C**haracteristics, which are distinctive features of the XC886/888 and must be regarded for a system design.

• SR

These parameters indicate **S**ystem **R**equirements, which must be provided by the microcontroller system in which the XC886/888 is designed in.

Parameter	Symbol		Limit	Values	Unit	Test Conditions	
			min.	max.			
Maximum current out of $V_{\rm SS}$	I _{MVSS}	SR	- 120		mA	3)	
V_{DDP} = 3.3 V Range							
Output low voltage	V_{OL}	CC	_	1.0	V	I _{OL} = 8 mA	
			-	0.4	V	I _{OL} = 2.5 mA	
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{OH} = -8 mA	
			V _{DDP} - 0.4	-	V	I _{OH} = -2.5 mA	
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
Input low voltage on P0.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 \times V_{ m DDP}$	V	CMOS Mode	
Input low voltage on RESET pin	V_{ILR}	SR	-	$0.3 \times V_{ m DDP}$	V	CMOS Mode	
Input low voltage on TMS pin	V _{ILT}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
Input high voltage on port pins (all except P0.0 & P0.1)	V _{IHP}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode	
Input high voltage on P0.0 & P0.1	V _{IHP0}	SR	$0.7 \times V_{\text{DDP}}$	V _{DDP}	V	CMOS Mode	
Input high voltage on RESET pin	V_{IHR}	SR	$0.7 \times V_{ m DDP}$	-	V	CMOS Mode	
Input high voltage on TMS pin	V _{IHT}	SR	$0.75 \times V_{ m DDP}$	-	V	CMOS Mode	
Input Hysteresis	HYS	CC	$0.03 \times V_{ m DDP}$	-	V	CMOS Mode ¹⁾	
Input Hysteresis on XTAL1	HYSX	CC	$0.07 \times V_{ m DDC}$	-	V	1)	
Input low voltage at XTAL1	V _{ILX}	SR	V _{SS} - 0.5	$0.3 \times V_{ m DDC}$	V		

Table 38 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
Input high voltage at XTAL1	V _{IHX}	SR	$0.7 \times V_{\text{DDC}}$	V _{DDC} + 0.5	V		
Pull-up current	$I_{\rm PU}$	SR	-	-5	μA	$V_{\mathrm{IHP,min}}$	
			-50	_	μA	$V_{ILP,max}$	
Pull-down current	$I_{\rm PD}$	SR	_	5	μA	$V_{ILP,max}$	
			50	_	μA	$V_{\rm IHP,min}$	
Input leakage current	I _{OZ1}	CC	-1	1	μA	$0 < V_{IN} < V_{DDP}, T_A \le 125^{\circ}C^{2)}$	
Input current at XTAL1	I_{ILX}	CC	- 10	10	μA		
Overload current on any pin	I _{OV}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	SR	-	25	mA	3)	
Voltage on any pin during V_{DDP} power off	V _{PO}	SR	-	0.3	V	4)	
Maximum current per pin (excluding V_{DDP} and V_{SS})	I _M SR	SR	_	15	mA		
Maximum current for all pins (excluding V_{DDP} and V_{SS})	$\Sigma I_{M} $	SR	_	90	mA		
Maximum current into V_{DDP}		SR	-	120	mA	3)	
Maximum current out of $V_{\rm SS}$	I _{MVSS}	SR	-	120	mA	3)	

 Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

2) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. TMS pin and RESET pin have internal pull devices and are not included in the input leakage current characteristic.

3) Not subjected to production test, verified by design/characterization.

4) Not subjected to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

Table 40ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Parameter	Symbol		Lir	nit Valı	ues	Unit	Test Conditions/
			min.	typ.	max.		Remarks
Overload current coupling factor for digital I/O pins	K _{OVD}	CC	-	_	5.0 x 10 ⁻³	-	$I_{\rm OV} > 0^{1)3)}$
			_	_	1.0 x 10 ⁻²	-	$I_{\rm OV} < 0^{1)3)}$
Switched capacitance at the reference voltage input	C _{AREFSW}	CC	_	10	20	pF	1)4)
Switched capacitance at the analog voltage inputs	C _{AINSW}	CC	_	5	7	pF	1)5)
Input resistance of the reference input	R _{AREF}	CC	_	1	2	kΩ	1)
Input resistance of the selected analog channel	R _{AIN}	CC	_	1	1.5	kΩ	1)

1) Not subjected to production test, verified by design/characterization

2) TUE is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{DDP} = 5.0 V.

- 3) An overload current (I_{OV}) through a pin injects a certain error current (I_{INJ}) into the adjacent pins. This error current adds to the respective pin's leakage current (I_{OZ}) . The amount of error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it. The total current through a pin is $|I_{TOT}| = |I_{OZ1}| + (|I_{OV}| \times K_{OV})$. The additional error current may distort the input voltage on analog inputs.
- 4) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.
- 5) The sampling capacity of the conversion C-Network is pre-charged to $V_{AREF}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{AREF}/2$.

Table 50 JTAG Timing (O	TAG Timing (Operating Conditions apply; CL = 50 pF) (cont'd)									
Parameter	Symbol		Lir	nits	Unit	Test				
			min	max		Conditions				
TDO high impedance to valid	<i>t</i> ₄	CC	-	27	ns	5V Device ¹⁾				
output from TCK			-	36	ns	3.3V Device ¹⁾				
TDO valid output to high	t_5	CC	-	22	ns	5V Device ¹⁾				
impedance from TCK			-	28	ns	3.3V Device ¹⁾				

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

www.infineon.com

Published by Infineon Technologies AG