

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc886cm-6ffi-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC886/888CLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P1.6	8/10		PU	CCPOS1_1 T12HR_0	CCU6 Hall Input 1 CCU6 Timer 12 Hardware Run Input
				EXINT6_0 RXDC0_2 T21_1	External Interrupt Input 6 MultiCAN Node 0 Receiver Input Timer 21 Input
P1.7	9/11		PU	CCPOS2_1 T13HR_0 T2_1 TXDC0_2	CCU6 Hall Input 2 CCU6 Timer 13 Hardware Run Input Timer 2 Input MultiCAN Node 0 Transmitter
				P1.5 and P1.	Output 6 can be used as a software chip for the SSC

3.2 Memory Organization

The XC886/888 CPU operates in the following five address spaces:

- 12 Kbytes of Boot ROM program memory
- 256 bytes of internal RAM data memory
- 1.5 Kbytes of XRAM memory (XRAM can be read/written as program memory or external data memory)
- A 128-byte Special Function Register area
- 24/32 Kbytes of Flash program memory (Flash devices); or 24/32 Kbytes of ROM program memory, with additional 4 Kbytes of Flash (ROM devices)

Figure 7 illustrates the memory address spaces of the 32-Kbyte Flash devices. For the 24-Kbyte Flash devices, the shaded banks are not available.

Figure 7 Memory Map of XC886/888 Flash Device

For both 24-Kbyte and 32-Kbyte ROM devices, the last four bytes of the ROM from $7FFC_{H}$ to $7FFF_{H}$ are reserved for the ROM signature and cannot be used to store user

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable 0 The access to the standard SFR area is enabled 1 The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC886/888 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 9**.

Figure 9 Address Extension by Paging

In order to access a register located in a page different from the actual one, the current page must be exited. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

• Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
A8 _H	IEN0 Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0
	Interrupt Enable Register 0	Туре	rw	r	rw	rw	rw	rw	rw	rw
B8 _H	IP Reset: 00 _H	Bit Field	(0	PT2	PS	PT1	PX1	PT0	PX0
	Interrupt Priority Register	Туре		r	rw	rw	rw	rw	rw	rw
в9 _Н	IPH Reset: 00 _H	Bit Field	(0	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
	Interrupt Priority High Register	Туре		r	rw	rw	rw	rw	rw	rw
D0 _H	PSW Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р
	Program Status Word Register	Туре	rwh	rwh	rw	rw	rw	rwh	rw	rh
E0 _H	ACC Reset: 00 _H Accumulator Register	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
E8 _H	IEN1 Reset: 00 _H Interrupt Enable Register 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F0 _H	B Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Reset: 00 _H Interrupt Priority 1 Register	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Reset: 00 _H Interrupt Priority 1 High Register	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSC H	PADC H
		Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 5CPU Register Overview (cont'd)

3.2.4.2 MDU Registers

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 6MDU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1									
в0 _Н	MDUSTAT Reset: 00 _H	Bit Field			BSY	IERR	IRDY			
	MDU Status Register	Туре			r			rh	rwh	rwh
в1 _Н	MDUCON Reset: 00 _H MDU Control Register	Bit Field	IE	IR	RSEL	STAR T		OPCODE		
		Туре	rw	rw	rw	rwh		r	W	
B2 _H	MD0 Reset: 00 _H	Bit Field	DATA							
	MDU Operand Register 0	Туре	rw							
B2 _H	MR0 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 0	Туре				r	h			
B3 _H	MD1 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 1	Туре				r	w			

Table 8SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
вс _Н	NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	FNMI VDD	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT	
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
вd _Н	BCON Reset: 00 _H	Bit Field	BG	SEL	0	BRDIS		BRPRE		R	
	Baud Rate Control Register	Туре	r	w	r	rw	rw rw				
BE _H	BG Reset: 00 _H	Bit Field			<u> </u>	BR_V	ALUE				
	Baud Rate Timer/Reload Register	Туре				rv	vh				
E9 _H	FDCON Reset: 00 _H Fractional Divider Control	Bit Field	BGS	SYNE N	ERRS YN	EOFS YN	BRK	NDOV	FDM	FDEN	
	Register	Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw	
EA _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP				
	Fractional Divider Reload Register	Туре				r	w				
EB _H	FDRES Reset: 00 _H	Bit Field				RES	SULT	ULT			
	Fractional Divider Result Register	Туре				r	h				
RMAP =	= 0, PAGE 1		1								
вз _Н	ID Reset: UU _H	Bit Field			PRODID		VERID				
	Identity Register	Туре			r		r				
B4 _H	PMCON0 Reset: 00 _H Power Mode Control Register 0	Bit Field	0	WDT RST	WKRS	WK SEL	SD	D PD W		WS	
		Туре	r	rwh	rwh	rw	rw	rwh	rwh rw		
в5 _Н	PMCON1 Reset: 00 _H Power Mode Control Register 1	Bit Field	0	CDC_ DIS	CAN_ DIS	MDU_ DIS	T2_ DIS	CCU_ DIS	SSC_ DIS	ADC_ DIS	
		Туре	r	rw	rw	rw	rw	rw	rw	rw	
в6 _Н	OSC_CON Reset: 08 _H OSC Control Register	Bit Field		0		OSC PD	XPD	OSC SS	ORD RES	OSCR	
		Туре		r		rw	rw	rw	rwh	rh	
в7 _Н	PLL_CON Reset: 90 _H PLL Control Register	Bit Field		N	VIV		VCO BYP	OSC DISC	RESL D	LOCK	
		Туре		r	W		rw	rw	rwh	rh	
ва _Н	CMCON Reset: 10 _H Clock Control Register	Bit Field	VCO SEL	KDIV	0	FCCF G		CLK	REL		
		Туре	rw	rw	r	rw		r	w		
вв _Н	PASSWD Reset: 07 _H Password Register	Bit Field			PASS		PROT MODE ECT_S			DE	
		Туре			wh			rh	r	w	
вс _Н	FEAL Reset: 00 _H	Bit Field				ECCER	ERRADDR				
	Low	Туре				r	h				
вd _Н	FEAH Reset: 00 _H	Bit Field				ECCER	RADDR				
	Hash Error Address Register	Туре				r	h				

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
cc ^H	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0
		Туре	w	w	w	w	w	w	w	w
CD _H	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0
	Register	Туре	rw							
CeH	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	(0	EVINF 1	EVINF 0
		Туре	rh	rh	rh	rh		r	rh	rh
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	(0	EVINC 1	EVINC 0
	Register	Туре	w	w	w	w		r	w	w
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	(D	EVINS 1	EVINS 0
		Туре	w	w	w	w	r		w	w
D3 _H	ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer	Bit Field	EVINP 7	EVINP 6	EVINP 5	EVINP 4	0		EVINP 1	EVINP 0
	Register	Туре	rw	rw	rw	rw		r	rw	rw
RMAP =	= 0, PAGE 6	_	-							
са _Н	ADC_CRCR1 Reset: 00 _H	Bit Field	CH7	CH6	CH5	CH4	0			
	Register 1	Туре	rwh	rwh	rwh	rwh		I	r	
св _Н	ADC_CRPR1 Reset: 00 _H	Bit Field	CHP7	CHP6	CHP5	CHP4		(0	
	Register 1	Туре	rwh	rwh	rwh	rwh		l	r	
cc ^H	ADC_CRMR1 Reset: 00 _H Conversion Request Mode	Bit Field	Rsv	LDEV	CLRP ND	SCAN	ENSI	ENTR	0	ENGT
	Register 1	Туре	r	w	w	rw	rw	rw	r	rw
CDH	ADC_QMR0 Reset: 00 _H Queue Mode Register 0	Bit Field	CEV	TREV	FLUS H	CLRV	0	ENTR	0	ENGT
		Туре	w	w	w	w	r	rw	r	rw
CEH	ADC_QSR0 Reset: 20 _H Queue Status Register 0	Bit Field	Rsv	0	EMPT Y	EV	(D	FI	LL
		Туре	r	r	rh	rh	r		r	h
CFH	ADC_Q0R0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२
		Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QBUR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२
	Queue Dackup Register U	Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QINR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	()	F	REQCHN	ર
		Туре	w	w	w		r		w	

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0			
FA _H	CCU6_CC60SRL Reset: 00 _H	Bit Field				CCe	0SL						
	Capture/Compare Shadow Register for Channel CC60 Low	Туре				rv	vh						
FB _H	CCU6_CC60SRH Reset: 00 _H	Bit Field				CC6	0SH						
	Capture/Compare Shadow Register for Channel CC60 High	Туре				rv	vh						
FC _H	CCU6_CC61SRL Reset: 00 _H	Bit Field		CC61SL									
	for Channel CC61 Low	Туре	rwh										
FD _H	CCU6_CC61SRH Reset: 00 _H	Bit Field		CC61SH									
	for Channel CC61 High	Туре	rwh										
FE _H	CCU6_CC62SRL Reset: 00 _H	Bit Field				CC6	S2SL						
	for Channel CC62 Low	Туре	rwh										
FF _H	CCU6_CC62SRH Reset: 00 _H	Bit Field				CC6	2SH						
	for Channel CC62 High	Туре	rwh										
RMAP =	= 0, PAGE 1												
9A _H	CCU6_CC63RL Reset: 00 _H	Bit Field				CC6	3VL						
	Capture/Compare Register for Channel CC63 Low	Туре	rh										
9B _H	CCU6_CC63RH Reset: 00 _H	Bit Field				CC6	3VH						
	Capture/Compare Register for Channel CC63 High	Туре				r	h						
9CH	CCU6_T12PRL Reset: 00 _H	Bit Field				T12	PVL						
	Timer 112 Period Register Low	Туре				rv	vh						
9D _H	CCU6_T12PRH Reset: 00 _H	Bit Field				T12	PVH						
		Туре				rv	vh						
9E _H	CCU6_T13PRL Reset: 00 _H	Bit Field	T13PVL										
		Туре				rv	vh						
9F _H	CCU6_T13PRH Reset: 00 _H	Bit Field				T13	PVH						
		Туре				rv	vh						
A4 _H	CCU6_T12DTCL Reset: 00 _H	Bit Field				D	ГМ						
	Timer T12 Low	Туре				r	W						
A5 _H	CCU6_T12DTCH Reset: 00 _H	Bit Field	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0			
	Timer T12 High	Туре	r	rh	rh	rh	r	rw	rw	rw			
A6 _H	CCU6_TCTR0LReset: 00HTimer Control Register 0 Low	Bit Field	СТМ	CDIR	STE1 2	T12R	T12 PRE		T12CLK				
		Туре	pe rw rh rh rh rw n						rw				
а7 _Н	CCU6_TCTR0HReset: 00HTimer Control Register 0 High	Bit Field 0 STE1 T13R T13 3 PRE					T13CLK						
		Туре		r	rh	rh	rw		rw				
FA _H	CCU6_CC60RL Reset: 00 _H	Bit Field				CCG	60VL						
	Capture/Compare Register for Channel CC60 Low	Туре				r	h						

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5 4 3		3	2	1	0	
FB _H	CCU6_TCTR2H Reset: 00 _H	Bit Field			0		T13F	RSEL	T12F	RSEL	
	Timer Control Register 2 High	Туре			r		r	w	r	w	
FC _H	CCU6_MODCTRL Reset: 00 _H Modulation Control Register Low	Bit Field	MCM EN	0			T12M	ODEN			
		Туре	rw	r		rw					
FD _H	CCU6_MODCTRH Reset: 00 _H Modulation Control Register High	Bit Field	ECT1 30	0			T13M	ODEN			
		Туре	rw	r			r	w			
FE _H	E _H CCU6_TRPCTRL Reset: 00 _H Trap Control Register Low				0			TRPM 2	TRPM 1	TRPM 0	
				_	r			rw	rw	rw	
FF _H	CCU6_TRPCTRHReset: 00HTrap Control Register High	Bit Field	TRPP EN	TRPE N13	E TRPEN						
		Туре	rw	rw	rw						
RMAP =	0, PAGE 3	•			-						
9A _H	CCU6_MCMOUTL Reset: 00 _H	Bit Field	0	R			MC	MP			
	Low	Туре	r	rh	rt			ו 			
9B _H	CCU6_MCMOUTH Reset: 00 _H	Bit Field	(0	CURH			EXPH			
	High	Туре		r		rh			rh		
9CH	H CCU6_ISL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	T12 PM	T12 OM	ICC62 F	ICC62 R	ICC61 F	ICC61 R	ICC60 F	ICC60 R	
	Register Low	Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9D _H	CCU6_ISH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	STR	IDLE	WHE	CHE	TRPS	TRPF	T13 PM	T13 CM	
	Register High	Туре	rh	rh	rh	rh	rh	rh	rh	rh	
9E _H	CCU6_PISEL0L Reset: 00 _H	Bit Field	IST	RP	ISC	C62	ISC	C61	ISC	C60	
		Туре	r	w	r	w	r	w	r	W	
9F _H	CCU6_PISEL0H Reset: 00 _H	Bit Field	IST1	2HR	ISP	OS2	ISP	OS1	ISP	OS0	
		Туре	r	w	r	w	r	w	r	W	
A4 _H	CCU6_PISEL2 Reset: 00 _H	Bit Field				0			IST1	3HR	
		Туре				r			r	W	
FA _H	CCU6_T12L Reset: 00 _H	Bit Field				T12	CVL				
		Туре		rwh							
FB _H	CCU6_T12H Reset: 00 _H Timer T12 Counter Register High	Bit Field				T12	CVH				
		Туре				rv	vh				
FCH	CCU6_T13L Reset: 00 _H Timer T13 Counter Register Low	Bit Field				T13	CVL				
		Туре				rv	vh				
FDH	CCU6_T13H Reset: 00 _H Timer T13 Counter Reaister High	Bit Field				T13	CVH				
		Туре				rv	vh				

Table 18OCDS Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
ec _h	MMWR2 Reset: 00 _H	Bit Field	MMWR2							
	Monitor Work Register 2	Туре				r	w			

3.3 Flash Memory

The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The sectorization of the Flash memory allows each sector to be erased independently.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width¹⁾ of 32-byte for D-Flash and 64-byte for P-Flash
- 1-sector minimum erase width
- 1-byte read access
- Flash is delivered in erased state (read all zeros)
- Operating supply voltage: 2.5 V ± 7.5 %
- Read access time: $3 \times t_{CCLK} = 125 \text{ ns}^{2}$
- Program time: 248256 / $f_{SYS}^{(3)}$ = 2.6 ms³⁾
- Erase time: 9807360 / f_{SYS} = 102 ms³⁾

¹⁾ P-Flash: 64-byte wordline can only be programmed once, i.e., one gate disturb allowed. D-Flash: 32-byte wordline can be programmed twice, i.e., two gate disturbs allowed.

²⁾ Values shown here are typical values. f_{sys} = 96 MHz ± 7.5% (f_{CCLK} = 24 MHz ± 7.5 %) is the maximum frequency range for Flash read access.

³⁾ Values shown here are typical values. $f_{sys} = 96 \text{ MHz} \pm 7.5\%$ is the only frequency range for Flash programming and erasing. f_{sysmin} is used for obtaining the worst case timing.

Figure 11 Flash Bank Sectorization

The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s.

The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

3.3.2 Parallel Read Access of P-Flash

To enhance system performance, the P-Flash banks are configured for parallel read to allow two bytes of linear code to be read in 4 x CCLK cycles, compared to 6 x CCLK cycles if serial read is performed. This is achieved by reading two bytes in parallel from a P-Flash bank pair within the 3 x CCLK cycles access time and storing them in a cache. Subsequent read from the cache by the CPU does not require a wait state and can be completed within 1 x CCLK cycle. The result is the average instruction fetch time from the P-Flash banks is reduced and thus, the MIPS (Mega Instruction Per Second) of the system is increased.

However, if the parallel read feature is not desired due to certain timing constraints, it can be disabled by calling the parallel read disable subroutine.

3.3.3 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see **Figure 12**)

Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

3.4 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC886/888 interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source.

3.4.1 Interrupt Source

Figure 13 to **Figure 17** give a general overview of the interrupt sources and nodes, and their corresponding control and status flags.

Figure 13 Non-Maskable Interrupt Request Sources

For power saving purposes, the clocks may be disabled or slowed down according to **Table 26**.

Table 26System frequency (f_{sys} = 96 MHz)

Power Saving Mode	Action					
Idle	Clock to the CPU is disabled.					
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.					
Power-down	Oscillator and PLL are switched off.					

3.9 Power Saving Modes

The power saving modes of the XC886/888 provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 27**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- Idle mode
- Slow-down mode
- Power-down mode

Figure 27 Transition between Power Saving Modes

Electrical Parameters

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC886/888 can be subjected to without permanent damage.

Parameter Symbol Limit Values		Unit	Notes		
		min.	max.		
Ambient temperature	T _A	-40	125	°C	under bias
Storage temperature	T _{ST}	-65	150	°C	1)
Junction temperature	TJ	-40	150	°C	under bias ¹⁾
Voltage on power supply pin with respect to $V_{\rm SS}$	V _{DDP}	-0.5	6	V	1)
Voltage on any pin with respect to $V_{\rm SS}$	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	whichever is lower ¹⁾
Input current on any pin during overload condition	I _{IN}	-10	10	mA	1)
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	_	50	mA	1)

Table 4-1	Absolute	Maximum	Rating	Parameters
-----------	----------	---------	--------	-------------------

1) Not subjected to production test, verified by design/characterization.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Electrical Parameters

Table 40ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Parameter	Symbol		Limit Values			Unit	Test Conditions/
			min.	typ.	max.		Remarks
Overload current coupling factor for digital I/O pins	K _{OVD}	CC	-	_	5.0 x 10 ⁻³	-	$I_{\rm OV} > 0^{1)3)}$
			_	_	1.0 x 10 ⁻²	-	$I_{\rm OV} < 0^{1)3)}$
Switched capacitance at the reference voltage input	C _{AREFSW}	CC	_	10	20	pF	1)4)
Switched capacitance at the analog voltage inputs	C _{AINSW}	CC	_	5	7	pF	1)5)
Input resistance of the reference input	R _{AREF}	CC	_	1	2	kΩ	1)
Input resistance of the selected analog channel	R _{AIN}	CC	-	1	1.5	kΩ	1)

1) Not subjected to production test, verified by design/characterization

2) TUE is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{DDP} = 5.0 V.

- 3) An overload current (I_{OV}) through a pin injects a certain error current (I_{INJ}) into the adjacent pins. This error current adds to the respective pin's leakage current (I_{OZ}) . The amount of error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it. The total current through a pin is $|I_{TOT}| = |I_{OZ1}| + (|I_{OV}| \times K_{OV})$. The additional error current may distort the input voltage on analog inputs.
- 4) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.
- 5) The sampling capacity of the conversion C-Network is pre-charged to $V_{AREF}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{AREF}/2$.

Electrical Parameters

Table 42 Power Down Current (Operating Conditions apply; $V_{DDP} = 5v$ range					
Parameter	Symbol	Limit Values		Unit	Test Condition
		typ. ¹⁾	max. ²⁾		
$V_{\rm DDP}$ = 5V Range		·			
Power-Down Mode	I _{PDP}	1	10	μA	$T_{A} = + 25 \ ^{\circ}C^{3)4)}$
		-	30	μA	$T_{A} = + 85 \ ^{\circ}C^{4)5)}$
1) The typical $I_{}$ values are me	asured at $V_{} = 5.0$	/			

Power Down Current (Operating Conditions apply: U able 10 - E (1 - C)

1) The typical I_{PDP} values are measured at V_{DDP} = 5.0 V.

2) The maximum I_{PDP} values are measured at V_{DDP} = 5.5 V.

3) I_{PDP} has a maximum value of 200 μ A at T_A = + 125 °C.

4) I_{PDP} is measured with: RESET = V_{DDP} , V_{AGND} = V_{SS} , RXD/INT0 = V_{DDP} ; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

5) Not subjected to production test, verified by design/characterization.

www.infineon.com

Published by Infineon Technologies AG