

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc888-8ffa-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2009-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

General Device Information

2.4 Pin Definitions and Functions

The functions and default states of the XC886/888 external pins are provided in Table 3.

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function					
P0		I/O		Port 0 Port 0 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for the JTAG, CCU6, UART, UART1, Timer 2, Timer 21, MultiCAN and SSC.					
P0.0	11/17		Hi-Z	TCK_0 T12HR_1 CC61_1 CLKOUT_0 RXDO_1	JTAG Clock Input CCU6 Timer 12 Hardware Run Input Input/Output of Capture/Compare channel 1 Clock Output UART Transmit Data Output				
P0.1	13/21		Hi-Z	TDI_0 T13HR_1 RXD_1 RXDC1_0 COUT61_1 EXF2_1	JTAG Serial Data Input CCU6 Timer 13 Hardware Run Input UART Receive Data Input MultiCAN Node 1 Receiver Input Output of Capture/Compare channel 1 Timer 2 External Flag Output				
P0.2	12/18		PU	CTRAP_2 TDO_0 TXD_1 TXDC1_0	CCU6 Trap Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 1 Transmitter Output				
P0.3	48/63		Hi-Z	SCK_1 COUT63_1 RXDO1_0	SSC Clock Input/Output Output of Capture/Compare channel 3 UART1 Transmit Data Output				

 Table 3
 Pin Definitions and Functions

XC886/888CLM

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P3		I/O		Port 3 Port 3 is an 8 I/O port. It ca for CCU6, U/	B-bit bidirectional general purpose on be used as alternate functions ART1, Timer 21 and MultiCAN.
P3.0	35/43		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0 UART1 Transmit Data Output
P3.1	36/44		Hi-Z	CCPOS0_2 CC61_2 COUT60_0	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1 Output of Capture/Compare
				TXD1_1	UART1 Transmit Data Output/Clock Output
P3.2	37/49		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0	CCU6 Hall Input 2 MultiCAN Node 1 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1
P3.3	38/50		Hi-Z	COUT61_0 TXDC1_1	Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output
P3.4	39/51		Hi-Z	CC62_0 RXDC0_1 T2EX1_0	Input/Output of Capture/Compare channel 2 MultiCAN Node 0 Receiver Input Timer 21 External Trigger Input
P3.5	40/52		Hi-Z	COUT62_0 EXF21_0 TXDC0_1	Output of Capture/Compare channel 2 Timer 21 External Flag Output MultiCAN Node 0 Transmitter Output
P3.6	33/41		PD	CTRAP 0	CCU6 Trap Input

Table 3Pin Definitions and Functions (cont'd)

Flash Protection	Without hardware protection	With hardware protection					
P-Flash program and erase	Possible	Not possible	Not possible				
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D- Flash				
External access to D-Flash	Not possible	Not possible	Not possible				
D-Flash program	Possible	Possible	Not possible				
D-Flash erase	Possible	Possible, on condition that bit DFLASHEN in register MISC_CON is set to 1 prior to each erase operation	Not possible				

Table 4Flash Protection Modes (cont'd)

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. The Flash protection is then disabled upon the next reset.

For the ROM device, the ROM is protected at all times and BSL mode 6 is used only to block external access to the device. However, unlike the Flash device, it is not possible to disable the memory protection of the ROM device. Here, entering BSL mode 6 will result in a protection error.

Note: If ROM read-out protection is enabled, only read instructions in the ROM memory can target the ROM contents.

Although no protection scheme can be considered infallible, the XC886/888 memory protection strategy provides a very high level of protection for a general purpose microcontroller.

XC886/888CLM

Functional Description

Table 10Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0, PAGE 1									
80 _H	P0_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Select Register	Туре	rw							
86 _H	P0_PUDEN Reset: C4 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Enable Register	Туре	rw							
90 _H	P1_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Select Register	Туре	rw							
91 _H	P1_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Enable Register	Туре	rw							
92 _H	P5_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Select Register	Туре	rw							
93 _H	P5_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Enable Register	Туре	rw							
A0 _H	P2_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Select Register	Туре	rw							
A1 _H	P2_PUDEN Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Enable Register	Туре	rw							
во _Н	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
B1 _H	P3_PUDEN Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8 _H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	= 0, PAGE 2			•				•		
⁸⁰ H	P0_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	PU Alternate Select 1 Register	Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	PT Alternate Select 0 Register	Туре	rw							
⁹¹ H	P1_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	I Allemale Select I Register	Туре	rw							
92 _H	P5_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
FA _H	CCU6_CC60SRL Reset: 00 _H	Bit Field				CCe	0SL				
	Capture/Compare Shadow Register for Channel CC60 Low	Туре				rv	vh				
FB _H	CCU6_CC60SRH Reset: 00 _H	Bit Field	CC60SH								
	Capture/Compare Shadow Register for Channel CC60 High	Туре	rwh								
FC _H	CCU6_CC61SRL Reset: 00 _H	Bit Field				CC6	61SL				
	for Channel CC61 Low	Туре	rwh								
FD _H	CCU6_CC61SRH Reset: 00 _H	Bit Field				CC6	51SH				
	for Channel CC61 High	Туре				rv	vh				
FE _H	CCU6_CC62SRL Reset: 00 _H	Bit Field				CC6	S2SL				
	for Channel CC62 Low	Туре				rv	vh				
FF _H	CCU6_CC62SRH Reset: 00 _H	Bit Field	ld CC62SH								
	for Channel CC62 High	Туре	rwh								
RMAP =	= 0, PAGE 1										
9A _H	CCU6_CC63RL Reset: 00 _H	Bit Field				CC6	3VL				
	Capture/Compare Register for Channel CC63 Low	Туре				r	h				
9B _H	CCU6_CC63RH Reset: 00 _H	Bit Field		CC63VH							
	Capture/Compare Register for Channel CC63 High	Туре				r	h				
9CH	CCU6_T12PRL Reset: 00 _H	Bit Field				T12	PVL				
	Timer 112 Period Register Low	Туре				rv	vh				
9D _H	CCU6_T12PRH Reset: 00 _H	Bit Field				T12	PVH				
		Туре				rv	vh				
9E _H	CCU6_T13PRL Reset: 00 _H	Bit Field				T13	PVL				
		Туре				rv	vh				
9F _H	CCU6_T13PRH Reset: 00 _H	Bit Field				T13	PVH				
		Туре				rv	vh				
A4 _H	CCU6_T12DTCL Reset: 00 _H	Bit Field				D	ГМ				
	Timer T12 Low	Туре				r	W				
A5 _H	CCU6_T12DTCH Reset: 00 _H	Bit Field	0	DTR2	DTR1	DTR0	0	DTE2	DTE1	DTE0	
	Timer T12 High	Туре	r	rh	rh	rh	r	rw	rw	rw	
A6 _H	CCU6_TCTR0LReset: 00HTimer Control Register 0 Low	Bit Field	d CTM CDIR STE1 T12R T12 T12CLK								
		Туре	rw rh rh rh rw rw								
а7 _Н	CCU6_TCTR0HReset: 00HTimer Control Register 0 High	Bit Field	0 STE1 T13R T13 T13CLK 3 PRE								
		Туре	r rh rh rw rw								
FA _H	CCU6_CC60RL Reset: 00 _H	Bit Field				CCG	60VL				
	Capture/Compare Register for Channel CC60 Low	Туре				r	h				

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
Fe _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15 UART1 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 1									
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh
C9 _H	SBUF Reset: 00 _H	Bit Field	d VAL							
	Serial Data Buffer Register	Туре	rwh							
CA _H	BCON Reset: 00 _H	Bit Field	0 BRPRE					R		
	Baud Rate Control Register	Туре			r			rw		rw
св _Н	BG Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer/Reload Register	Туре				rv	vh			
сс _Н	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN
	Fractional Divider Control Register	Туре			r			rwh	rw	rw
CD _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP			
	Fractional Divider Reload Register	Туре	rw							
CeH	FDRES Reset: 00 _H	Bit Field				RES	ULT			
	Fractional Divider Result Register	Туре				r	h			

3.2.4.12 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

∆ddr	Register Name	Bit	7	6	5	4	3	2	1	0
		ы	'	Ŭ	Ŭ	-	0	-	•	v
RMAP =	: 0									
А9 _Н	SSC_PISEL Reset: 00 _H	Bit Field			0			CIS	SIS	MIS
	Port Input Select Register	Туре			r			rw	rw	rw
AA _H	SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М	
	Programming Mode	Туре	rw	rw	rw	rw		r	w	
AA _H	SSC_CONL Reset: 00 _H	Bit Field		()			В	С	
	Control Register Low Operating Mode	Туре			r			r	h	
ав _Н	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN
	Control Register High Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw
ab _H	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh
ac _h	SSC_TBL Reset: 00 _H	Bit Field				TB_V	ALUE			
	I ransmitter Buffer Register Low	Туре				r	N			
ad _H	SSC_RBL Reset: 00 _H	Bit Field				RB_V	ALUE			
	Receiver Buffer Register Low	Туре				r	h			
AE _H	SSC_BRL Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer Reload Register Low	Туре	rw							
af _h	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE			
	Register High	Туре				r	N			

Table 16 SSC Register Overview

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Table 17	CAN R	egister	Overview
----------	-------	---------	----------

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP = 0										
D8 _H	ADCON Reset: 00 _H	Bit Field	V3	V2	V1	V0	AU	AD	BSY	RWEN
	CAN Address/Data Control Register	Туре	rw	rw	rw	rw	r	w	rh	rw
D9 _H	ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2
	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
da _h	ADH Reset: 00 _H	Bit Field		()		CA13	CA12	CA11	CA10
	CAN Address Register High	Туре			r		rwh	rwh	rwh	rwh

3.3.3 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see **Figure 12**)

Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

Figure 18 Interrupt Request Sources (Part 5)

Figure 19 General Structure of Bidirectional Port

3.6 Power Supply System with Embedded Voltage Regulator

The XC886/888 microcontroller requires two different levels of power supply:

- 3.3 V or 5.0 V for the Embedded Voltage Regulator (EVR) and Ports
- 2.5 V for the core, memory, on-chip oscillator, and peripherals

Figure 21 shows the XC886/888 power supply system. A power supply of 3.3 V or 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps to reduce the power consumption of the whole chip and the complexity of the application board design.

The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption.

Figure 21 XC886/888 Power Supply System

EVR Features

- Input voltage (V_{DDP}): 3.3 V/5.0 V
- Output voltage (V_{DDC}): 2.5 V ± 7.5%
- Low power voltage regulator provided in power-down mode
- V_{DDC} and V_{DDP} prewarning detection
- V_{DDC} brownout detection

3.7 Reset Control

The XC886/888 has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When the XC886/888 is first powered up, the status of certain pins (see **Table 23**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

In order to power up the system properly, the external reset pin $\overrightarrow{\text{RESET}}$ must be asserted until V_{DDC} reaches 0.9* V_{DDC} . The delay of external reset can be realized by an external capacitor at $\overrightarrow{\text{RESET}}$ pin. This capacitor value must be selected so that V_{RESET} reaches 0.4 V, but not before V_{DDC} reaches 0.9* V_{DDC} .

A typical application example is shown in Figure 22. The V_{DDP} capacitor value is 100 nF while the V_{DDC} capacitor value is 220 nF. The capacitor connected to RESET pin is 100 nF.

Typically, the time taken for V_{DDC} to reach 0.9^*V_{DDC} is less than 50 µs once V_{DDP} reaches 2.3V. Hence, based on the condition that 10% to 90% V_{DDP} (slew rate) is less than 500 µs, the RESET pin should be held low for 500 µs typically. See Figure 23.

Figure 22 Reset Circuitry

3.7.1 Module Reset Behavior

Table 22 lists the functions of the XC886/888 and the various reset types that affect these functions. The symbol "■" signifies that the particular function is reset to its default state.

Module/ Function	Wake-Up Reset	Watchdog Reset	Hardware Reset	Power-On Reset	Brownout Reset
CPU Core					
Peripherals					
On-Chip Static RAM	Not affected, Reliable	Not affected, Reliable	Not affected, Reliable	Affected, un- reliable	Affected, un- reliable
Oscillator, PLL		Not affected			
Port Pins					
EVR	The voltage regulator is switched on	Not affected			
FLASH					
NMI	Disabled	Disabled			

Table 22Effect of Reset on Device Functions

3.7.2 Booting Scheme

When the XC886/888 is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. Table 23 shows the available boot options in the XC886/888.

MBC	TMS	P0.0	Type of Mode	PC Start Value
1	0	Х	User Mode ¹⁾ ; on-chip OSC/PLL non-bypassed	0000 _H
0	0	Х	BSL Mode; on-chip OSC/PLL non-bypassed ²⁾	0000 _H
0	1	0	OCDS Mode; on-chip OSC/PLL non- bypassed	0000 _H
1	1	0	User (JTAG) Mode ³⁾ ; on-chip OSC/PLL non- bypassed (normal)	0000 _H

Table 23	XC886/888 Boot Selection

PLL Mode

The system clock is derived from the oscillator clock, multiplied by the N factor, and divided by the P and K factors. Both VCO bypass and PLL bypass must be inactive for this PLL mode. The PLL mode is used during normal system operation.

$$f_{SYS} = f_{OSC} \times \frac{N}{P \times K}$$

(3.3)

System Frequency Selection

For the XC886/888, the value of P is fixed to 1. In order to obtain the required fsys, the value of N and K can be selected by bits NDIV and KDIV respectively for different oscillator inputs. The output frequency must always be configured for 96 MHz. Table 24 provides examples on how $f_{\rm sys}$ = 96 MHz can be obtained for the different oscillator sources.

Table 24	System frequency (<i>f</i> _{svs} = 96 MHz)
----------	--

Oscillator	Fosc	Ν	Ρ	κ	Fsys	
On-chip	9.6 MHz	20	1	2	96 MHz	
External	8 MHz	24	1	2	96 MHz	
	6 MHz	32	1	2	96 MHz	
	4 MHz	48	1	2	96 MHz	

 Table 25 shows the VCO range for the XC886/888.

Table 25 VCC Rallye	Table	25	VCO	Range
---------------------	-------	----	-----	-------

<i>f</i> _{VCOmin}	f _{vcomax}	$f_{\sf VCOFREEmin}$	<i>f</i> _{VCOFREEmax}	Unit
150	200	20	80	MHz
100	150	10	80	MHz

3.8.1 Recommended External Oscillator Circuits

The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz to 12 MHz. Additionally, it is necessary to have two load capacitances C_{X1} and C_{X2} , and depending on the crystal type, a series resistor R_{X2} , to limit the current. A test resistor R_Q may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. R_Q values are typically specified by the crystal vendor. The C_{X1} and C_{X2} values shown in **Figure 25** can be used as starting points for the negative resistance evaluation and for non-productive systems. The exact values and related operating range are dependent on the crystal frequency and have to be determined and optimized together with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system.

When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected).

The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor. **Figure 25** shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode.

For power saving purposes, the clocks may be disabled or slowed down according to **Table 26**.

Table 26System frequency (f_{sys} = 96 MHz)

Power Saving Mode	Action					
Idle	Clock to the CPU is disabled.					
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.					
Power-down	Oscillator and PLL are switched off.					

Electrical Parameters

4.2.2 Supply Threshold Characteristics

 Table 39 provides the characteristics of the supply threshold in the XC886/888.

Figure 38 Supply Threshold Parameters

Table 39	Supply Threshold Para	ameters (Operating Conditions ap	ply)
----------	-----------------------	----------------------------------	------

Parameters	Symbol		L	Unit		
			min.	typ.	max.	
$V_{\rm DDC}$ prewarning voltage ¹⁾	V _{DDCPW}	CC	2.2	2.3	2.4	V
$V_{\rm DDC}$ brownout voltage in active mode ¹⁾	V _{DDCBO}	CC	2.0	2.1	2.2	V
RAM data retention voltage	V _{DDCRDR}	CC	0.9	1.0	1.1	V
$V_{\rm DDC}$ brownout voltage in power-down mode ²⁾	V _{DDCBOPD}	CC	1.3	1.5	1.7	V
$V_{\rm DDP}$ prewarning voltage ³⁾	V _{DDPPW}	CC	3.4	4.0	4.6	V
Power-on reset voltage ²⁾⁴⁾	V _{DDCPOR}	CC	1.3	1.5	1.7	V

1) Detection is disabled in power-down mode.

2) Detection is enabled in both active and power-down mode.

 Detection is enabled for external power supply of 5.0V. Detection must be disabled for external power supply of 3.3V.

4) The reset of EVR is extended by 300 µs typically after the VDDC reaches the power-on reset voltage.

Electrical Parameters

4.3.4 On-Chip Oscillator Characteristics

 Table 47 provides the characteristics of the on-chip oscillator in the XC886/888.

Table 47	On-chip Oscillator Characteristics (Operating Conditions apply)
----------	---

Parameter	Symbol		Lin	nit Va	lues	Unit	Test Conditions
			min.	in. typ. max.			
Nominal frequency	f _{nom}	CC	9.36	9.36 9.6 9.84 MHz ui		MHz	under nominal conditions ¹⁾
Long term frequency deviation	Δf _{LT}	CC	-5.0	-	5.0	%	with respect to f_{NOM} , over lifetime and temperature (-10°C to 125°C), for one given device after trimming
			-6.0	_	0	%	with respect to f_{NOM} , over lifetime and temperature (-40°C to -10°C), for one given device after trimming
Short term frequency deviation	$\Delta f_{\rm ST}$	CC	-1.0	-	1.0	%	within one LIN message (<10 ms 100 ms)

1) Nominal condition: V_{DDC} = 2.5 V, T_{A} = + 25°C.

Package and Quality Declaration

5 Package and Quality Declaration

Chapter 5 provides the information of the XC886/888 package and reliability section.

5.1 Package Parameters

Table 1 provides the thermal characteristics of the package used in XC886 and XC888.

Parameter	Symbol		Limit	Values	Unit	Notes	
			Min. Max.				
PG-TQFP-48 (XC886)	1			1	I	1	
Thermal resistance junction case	R _{TJC} C	CC	-	13	K/W	1)2)	
Thermal resistance junction lead	R _{TJL} C	CC	-	32.5	K/W	1)2)_	
PG-TQFP-64 (XC888)		•					
Thermal resistance junction case	R _{TJC} C	CC	-	12.6	K/W	1)2)	
Thermal resistance junction lead	R _{TJL} C	CC	-	33.4	K/W	1)2)	
	1				1		

Table 1 Thermal Characteristics of the Packages

1) The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}) , the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation: $T_J = T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.