

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

2 0 0 0 0 0 0	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	· .
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc888c-6ffi-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

Table 0	T III Belli				u)
Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P0.4	1/64		Hi-Z	MTSR_1	SSC Master Transmit Output/ Slave Receive Input
				CC62_1	Input/Output of Capture/Compare channel 2
				TXD1_0	UART1 Transmit Data Output/Clock Output
P0.5	2/1		Hi-Z	MRST_1 EXINT0_0 T2EX1_1 RXD1_0 COUT62_1	SSC Master Receive Input/Slave Transmit Output External Interrupt Input 0 Timer 21 External Trigger Input UART1 Receive Data Input Output of Capture/Compare channel 2
P0.6	-/2		PU	GPIO	
P0.7	47/62		PU	CLKOUT_1	Clock Output

Pin Definitions and Functions (cont'd) Table 3

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
FB _H	CCU6_CC60RH Reset: 00 _H	Bit Field		1	1	CC6	60VH	1	1	1
	Capture/Compare Register for Channel CC60 High	Туре				r	'n			
FC _H	CCU6_CC61RL Reset: 00 _H	Bit Field	CC61VL							
	Capture/Compare Register for Channel CC61 Low	Туре				r	'n			
FD _H	CCU6_CC61RH Reset: 00 _H	Bit Field				CC6	61VH			
	Capture/Compare Register for Channel CC61 High	Туре				r	'n			
FE _H	CCU6_CC62RL Reset: 00 _H	Bit Field				CC6	62VL			
	Capture/Compare Register for Channel CC62 Low	Туре				r	h			
FF _H	CCU6_CC62RH Reset: 00 _H	Bit Field				CC6	62VH			
	Capture/Compare Register for Channel CC62 High	Туре				r	'n			
RMAP =	0, PAGE 2	_					_			
9A _H	CCU6_T12MSELL Reset: 00 _H	Bit Field		MS	EL61			MSE	EL60	
	T12 Capture/Compare Mode Select Register Low	Туре		r	w			r	w	
9В _Н	CCU6_T12MSELH Reset: 00 _H	Bit Field	DBYP		HSYNC			MSE	EL62	
	T12 Capture/Compare Mode Select Register High	Туре	rw		rw		rw			
9CH	CCU6_IENL Reset: 00 _H	Bit Field	ENT1	ENT1	ENCC	ENCC	ENCC	ENCC	ENCC	ENCC
	Capture/Compare Interrupt Enable Register Low		2 PM	2 OM	62F	62R	61F	61R	60F	60R
		Туре	rw	rw						
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT1 3PM	ENT1 3CM
	Register High	Туре	rw	rw	rw	rw	r	rw	rw	rw
9E _H	CCU6_INPL Reset: 40 _H	Bit Field	INP	CHE	INPO	CC62	INPCC61		INPCC60	
	Capture/Compare Interrupt Node Pointer Register Low	Туре	r	w	rw		r	w	rw	
9F _H	CCU6_INPH Reset: 39 _H	Bit Field	(0	INP	T13	INF	PT12	INPERR	
	Capture/Compare Interrupt Node Pointer Register High	Туре		r	r	w	r	w	r	w
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	ST12 PM	ST12 OM	SCC6 2F	SCC6 2R	SCC6 1F	SCC6 1R	SCC6 0F	SCC6 0R
	Set Register Low	Туре	w	w	w	w	w	w	w	w
A5 _H	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	SSTR	SIDLE	SWHE	SCHE	SWH C	STRP F	ST13 PM	ST13 CM
	Set Register High	Туре	w	w	w	w	w	w	w	w
A6 _H	CCU6_PSLR Reset: 00 _H	Bit Field	PSL63	0			P	SL	•	
	Passive State Level Register	Туре	rwh	r	rwh					
а7 _Н	CCU6_MCMCTR Reset: 00 _H	Bit Field	(0	SW	SYN	0		SWSEL	
	Multi-Channel Mode Control Register	Туре		r	r	w	r		rw	
FA _H	CCU6_TCTR2LReset: 00HTimer Control Register 2 Low	Bit Field	0	T13	TED		T13TEC		T13 SSC	T12 SSC
		Туре	r	r	w rw		rw		rw	rw

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
Fe _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15 UART1 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 1	1								1		
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI		
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh		
C9 _H	SBUF Reset: 00 _H	Bit Field				V	AL					
	Serial Data Buffer Register	Туре	rwh									
са _Н	BCON Reset: 00 _H	Bit Field	0				BRPRE		R			
	Baud Rate Control Register	Туре			r		rw			rw		
св _Н	BG Reset: 00 _H	Bit Field	BR_VALUE									
	Baud Rate Timer/Reload Register	Туре	rwh									
сс _Н	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN		
	Fractional Divider Control Register	Туре			r			rwh	rw	rw		
CD _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP					
	Fractional Divider Reload Register	Туре	rw									
Ceh	FDRES Reset: 00 _H	Bit Field				RES	SULT					
	Fractional Divider Result Register	Туре			rh							

3.2.4.12 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
A9 _H	SSC_PISEL Reset: 00 _H	Bit Field		0				CIS	SIS	MIS
	Port Input Select Register	Туре			r			rw	rw	rw
AA _H	SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М	
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw	rw			
AA _H	SSC_CONL Reset: 00 _H	Bit Field		()			В	С	
	Control Register Low Operating Mode	Туре	r					r	h	
ав _Н	SSC_CONH Reset: 00 _H Control Register High Programming Mode	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN
		Туре	rw	rw	r	rw	rw	rw	rw	rw
ав _Н	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh
ac _h	SSC_TBL Reset: 00 _H	Bit Field				TB_V	ALUE			
	Transmitter Buffer Register Low	Туре				n	N			
ad _H	SSC_RBL Reset: 00 _H	Bit Field	ld RB_VALUE							
	Receiver Buffer Register Low	Туре	rh							
ае _Н	SSC_BRL Reset: 00 _H	Bit Field	BR_VALUE							
	Baud Rate Timer Reload Register Low	Туре	rw							
af _h	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer Reload Register High	Туре				n	N			

Table 16 SSC Register Overview

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 0									
D8 _H	ADCON Reset: 00 _H	Bit Field	V3	V2	V1	V0	AU	AD	BSY	RWEN
	CAN Address/Data Control Register	Туре	rw	rw	rw	rw	rw		rh	rw
D9 _H	ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2
	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
da _h	ADH Reset: 00 _H	Bit Field	0				CA13	CA12	CA11	CA10
	CAN Address Register High	Туре			ſ		rwh	rwh	rwh	rwh

Table 18OCDS Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
EC _H	MMWR2 Reset: 00 _H	Bit Field	MMWR2							
	Monitor Work Register 2	Туре	rw							

3.4.2 Interrupt Source and Vector

Each interrupt event source has an associated interrupt vector address for the interrupt node it belongs to. This vector is accessed to service the corresponding interrupt node request. The interrupt service of each interrupt source can be individually enabled or disabled via an enable bit. The assignment of the XC886/888 interrupt sources to the interrupt vector address and the corresponding interrupt node enable bits are summarized in Table 20.

Interrupt Source	Vector Address	Assignment for XC886/888	Enable Bit	SFR
NMI 0073 _H		Watchdog Timer NMI	NMIWDT	NMICON
		PLL NMI	NMIPLL	
		Flash NMI	NMIFLASH	
		VDDC Prewarning NMI	NMIVDD	
		VDDP Prewarning NMI	NMIVDDP	
		Flash ECC NMI	NMIECC	
XINTR0	0003 _H	External Interrupt 0	EX0	IEN0
XINTR1	000B _H	Timer 0	ET0	
XINTR2	0013 _H	External Interrupt 1	EX1	
XINTR3	001B _H	Timer 1	ET1	
XINTR4	0023 _H	UART	ES	
XINTR5	002B _H	T2	ET2	
		UART Fractional Divider (Normal Divider Overflow)		
		MultiCAN Node 0		
		LIN	1	

Table 20 Interrupt Vector Addresses

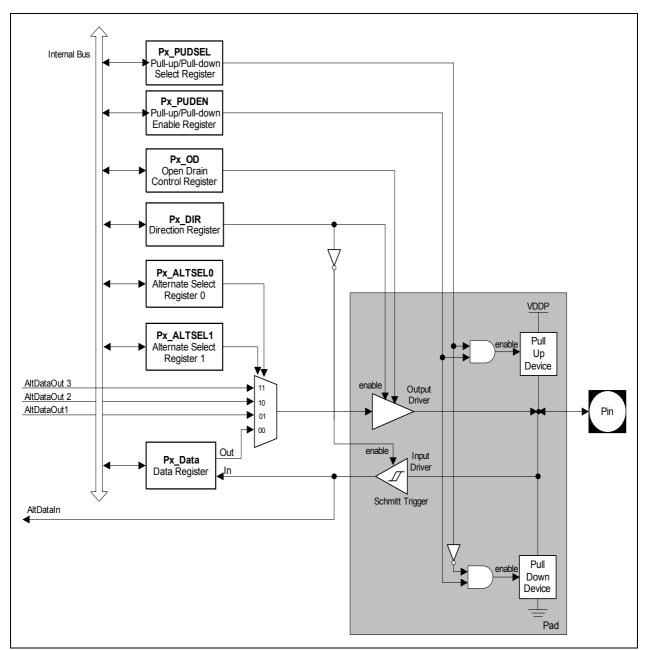


Figure 19 General Structure of Bidirectional Port

- 1) BSL mode is automatically entered if no valid password is installed and data at memory address 0000H equals zero.
- 2) OSC is bypassed in MultiCAN BSL mode
- 3) Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

Note: The boot options are valid only with the default set of UART and JTAG pins.

3.8 Clock Generation Unit

The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC886/888. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state.

Features

- Phase-Locked Loop (PLL) for multiplying clock source by different factors
- PLL Base Mode
- Prescaler Mode
- PLL Mode
- Power-down mode support

The CGU consists of an oscillator circuit and a PLL. In the XC886/888, the oscillator can be from either of these two sources: the on-chip oscillator (9.6 MHz) or the external oscillator (4 MHz to 12 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default. The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down.

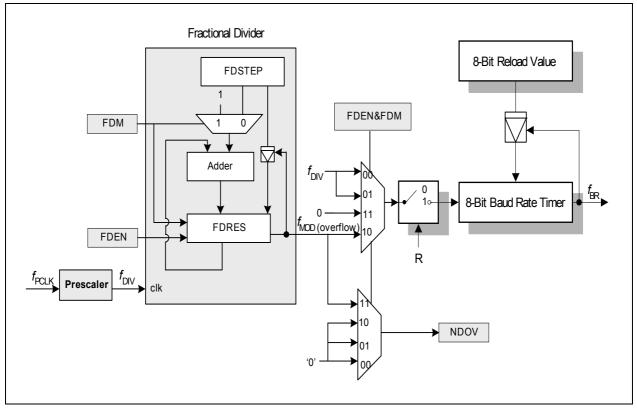
If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert FNMIWDT) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value ($\langle WDTREL \rangle * 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- The input frequency to the WDT can be selected to be either $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$
- The reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, $P_{\rm WDT}$, between servicing the WDT and the next overflow can be determined by the following formula:


$$P_{WDT} = \frac{2^{(1 + WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^8)}{f_{PCLK}}$$

(3.4)

If the Window-Boundary Refresh feature of the WDT is enabled, the period $P_{\rm WDT}$ between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 29**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB cannot be smaller than WDTREL.

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 30**.

Figure 30 Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

The following formulas calculate the final baud rate without and with the fractional divider respectively:

baud rate =
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR VALUE + 1)}$$
 where $2^{BRPRE} \times (BR_VALUE + 1) > 1$

(3.5)

baud rate = $\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)} \times \frac{STEP}{256}$

(3.6)

The maximum baud rate that can be generated is limited to $f_{\text{PCLK}}/32$. Hence, for a module clock of 24 MHz, the maximum achievable baud rate is 0.75 MBaud.

Standard LIN protocol can support a maximum baud rate of 20 kHz, the baud rate accuracy is not critical and the fractional divider can be disabled. Only the prescaler is used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of 20 kHz to 115.2 kHz, the higher baud rates require the use of the fractional divider for greater accuracy.

Table 30 lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 24 MHz is used.

Baud rate	Prescaling Factor (2BRPRE)	Reload Value (BR_VALUE + 1)	Deviation Error					
19.2 kBaud	1 (BRPRE=000 _B)	78 (4E _H)	0.17 %					
9600 Baud	1 (BRPRE=000 _B)	156 (9C _H)	0.17 %					
4800 Baud	2 (BRPRE=001 _B)	156 (9C _H)	0.17 %					
2400 Baud	4 (BRPRE=010 _B)	156 (9С _Н)	0.17 %					

 Table 30
 Typical Baud rates for UART with Fractional Divider disabled

The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. **Table 31** lists the resulting deviation errors from generating a baud rate of 115.2 kHz, using different module clock frequencies. The fractional divider is enabled (fractional divider mode) and the corresponding parameter settings are shown.

3.16 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features

- Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- Variable baud rate
- Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered.

Figure 32 shows the block diagram of the SSC.

3.20 Controller Area Network (MultiCAN)

The MultiCAN module contains two Full-CAN nodes operating independently or exchanging data and remote frames via a gateway function. Transmission and reception of CAN frames is handled in accordance to CAN specification V2.0 B active. Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

Both CAN nodes share a common set of message objects, where each message object may be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects may be combined to build gateways between the CAN nodes or to setup a FIFO buffer.

The message objects are organized in double chained lists, where each CAN node has it's own list of message objects. A CAN node stores frames only into message objects that are allocated to the list of the CAN node. It only transmits messages from objects of this list. A powerful, command driven list controller performs all list operations.

The bit timings for the CAN nodes are derived from the peripheral clock (f_{CAN}) and are programmable up to a data rate of 1 MBaud. A pair of receive and transmit pins connects each CAN node to a bus transceiver.

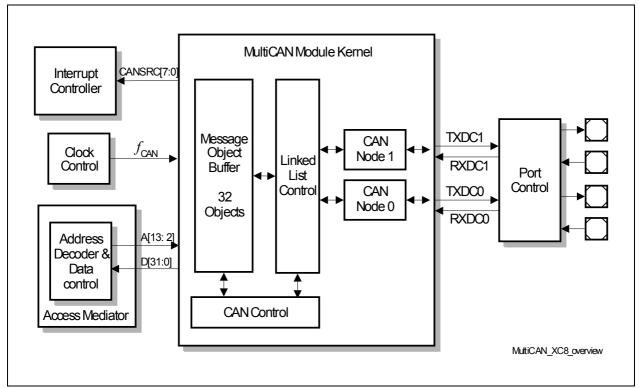


Figure 34 Overview of the MultiCAN

Features

Compliant to ISO 11898.

4.2.2 Supply Threshold Characteristics

 Table 39 provides the characteristics of the supply threshold in the XC886/888.

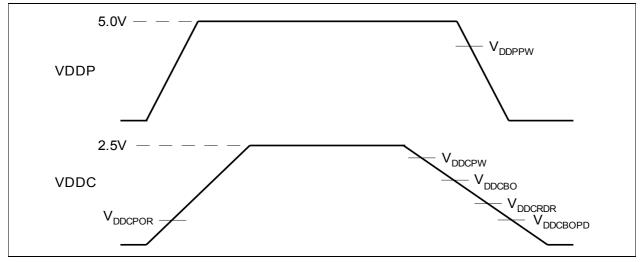


Figure 38 Supply Threshold Parameters

Table 39	Supply Threshold Parameters	(Operating Conditions apply)
----------	-----------------------------	------------------------------

Parameters	Symbol		L	Unit		
			min.	typ.	max.	
$V_{\rm DDC}$ prewarning voltage ¹⁾	V _{DDCPW}	CC	2.2	2.3	2.4	V
V_{DDC} brownout voltage in active mode ¹⁾	V _{DDCBO}	СС	2.0	2.1	2.2	V
RAM data retention voltage	V _{DDCRDR}	CC	0.9	1.0	1.1	V
V_{DDC} brownout voltage in power-down mode ²⁾	V _{DDCBOPD}	СС	1.3	1.5	1.7	V
$V_{\rm DDP}$ prewarning voltage ³⁾	V _{DDPPW}	CC	3.4	4.0	4.6	V
Power-on reset voltage ²⁾⁴⁾	VDDCPOR	CC	1.3	1.5	1.7	V

1) Detection is disabled in power-down mode.

2) Detection is enabled in both active and power-down mode.

 Detection is enabled for external power supply of 5.0V. Detection must be disabled for external power supply of 3.3V.

4) The reset of EVR is extended by 300 µs typically after the VDDC reaches the power-on reset voltage.

Parameter	Symbol	Limit	Values	Unit	Test Condition
		typ. ¹⁾	max. ²⁾		
V _{DDP} = 5V Range					•
Power-Down Mode	I _{PDP}	1	10	μA	$T_{\rm A}$ = + 25 °C ³⁾⁴⁾
		-	30	μA	$T_{\rm A}$ = + 85 °C ⁴⁾⁵⁾

Power Down Current (Operating Conditions apply: U able 10 - E (1 - C)

1) The typical I_{PDP} values are measured at V_{DDP} = 5.0 V.

2) The maximum I_{PDP} values are measured at V_{DDP} = 5.5 V.

3) I_{PDP} has a maximum value of 200 μ A at T_A = + 125 °C.

4) I_{PDP} is measured with: RESET = V_{DDP} , V_{AGND} = V_{SS} , RXD/INT0 = V_{DDP} ; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

5) Not subjected to production test, verified by design/characterization.

4.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in **Figure 40**, **Figure 41** and **Figure 42**.

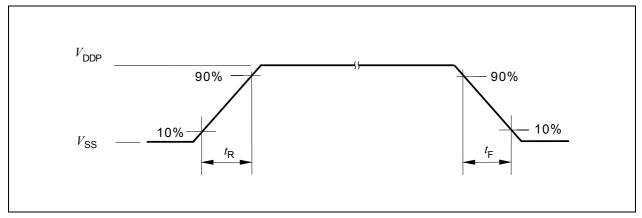


Figure 40 Rise/Fall Time Parameters

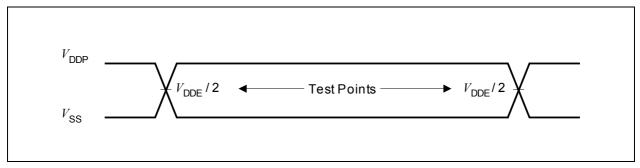


Figure 41 Testing Waveform, Output Delay

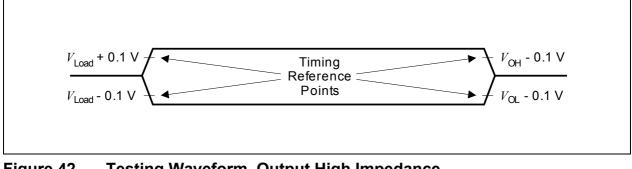


Figure 42 Testing Waveform, Output High Impedance

4.3.3 Power-on Reset and PLL Timing

Table 49 provides the characteristics of the power-on reset and PLL timing in the XC886/888.

Table 46	Power-On Reset and PLL Timing (Operating Conditions apply)

Parameter Symbol			Limit Values			Unit	Test Conditions	
			min.	typ.	max.			
Pad operating voltage	V_{PAD}	CC	2.3	-	-	V	1)	
On-Chip Oscillator start-up time	t _{OSCST}	СС	-	-	500	ns	1)	
Flash initialization time	t _{FINIT}	CC	_	160	_	μS	1)	
RESET hold time	t _{RST}	SR	-	500	_	μS	$V_{\rm DDP}$ rise time (10% – 90%) \leq 500 μ s ¹⁾²⁾	
PLL lock-in in time	t _{LOCK}	CC	-	-	200	μS	1)	
PLL accumulated jitter	D_{P}		-	_	0.7	ns	1)3)	

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

2) RESET signal has to be active (low) until V_{DDC} has reached 90% of its maximum value (typ. 2.5 V).

3) PLL lock at 96 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 48 and P = 1.

4.3.7 SSC Master Mode Timing

Table 51 provides the characteristics of the SSC timing in the XC886/888.

Table 51	SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)
----------	---

Parameter	Symbol		Limi	t Values	Unit	Test
			min.	max.		Conditions
SCLK clock period	t ₀	CC	2*T _{SSC}	–	ns	1)2)
MTSR delay from SCLK	t ₁	CC	0	8	ns	2)
MRST setup to SCLK	<i>t</i> ₂	SR	24	-	ns	2)
MRST hold from SCLK	t ₃	SR	0	-	ns	2)

1) $T_{SSCmin} = T_{CPU} = 1/f_{CPU}$. When $f_{CPU} = 24$ MHz, $t_0 = 83.3$ ns. T_{CPU} is the CPU clock period.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

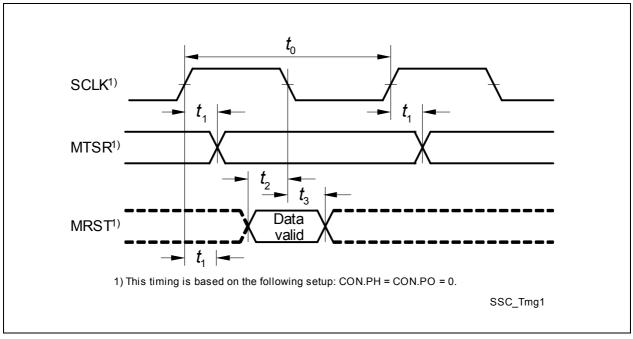
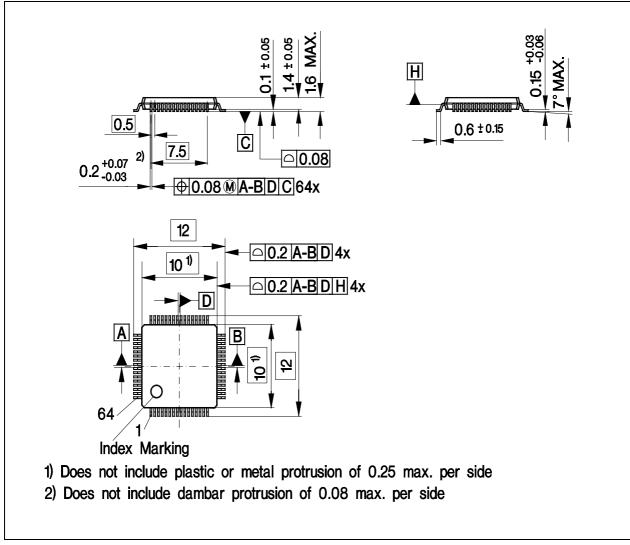



Figure 52 SSC Master Mode Timing

Package and Quality Declaration

Figure 49 PG-TQFP-64 Package Outline

Package and Quality Declaration

5.3 Quality Declaration

Table 2 shows the characteristics of the quality parameters in the XC886/888.

Table 2Quality Parameters

Parameter	Symbol	Limit V	alues	Unit	Notes
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V _{HBM}	-	2000	V	Conforming to EIA/JESD22- A114-B ¹⁾
ESD susceptibility according to Charged Device Model (CDM) pins	V _{CDM}	-	500	V	Conforming to JESD22-C101-C ¹⁾

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.