

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc888clm-6ffi-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2009-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

General Device Information

2.2 Logic Symbol

The logic symbols of the XC886/888 are shown in Figure 3.

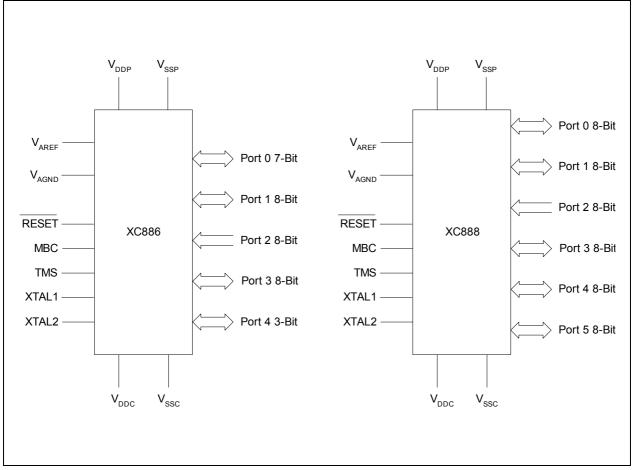
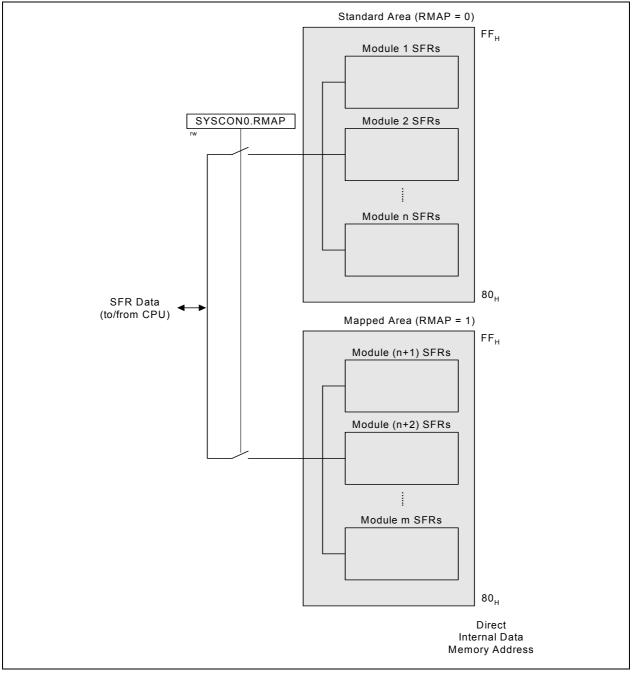



Figure 3 XC886/888 Logic Symbol

Address Extension by Mapping

3.2.4 XC886/888 Register Overview

The SFRs of the XC886/888 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Chapter 3.2.4.1** to **Chapter 3.2.4.14**.

Note: The addresses of the bitaddressable SFRs appear in bold typeface.

3.2.4.1 CPU Registers

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 0 or 1	I.										
81 _H	SP Reset: 07 _H	Bit Field	SP									
	Stack Pointer Register	Туре	rw									
82 _H	DPL Reset: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0		
	Data Pointer Register Low	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
83 _H	DPH Reset: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0		
	Data Pointer Register High	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
87 _H	PCON Reset: 00 _H	Bit Field	SMOD		0		GF1	GF0	0	IDLE		
	Power Control Register	Туре	rw		r		rw	rw	r	rw		
⁸⁸ H	TCON Reset: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
	Timer Control Register	Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw		
89 _H	TMOD Reset: 00 _H Timer Mode Register	Bit Field	GATE 1	T1S	T1M		GATE 0	TOS	том			
		Туре	rw	rw	r	w	rw	rw	r	w		
8A _H	TL0 Reset: 00 _H	set: 00 _H Bit Field VAL										
	Timer 0 Register Low	Туре				rv	vh					
8B _H	TL1 Reset: 00 _H	Bit Field	VAL									
	Timer 1 Register Low	Туре	rwh									
8C _H	THO Reset: 00 _H	Bit Field			VAL							
	Timer 0 Register High	Туре				rv	vh					
8D _H	TH1 Reset: 00 _H	Bit Field				V	AL					
	Timer 1 Register High	Туре				rv	vh					
98 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI		
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh		
99 _H	SBUF Reset: 00 _H	Bit Field				V	AL					
	Serial Data Buffer Register	Туре				rv	vh					
A2 _H	A2 _H EO Reset: 00 _H Extended Operation Register			0		TRAP_ EN		0		DPSE L0		
		Туре		r		rw	r			rw		

Table 5 CPU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
B3 _H	MR1 Reset: 00 _H	Bit Field		DATA								
	MDU Result Register 1	Туре		rh								
B4 _H	MD2 Reset: 00 _H	Bit Field				DA	TA					
	MDU Operand Register 2	Туре				r	w					
B4 _H	MR2 Reset: 00 _H	Bit Field				DA	TA					
	MDU Result Register 2	Туре				r	h					
в5 _Н	MD3 Reset: 00 _H	Bit Field	DATA									
	MDU Operand Register 3	Туре		rw								
в5 _Н	MR3 Reset: 00 _H	Bit Field	d DATA									
	MDU Result Register 3	Туре				r	h					
B6 _H	MD4 Reset: 00 _H	Bit Field	DATA									
	MDU Operand Register 4	Туре				r	w					
B6 _H	MR4 Reset: 00 _H	Bit Field				DA	TA					
	MDU Result Register 4	Туре				r	h					
в7 _Н	MD5 Reset: 00 _H	Bit Field	eld DATA									
	MDU Operand Register 5	Туре	rw									
в7 _Н	MR5 Reset: 00 _H	Bit Field				DA	TA					
	MDU Result Register 5	Туре				r	'n					

Table 6MDU Register Overview (cont'd)

3.2.4.3 CORDIC Registers

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 7 CORDIC Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1							1		
9A _H	CD_CORDXL Reset: 00 _H	Bit Field				DA	TAL			
	CORDIC X Data Low Byte	Туре				r	W			
9B _H	CD_CORDXH Reset: 00 _H	Bit Field				DA	TAH			
	CORDIC X Data High Byte	Туре				r	W			
9CH	CD_CORDYL Reset: 00 _H	Bit Field	DATAL							
	CORDIC Y Data Low Byte	Туре				r	W			
9D _H	CD_CORDYH Reset: 00 _H	Bit Field	DATAH							
	CORDIC Y Data High Byte	Туре				r	W			
9E _H	CD_CORDZL Reset: 00 _H	Bit Field				DA	TAL			
	CORDIC Z Data Low Byte	Туре	rw							
9F _H	CD_CORDZH Reset: 00 _H	Bit Field				DA	ТАН			
	CORDIC Z Data High Byte	Туре				r	W			

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
D3 _H	ADC_RESR3H Reset: 00 _H	Bit Field				RES	ULT			
	Result Register 3 High	Туре				r	h			
RMAP =	0, PAGE 3									
CA _H	ADC_RESRA0L Reset: 00 _H	Bit Field	RESULT VF DRC CHNR							
	Result Register 0, View A Low	Туре		rh		rh	rh		rh	
св _Н	ADC_RESRA0H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 0, View A High	Туре				r	h			
сс _Н	ADC_RESRA1L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 1, View A Low	Туре		rh		rh	rh		rh	
CD _H	ADC_RESRA1H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 1, View A High	Туре				r	h			
Ce _H	ADC_RESRA2L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 2, View A Low	Туре		rh		rh	rh		rh	
CF _H	ADC_RESRA2H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 2, View A High	Туре				r	h			
D2 _H	ADC_RESRA3L Reset: 00 _H	Bit Field	RESULT VF		DRC CHNR					
	Result Register 3, View A Low	Туре		rh		rh	rh		rh	
D3 _H	ADC_RESRA3H Reset: 00 _H	Bit Field				RES	ULT			
	Result Register 3, View A High	Туре				r	h			
RMAP =	= 0, PAGE 4									
CA _H	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
св _Н	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
сс ^н	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CDH	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
Ce _H	ADC_VFCR Reset: 00 _H	Bit Field			ט		VFC3	VFC2	VFC1	VFC0
	Valid Flag Clear Register	Туре			r		w	w	w	w
RMAP =	= 0, PAGE 5									
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0
		Туре	rh	rh	rh	rh	rh	rh	rh	rh
св _Н	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0
		Туре	w	w	w	w	w	w	w	w

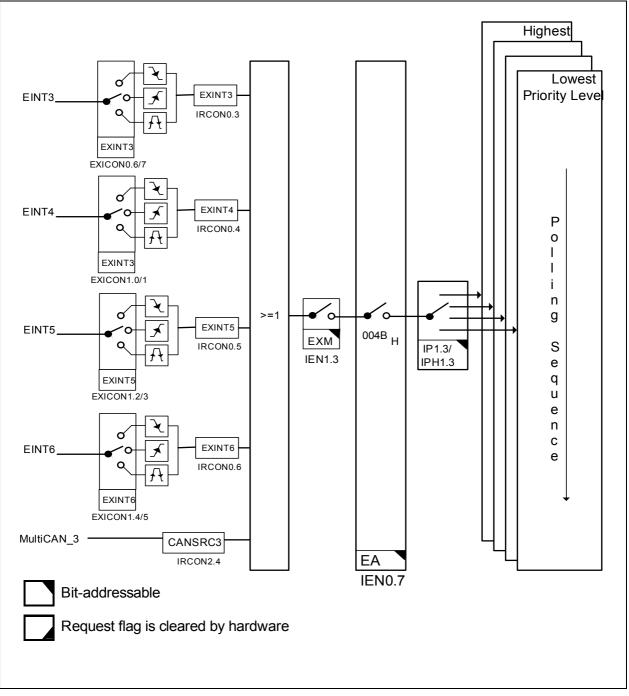


Figure 17 Interrupt Request Sources (Part 4)

3.5 Parallel Ports

The XC886 has 34 port pins organized into five parallel ports, Port 0 (P0) to Port 4 (P4), while the XC888 has 48 port pins organized into six parallel ports, Port 0 (P0) to Port 5 (P5). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. Ports P0, P1, P3, P4 and P5 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected. Port P2 is an input-only port, providing general purpose input functions, alternate input functions for the on-chip peripherals. Converter (ADC).

Bidirectional Port Features

- Configurable pin direction
- Configurable pull-up/pull-down devices
- Configurable open drain mode
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

Input Port Features

- Configurable input driver
- Configurable pull-up/pull-down devices
- Receive of data through digital input (general purpose input)
- Alternate input for on-chip peripherals
- Analog input for ADC module

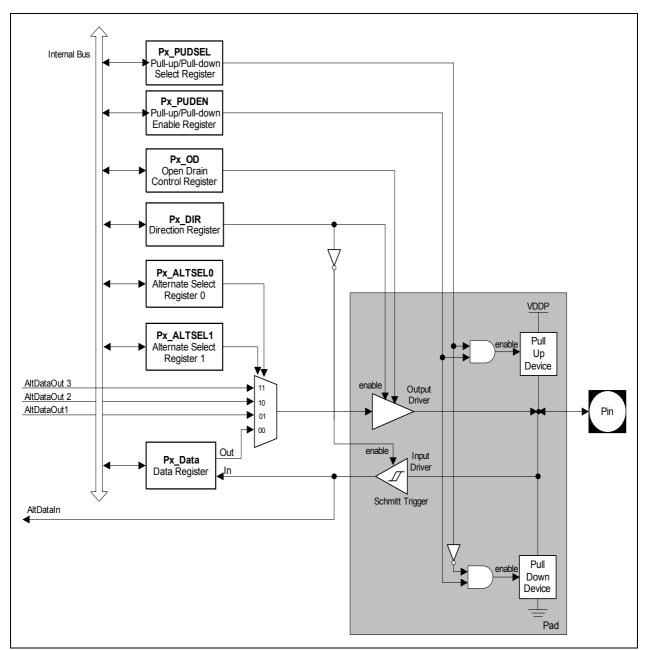


Figure 19 General Structure of Bidirectional Port

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert FNMIWDT) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value ($\langle WDTREL \rangle * 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- The input frequency to the WDT can be selected to be either $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$
- The reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, $P_{\rm WDT}$, between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1 + WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^8)}{f_{PCLK}}$$

(3.4)

If the Window-Boundary Refresh feature of the WDT is enabled, the period $P_{\rm WDT}$ between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 29**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB cannot be smaller than WDTREL.

3.18 Timer 2 and Timer 21

Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode, see **Table 33**. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled).

Table 33	Timer 2 Modes
Mode	Description
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event
	 Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition Reload event triggered by underflow condition
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event

XC886/888CLM

Functional Description

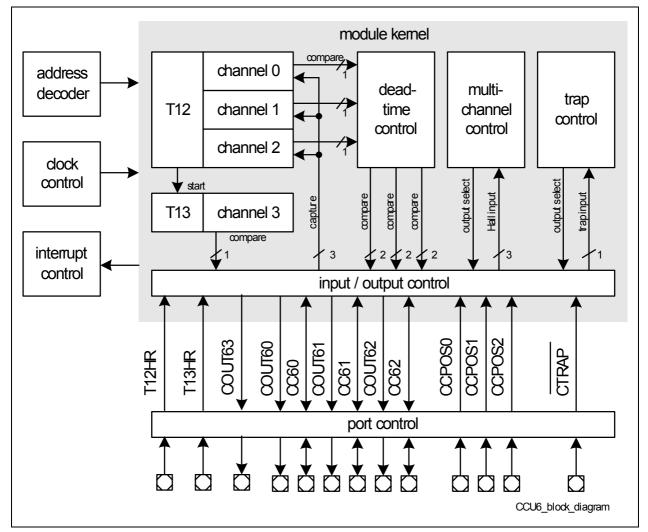
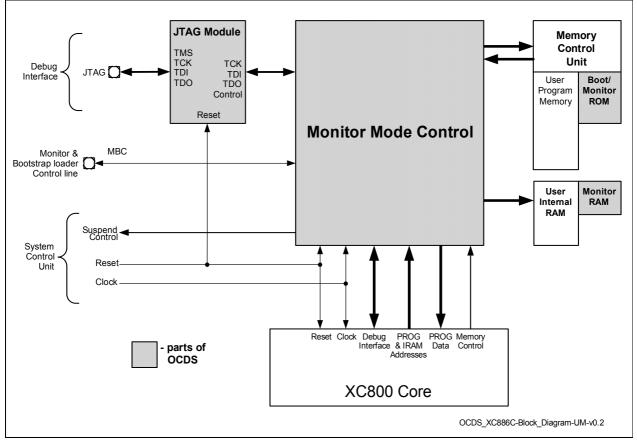



Figure 33 CCU6 Block Diagram

3.22.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID register contents for the XC886/888 Flash devices are given in Table 35.

Device Type	Device Name	JTAG ID	
Flash	XC886/888*-8FF	1012 0083 _H	
	XC886/888*-6FF	1012 5083 _H	
ROM	XC886/888*-8RF	1013 C083 _H	
	XC886/888*-6RF	1013 D083 _H	

Table 35JTAG ID Summary

Note: The asterisk (*) above denotes all possible device configurations.

103

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number									
	AA-Step	AB-Step	AC-Step							
XC886-6FFA 3V3	-	095D1562 _H	0B5D1562 _H							
XC888-6FFA 3V3	-	095D1563 _H	0B5D1563 _H							
XC886CLM-8FFA 5V	-	09900102 _H	0B900102 _H							
XC888CLM-8FFA 5V	-	09900103 _H	0B900103 _H							
XC886LM-8FFA 5V	-	09900122 _H	0B900122 _H							
XC888LM-8FFA 5V	-	09900123 _H	0B900123 _H							
XC886CLM-6FFA 5V	-	09951502 _H	0B951502 _H							
XC888CLM-6FFA 5V	-	09951503 _H	0B951503 _H							
XC886LM-6FFA 5V	-	09951522 _Н	0B951522 _H							
XC888LM-6FFA 5V	-	09951523 _H	0B951523 _H							
XC886CM-8FFA 5V	-	09980102 _H	0B980102 _H							
XC888CM-8FFA 5V	-	09980103 _H	0B980103 _H							
XC886C-8FFA 5V	-	09980142 _H	0B980142 _H							
XC888C-8FFA 5V	-	09980143 _H	0B980143 _H							
XC886-8FFA 5V	-	09980162 _H	0B980162 _H							
XC888-8FFA 5V	-	09980163 _H	0B980163 _H							
XC886CM-6FFA 5V	-	099D1502 _H	0B9D1502 _H							
XC888CM-6FFA 5V	-	099D1503 _H	0B9D1503 _H							
XC886C-6FFA 5V	-	099D1542 _H	0B9D1542 _H							
XC888C-6FFA 5V	-	099D1543 _H	0B9D1543 _H							
XC886-6FFA 5V	-	099D1562 _H	0B9D1562 _H							
XC888-6FFA 5V	-	099D1563 _H	0B9D1563 _H							
ROM Devices										
XC886CLM-8RFA 3V3	22400502 _H	-	-							
XC888CLM-8RFA 3V3	22400503 _H	-	-							
XC886LM-8RFA 3V3	22400522 _H	-	-							
XC888LM-8RFA 3V3	22400523 _H	-	-							
XC886CLM-6RFA 3V3	22411502 _H	-	-							
XC888CLM-6RFA 3V3	22411503 _H	-	-							

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number								
	AA-Step	AB-Step	AC-Step						
XC888CM-6RFA 5V	22891503 _H	-	-						
XC886C-6RFA 5V	22891542 _H	-	-						
XC888C-6RFA 5V	22891543 _H	-	-						
XC886-6RFA 5V	22891562 _H	-	-						
XC888-6RFA 5V	22891563 _H	-	-						

Electrical Parameters

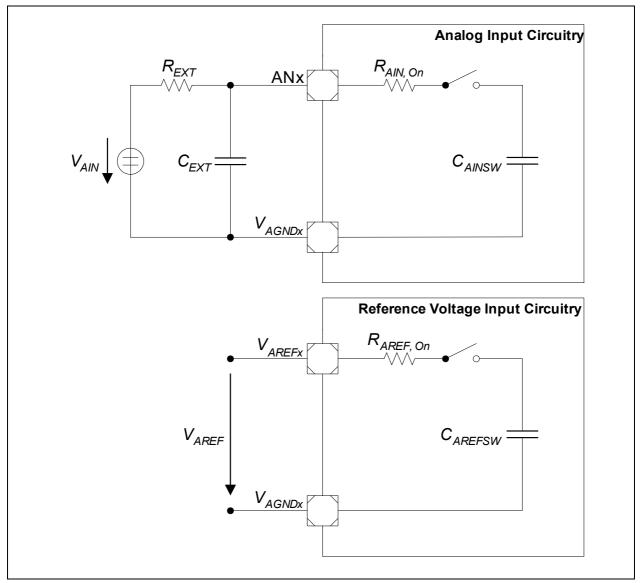


Figure 39 ADC Input Circuits

Electrical Parameters

4.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in **Figure 40**, **Figure 41** and **Figure 42**.

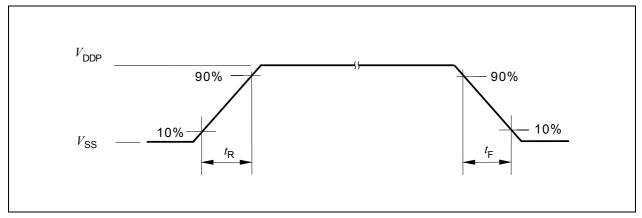


Figure 40 Rise/Fall Time Parameters

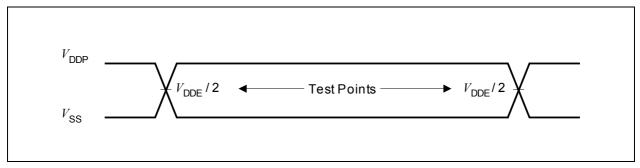


Figure 41 Testing Waveform, Output Delay

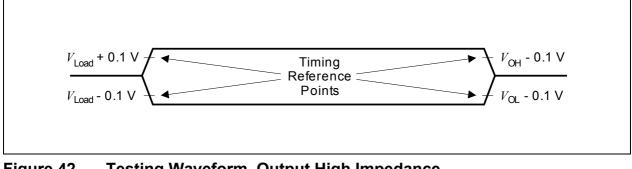


Figure 42 Testing Waveform, Output High Impedance

XC886/888CLM

Electrical Parameters

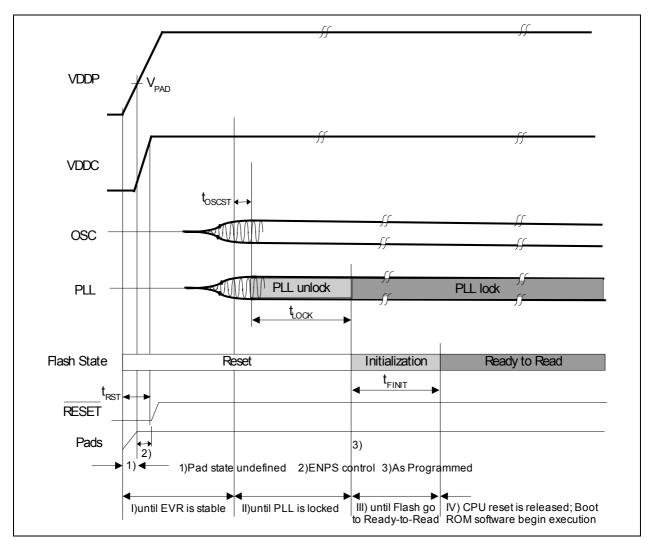


Figure 44 Power-on Reset Timing

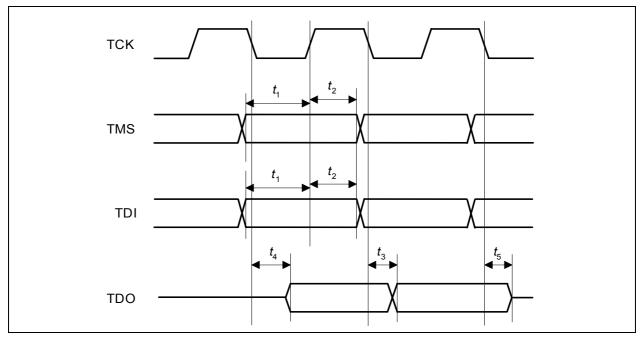
Electrical Parameters

4.3.4 On-Chip Oscillator Characteristics

 Table 47 provides the characteristics of the on-chip oscillator in the XC886/888.

Table 47	On-chip Oscillator Characteristics (Operating Conditions apply)
----------	---

Parameter	Sym	bol	Lin	nit Va	lues	Unit	Test Conditions
			min.	typ.	max.		
Nominal frequency	f _{nom}	CC	9.36	9.6	9.84	MHz	under nominal conditions ¹⁾
Long term frequency deviation	Δf _{LT}	CC	-5.0	-	5.0	%	with respect to f_{NOM} , over lifetime and temperature (-10°C to 125°C), for one given device after trimming
			-6.0	-	0	%	with respect to f_{NOM} , over lifetime and temperature (-40°C to -10°C), for one given device after trimming
Short term frequency deviation	Δf_{ST}	CC	-1.0	-	1.0	%	within one LIN message (<10 ms 100 ms)


1) Nominal condition: V_{DDC} = 2.5 V, T_{A} = + 25°C.

Electrical Parameters

Table 50JTAG Timing (Operating Conditions apply; CL = 50 pF) (cont'd)									
Parameter	Symbol		Lir	nits	Unit	Test			
			min	max		Conditions			
TDO high impedance to valid	<i>t</i> ₄	CC	-	27	ns	5V Device ¹⁾			
output from TCK			-	36	ns	3.3V Device ¹⁾			
TDO valid output to high	<i>t</i> ₅	CC	-	22	ns	5V Device ¹⁾			
impedance from TCK			-	28	ns	3.3V Device ¹⁾			

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

