

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-xc888cm-8ffi-5v-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Bit

XC886/888CLM

8-Bit Single Chip Microcontroller

Data Sheet V1.2 2009-07

Microcontrollers

Summary of Features

XC886/888 Variant Devices

The XC886/888 product family features devices with different configurations, program memory sizes, package options, power supply voltage, temperature and quality profiles (Automotive or Industrial), to offer cost-effective solutions for different application requirements.

The list of XC886/888 device configurations are summarized in **Table 1**. For each configuration, 2 types of packages are available:

- PG-TQFP-48, which is denoted by XC886 and;
- PG-TQFP-64, which is denoted by XC888.

Device Name	CAN Module	LIN BSL Support	MDU Module
XC886/888	No	No	No
XC886/888C	Yes	No	No
XC886/888CM	Yes	No	Yes
XC886/888LM	No	Yes	Yes
XC886/888CLM	Yes	Yes	Yes

Table 1Device Configuration

Note: For variants with LIN BSL support, only LIN BSL is available regardless of the availability of the CAN module.

From these 10 different combinations of configuration and package type, each are further made available in many sales types, which are grouped according to device type, program memory sizes, power supply voltage, temperature and quality profile (Automotive or Industrial), as shown in Table 2.

Table 2Device Profile

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAK-XC886*/888*-8FFA 5V	Flash	32	5.0	-40 to 125	Automotive
SAK-XC886*/888*-6FFA 5V	Flash	24	5.0	-40 to 125	Automotive
SAF-XC886*/888*-8FFA 5V	Flash	32	5.0	-40 to 85	Automotive
SAF-XC886*/888*-6FFA 5V	Flash	24	5.0	-40 to 85	Automotive
SAF-XC886*/888*-8FFI 5V	Flash	32	5.0	-40 to 85	Industrial
SAF-XC886*/888*-6FFI 5V	Flash	24	5.0	-40 to 85	Industrial

General Device Information

2.3 Pin Configuration

The pin configuration of the XC886, which is based on the PG-TQFP-48 package, is shown in **Figure 4**, while that of the XC888, which is based on the PG-TQFP-64 package, is shown in **Figure 5**.

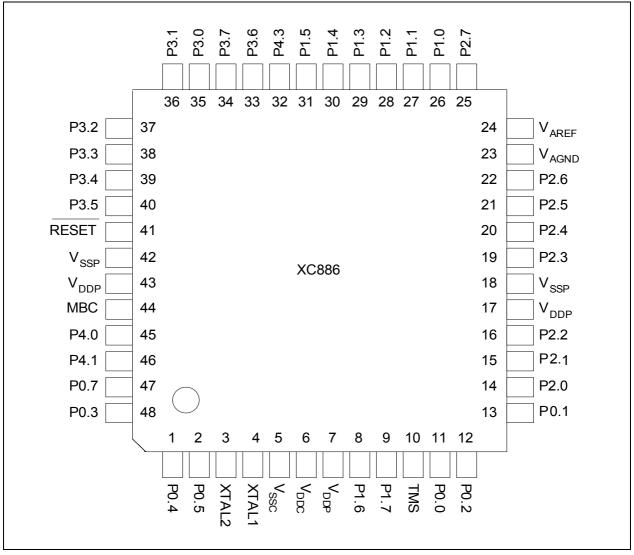


Figure 4 XC886 Pin Configuration, PG-TQFP-48 Package (top view)

General Device Information

Table 0	T III Belli				u)		
Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function			
P0.4	1/64		Hi-Z	MTSR_1	SSC Master Transmit Output/ Slave Receive Input		
				CC62_1	Input/Output of Capture/Compare channel 2		
				MTSR_1 SSC Master Transmit Output Slave Receive Input CC62_1 Input/Output of Capture/Compare channel 2 TXD1_0 UART1 Transmit Data Output/Clock Output MRST_1 SSC Master Receive Input/S Transmit Output EXINT0_0 External Interrupt Input 0 T2EX1_1 Timer 21 External Trigger In RXD1_0 UART1 Receive Data Input OUT62_1 Output of Capture/Compare			
P0.5	2/1		Hi-Z	– EXINT0_0 T2EX1_1 RXD1_0	External Interrupt Input 0 Timer 21 External Trigger Input		
P0.6	-/2		PU	GPIO			
P0.7	47/62		PU	CLKOUT_1	Clock Output		

Pin Definitions and Functions (cont'd) Table 3

XC886/888CLM

General Device Information

Reset **Function** Symbol **Pin Number** Type (TQFP-48/64) State **P4** I/O Port 4 Port 4 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for CCU6, Timer 0, Timer 1, Timer 21 and MultiCAN. RXDC0 3 MultiCAN Node 0 Receiver Input P4.0 Hi-Z 45/59 CC60 1 Output of Capture/Compare channel 0 P4.1 46/60 Hi-Z TXDC0 3 MultiCAN Node 0 Transmitter Output Output of Capture/Compare COUT60 1 channel 0 P4.2 -/61 PU EXINT6 1 **External Interrupt Input 6** T21 0 Timer 21 Input P4.3 32/40 Hi-Z EXF21 1 Timer 21 External Flag Output COUT63 2 **Output of Capture/Compare** channel 3 CCPOS0_3 -/45 Hi-Z CCU6 Hall Input 0 P4.4 Timer 0 Input T0 0 CC61 4 **Output of Capture/Compare** channel 1 CCPOS1 3 CCU6 Hall Input 1 P4.5 -/46 Hi-Z T1 0 Timer 1 Input COUT61 2 Output of Capture/Compare channel 1 P4.6 -/47 Hi-Z CCPOS2 3 CCU6 Hall Input 2 T2 0 Timer 2 Input CC62 2 **Output of Capture/Compare** channel 2 CTRAP 3 CCU6 Trap Input P4.7 -/48 Hi-Z COUT62 2 Output of Capture/Compare channel 2

Table 3Pin Definitions and Functions (cont'd)

The page register has the following definition:

MOD_PAGE Page Register for module MOD

Reset Value: 00_H

7	6	5	4	3	2	1	0
0	Ρ	ST	NR	0		PAGE	
v	V	V	V	r		rw	I

Field	Bits	Туре	Description
PAGE	[2:0]	rw	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.
STNR	[5:4]	W	Storage NumberThis number indicates which storage bit field is the target of the operation defined by bit field OP.If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value.If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.00ST0 is selected. 0101ST1 is selected. 1010ST2 is selected. 1111ST3 is selected.

Field	Bits	Туре	Description
OP	[7:6]	w	 Operation Manual page mode. The value of STNR is ignored and PAGE is directly written. New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. Automatic restore page action. The value written to the bit positions of PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

3.2.3 Bit Protection Scheme

The bit protection scheme prevents direct software writing of selected bits (i.e., protected bits) using the PASSWD register. When the bit field MODE is 11_B , writing 10011_B to the bit field PASS opens access to writing of all protected bits, and writing 10101_B to the bit field PASS closes access to writing of all protected bits. In both cases, the value of the bit field MODE is not changed even if PASSWD register is written with 98_H or $A8_H$. It can only be changed when bit field PASS is written with 11000_B , for example, writing D0_H to PASSWD register disables the bit protection scheme.

Note that access is opened for maximum 32 CCLKs if the "close access" password is not written. If "open access" password is written again before the end of 32 CCLK cycles, there will be a recount of 32 CCLK cycles. The protected bits include the N- and K-Divider bits, NDIV and KDIV; the Watchdog Timer enable bit, WDTEN; and the power-down and slow-down enable bits, PD and SD.

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
Fe _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15 UART1 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1	1								1
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh
C9 _H	SBUF Reset: 00 _H	Bit Field				V	AL			
	Serial Data Buffer Register	Туре				rv	vh			
са _Н	BCON Reset: 00 _H	Bit Field		()			BRPRE		R
	Baud Rate Control Register	Туре			r		ſW			rw
св _Н	BG Reset: 00 _H	Bit Field	BR_VALUE							
	Baud Rate Timer/Reload Register	Туре	rwh							
сс _Н	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN
	Fractional Divider Control Register	Туре		r					rw	rw
CD _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP			
	Fractional Divider Reload Register	Туре	rw							
Ceh	FDRES Reset: 00 _H	Bit Field				RES	SULT			
	Fractional Divider Result Register	Туре	rh							

3.2.4.12 SSC Registers

The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
A9 _H	SSC_PISEL Reset: 00 _H	Bit Field			0			CIS	SIS	MIS
	Port Input Select Register	Туре			r			rw	rw	rw
AA _H	SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М	
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw	rw			
AA _H	SSC_CONL Reset: 00 _H	Bit Field		()			В	С	
	Control Register Low Operating Mode	Туре		l	r			r	h	
ав _Н	H SSC_CONH Reset: 00 _H Control Register High Programming Mode	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN
		Туре	rw	rw	r	rw	rw	rw	rw	rw
ав _Н	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh
ac _h	SSC_TBL Reset: 00 _H	Bit Field				TB_V	ALUE			
	Transmitter Buffer Register Low	Туре	rw							
ad _H	SSC_RBL Reset: 00 _H	Bit Field				RB_V	ALUE			
	Receiver Buffer Register Low	Туре				rl	า			
ае _Н	SSC_BRL Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer Reload Register Low	Туре	rw							
af _h	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer Reload Register High	Туре				n	N			

Table 16 SSC Register Overview

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 0									
D8 _H	ADCON Reset: 00 _H	Bit Field	V3	V2	V1	V0	AU	AD	BSY	RWEN
	CAN Address/Data Control Register	Туре	rw	rw	rw	rw	rw		rh	rw
D9 _H	ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2
	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh
da _h	ADH Reset: 00 _H	Bit Field		()		CA13	CA12	CA11	CA10
	CAN Address Register High	Туре			ſ		rwh	rwh	rwh	rwh

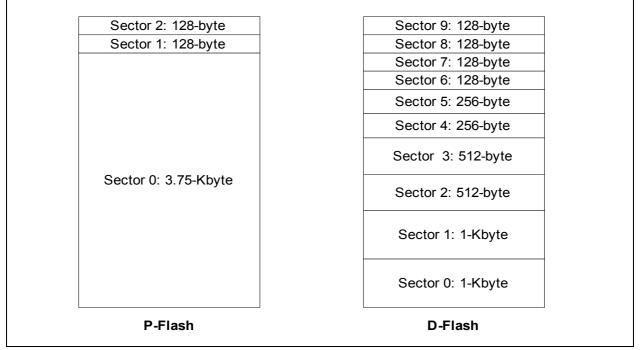


Figure 11 Flash Bank Sectorization

The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s.

The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

3.3.2 Parallel Read Access of P-Flash

To enhance system performance, the P-Flash banks are configured for parallel read to allow two bytes of linear code to be read in 4 x CCLK cycles, compared to 6 x CCLK cycles if serial read is performed. This is achieved by reading two bytes in parallel from a P-Flash bank pair within the 3 x CCLK cycles access time and storing them in a cache. Subsequent read from the cache by the CPU does not require a wait state and can be completed within 1 x CCLK cycle. The result is the average instruction fetch time from the P-Flash banks is reduced and thus, the MIPS (Mega Instruction Per Second) of the system is increased.

However, if the parallel read feature is not desired due to certain timing constraints, it can be disabled by calling the parallel read disable subroutine.

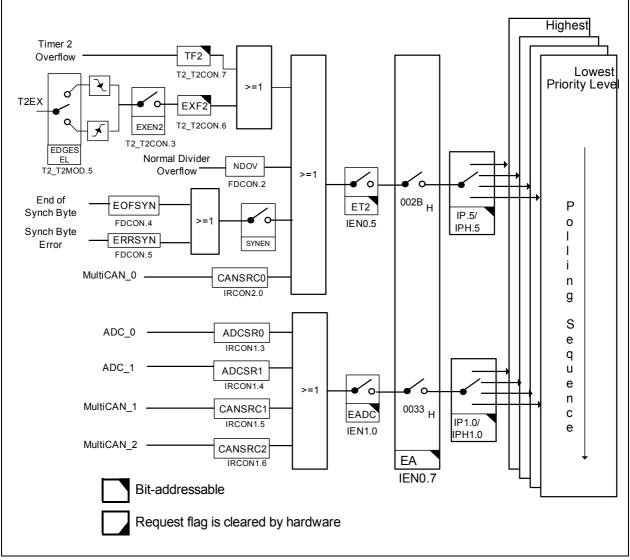
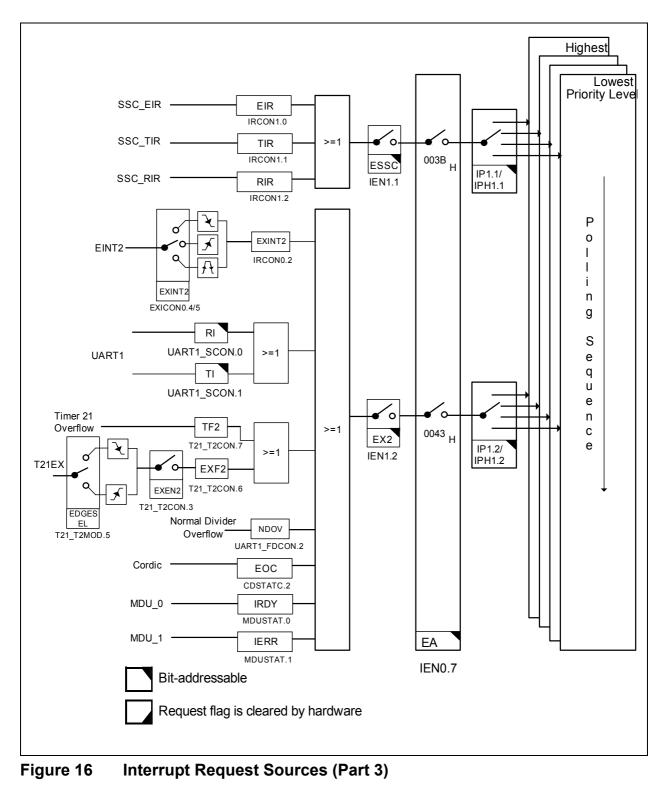



Figure 15 Interrupt Request Sources (Part 2)

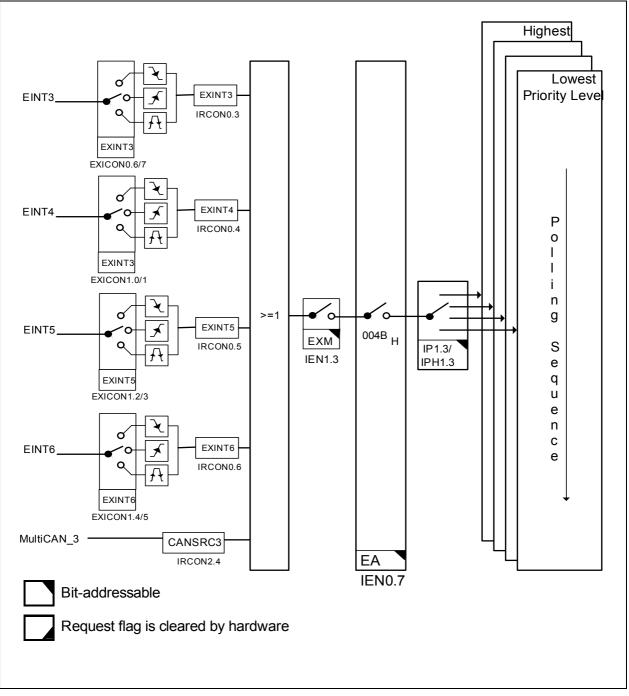


Figure 17 Interrupt Request Sources (Part 4)

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert FNMIWDT) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value ($\langle WDTREL \rangle * 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- The input frequency to the WDT can be selected to be either $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$
- The reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, $P_{\rm WDT}$, between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1 + WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^8)}{f_{PCLK}}$$

(3.4)

If the Window-Boundary Refresh feature of the WDT is enabled, the period $P_{\rm WDT}$ between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 29**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB cannot be smaller than WDTREL.

3.16 High-Speed Synchronous Serial Interface

The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces.

Features


- Master and slave mode operation
 - Full-duplex or half-duplex operation
- Transmit and receive buffered
- Flexible data format
 - Programmable number of data bits: 2 to 8 bits
 - Programmable shift direction: LSB or MSB shift first
 - Programmable clock polarity: idle low or high state for the shift clock
 - Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
- Variable baud rate
- Compatible with Serial Peripheral Interface (SPI)
- Interrupt generation
 - On a transmitter empty condition
 - On a receiver full condition
 - On an error condition (receive, phase, baud rate, transmit error)

Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered.

Figure 32 shows the block diagram of the SSC.

GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

Figure 35 ADC Clocking Scheme

For module clock f_{ADC} = 24 MHz, the analog clock f_{ADCI} frequency can be selected as shown in **Table 34**.

Table 34	f _{ADCI} Frequency Selection
----------	---------------------------------------

Module Clock f_{ADC}	СТС	Prescaling Ratio	Analog Clock f_{ADCI}
24 MHz	00 _B	÷ 2	12 MHz (N.A)
	01 _B	÷ 3	8 MHz
	10 _B	÷ 4	6 MHz
	11 _B (default)	÷ 32	750 kHz

As $f_{\rm ADCI}$ cannot exceed 10 MHz, bit field CTC should not be set to $00_{\rm B}$ when $f_{\rm ADC}$ is 24 MHz. During slow-down mode where $f_{\rm ADC}$ may be reduced to 12 MHz, 6 MHz etc., CTC can be set to $00_{\rm B}$ as long as the divided analog clock $f_{\rm ADCI}$ does not exceed 10 MHz.

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number						
	AA-Step	AB-Step	AC-Step				
XC886LM-6RFA 3V3	22411522 _H	-	-				
XC888LM-6RFA 3V3	22411523 _H	-	-				
XC886CM-8RFA 3V3	22480502 _H	-	-				
XC888CM-8RFA 3V3	22480503 _H	-	-				
XC886C-8RFA 3V3	22480542 _H	-	-				
XC888C-8RFA 3V3	22480543 _H	-	-				
XC886-8RFA 3V3	22480562 _H	-	-				
XC888-8RFA 3V3	22480563 _H	-	-				
XC886CM-6RFA 3V3	22491502 _H	-	-				
XC888CM-6RFA 3V3	22491503 _H	-	-				
XC886C-6RFA 3V3	22491542 _H	-	-				
XC888C-6RFA 3V3	22491543 _H	-	-				
XC886-6RFA 3V3	22491562 _H	-	-				
XC888-6RFA 3V3	22491563 _H	-	-				
XC886CLM-8RFA 5V	22800502 _H	-	-				
XC888CLM-8RFA 5V	22800503 _H	-	-				
XC886LM-8RFA 5V	22800522 _H	-	-				
XC888LM-8RFA 5V	22800523 _H	-	-				
XC886CLM-6RFA 5V	22811502 _H	-	-				
XC888CLM-6RFA 5V	22811503 _H	-	-				
XC886LM-6RFA 5V	22811522 _H	-	-				
XC888LM-6RFA 5V	22811523 _H	-	-				
XC886CM-8RFA 5V	22880502 _H	-	-				
XC888CM-8RFA 5V	22880503 _H	-	-				
XC886C-8RFA 5V	22880542 _H	-	-				
XC888C-8RFA 5V	22880543 _H	-	-				
XC886-8RFA 5V	22880562 _H	-	-				
XC888-8RFA 5V	22880563 _H	-	-				
XC886CM-6RFA 5V	22891502 _H	-	-				

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number						
	AA-Step	AB-Step	AC-Step				
XC888CM-6RFA 5V	22891503 _H	-	-				
XC886C-6RFA 5V	22891542 _H	-	-				
XC888C-6RFA 5V	22891543 _H	-	-				
XC886-6RFA 5V	22891562 _H	-	-				
XC888-6RFA 5V	22891563 _H	-	-				

Electrical Parameters

4.2 DC Parameters

The electrical characteristics of the DC Parameters are detailed in this section.

4.2.1 Input/Output Characteristics

Table 38 provides the characteristics of the input/output pins of the XC886/888.

Table 38	Input/Output Characteristics	s (Operating Conditions apply)
----------	------------------------------	--------------------------------

Parameter	Symbo	ol	Limit	Values	Unit	Test Conditions
			min.	max.		
V _{DDP} = 5 V Range						·
Output low voltage	V _{OL}	CC	-	1.0	V	I _{OL} = 15 mA
			-	1.0	V	$I_{\rm OL}$ = 5 mA, current into all pins > 60 mA
			-	0.4	V	$I_{\rm OL}$ = 5 mA, current into all pins \leq 60 mA
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{ОН} = -15 mA
			V _{DDP} - 1.0	-	V	$I_{\rm OH}$ = -5 mA, current from all pins > 60 mA
			V _{DDP} - 0.4	-	V	$I_{\rm OH}$ = -5 mA, current from all pins \leq 60 mA
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input low voltage on P0.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 \times V_{ m DDP}$	V	CMOS Mode
Input low voltage on RESET pin	V _{ILR}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode
Input low voltage on TMS pin	V _{ILT}	SR	-	$0.3 \times V_{ m DDP}$	V	CMOS Mode
Input high voltage on port pins (all except P0.0 & P0.1)	V _{IHP}	SR	$0.7 \times V_{\text{DDP}}$	-	V	CMOS Mode
Input high voltage on P0.0 & P0.1	V _{IHP0}	SR	$0.7 \times V_{ m DDP}$	V _{DDP}	V	CMOS Mode

Package and Quality Declaration

5 Package and Quality Declaration

Chapter 5 provides the information of the XC886/888 package and reliability section.

5.1 Package Parameters

Table 1 provides the thermal characteristics of the package used in XC886 and XC888.

Parameter	Symbol		Limit Values		Unit	Notes
			Min.	Max.		
PG-TQFP-48 (XC886)	1			L	l	
Thermal resistance junction case	R _{TJC}	CC	-	13	K/W	1)2)
Thermal resistance junction lead	R _{TJL}	CC	-	32.5	K/W	1)2)_
PG-TQFP-64 (XC888)	•					
Thermal resistance junction case	R _{TJC}	CC	-	12.6	K/W	1)2)
Thermal resistance junction lead	R_{TJL}	CC	-	33.4	K/W	1)2)

Table 1 Thermal Characteristics of the Packages

1) The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) are to be combined with the thermal resistances between the junction and the case (R_{TJC}) , the junction and the lead (R_{TJL}) given above, in order to calculate the total thermal resistance between the junction and the ambient (R_{TJA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) . The thermal resistances between the case and the ambient (R_{TCA}) , the lead and the ambient (R_{TLA}) depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation: $T_J = T_A + R_{TJA} \times P_D$, where the R_{TJA} is the total thermal resistance between the junction and the ambient. This total junction ambient resistance R_{TJA} can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.