

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Discontinued at Digi-Key                                                       |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | XC800                                                                          |
| Core Size                  | 8-Bit                                                                          |
| Speed                      | 24MHz                                                                          |
| Connectivity               | SSI, UART/USART                                                                |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                          |
| Number of I/O              | 34                                                                             |
| Program Memory Size        | 24KB (24K x 8)                                                                 |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 1.75K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                                    |
| Data Converters            | A/D 8x10b                                                                      |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 48-LQFP                                                                        |
| Supplier Device Package    | PG-TQFP-48                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/xc8866ffa5vackxuma1 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



#### **General Device Information**

# 2 General Device Information

**Chapter 2** contains the block diagram, pin configurations, definitions and functions of the XC886/888.

## 2.1 Block Diagram

The block diagram of the XC886/888 is shown in Figure 2.



Figure 2 XC886/888 Block Diagram



#### **General Device Information**

| Symbol | Pin Number<br>(TQFP-48/64) | Туре | Reset<br>State | Function                                                                                                                                                                                            |                                                                                                                                                              |  |  |  |  |
|--------|----------------------------|------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| P1     |                            | I/O  |                | Port 1<br>Port 1 is an 8-bit bidirectional general purpose<br>I/O port. It can be used as alternate functions<br>for the JTAG, CCU6, UART, Timer 0, Timer 1<br>Timer 2, Timer 21, MultiCAN and SSC. |                                                                                                                                                              |  |  |  |  |
| P1.0   | 26/34                      |      | PU             | RXD_0<br>T2EX<br>RXDC0_0                                                                                                                                                                            | UART Receive Data Input<br>Timer 2 External Trigger Input<br>MultiCAN Node 0 Receiver Input                                                                  |  |  |  |  |
| P1.1   | 27/35                      |      | PU             | EXINT3<br>T0_1<br>TDO_1<br>TXD_0<br>TXDC0_0                                                                                                                                                         | External Interrupt Input 3<br>Timer 0 Input<br>JTAG Serial Data Output<br>UART Transmit Data<br>Output/Clock Output<br>MultiCAN Node 0 Transmitter<br>Output |  |  |  |  |
| P1.2   | 28/36                      |      | PU             | SCK_0                                                                                                                                                                                               | SSC Clock Input/Output                                                                                                                                       |  |  |  |  |
| P1.3   | 29/37                      |      | PU             | MTSR_0<br>TXDC1_3                                                                                                                                                                                   | SSC Master Transmit<br>Output/Slave Receive Input<br>MultiCAN Node 1 Transmitter<br>Output                                                                   |  |  |  |  |
| P1.4   | 30/38                      |      | PU             | MRST_0<br>EXINT0_1<br>RXDC1_3                                                                                                                                                                       | SSC Master Receive Input/<br>Slave Transmit Output<br>External Interrupt Input 0<br>MultiCAN Node 1 Receiver Input                                           |  |  |  |  |
| P1.5   | 31/39                      |      | PU             | CCPOS0_1<br>EXINT5<br>T1_1<br>EXF2_0<br>RXDO_0                                                                                                                                                      | CCU6 Hall Input 0<br>External Interrupt Input 5<br>Timer 1 Input<br>Timer 2 External Flag Output<br>UART Transmit Data Output                                |  |  |  |  |

#### Table 3Pin Definitions and Functions (cont'd)



#### Table 9WDT Register Overview (cont'd)

| Addr                        | Register Name                | Bit       | 7      | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----------------------------|------------------------------|-----------|--------|---|---|---|---|---|---|---|
| ве <sub>Н</sub>             | WDTL Reset: 00 <sub>H</sub>  | Bit Field | WDT    |   |   |   |   |   |   |   |
| Watchdog Timer Register Low |                              | Туре      | e rh   |   |   |   |   |   |   |   |
| bf <sub>H</sub>             | WDTH Reset: 00 <sub>H</sub>  | Bit Field | ld WDT |   |   |   |   |   |   |   |
|                             | Watchdog Timer Register High | Туре      | rh     |   |   |   |   |   |   |   |

#### 3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

#### Table 10Port Register Overview

| Addr             | Register Name                                                                | e                      | Bit       | 7  | 6  | 5    | 4  | 3  | 2    | 1  | 0  |
|------------------|------------------------------------------------------------------------------|------------------------|-----------|----|----|------|----|----|------|----|----|
| RMAP =           | = 0                                                                          |                        |           |    |    |      |    |    |      |    |    |
| B2 <sub>H</sub>  | PORT_PAGE                                                                    | Reset: 00 <sub>H</sub> | Bit Field | С  | P  | STNR |    | 0  | PAGE |    |    |
|                  | Page Register                                                                |                        | Туре      | w  |    | v    | v  | r  |      | rw |    |
| RMAP =           | = 0, PAGE 0                                                                  |                        |           |    |    |      |    | •  | •    |    |    |
| 80 <sub>H</sub>  | P0_DATA F                                                                    | Reset: 00 <sub>H</sub> | Bit Field | P7 | P6 | P5   | P4 | P3 | P2   | P1 | P0 |
|                  | P0 Data Register                                                             |                        | Туре      | rw | rw | rw   | rw | rw | rw   | rw | rw |
| 86 <sub>H</sub>  | P0_DIR F                                                                     | Reset: 00 <sub>H</sub> | Bit Field | P7 | P6 | P5   | P4 | P3 | P2   | P1 | P0 |
|                  | P0 Direction Register                                                        | Туре                   | rw        | rw | rw | rw   | rw | rw | rw   | rw |    |
| 90 <sub>H</sub>  | H P1_DATA Reset: 00 <sub>H</sub><br>P1 Data Register                         | Reset: 00 <sub>H</sub> | Bit Field | P7 | P6 | P5   | P4 | P3 | P2   | P1 | P0 |
|                  |                                                                              |                        | Туре      | rw | rw | rw   | rw | rw | rw   | rw | rw |
| 91 <sub>H</sub>  | <sup>1</sup> H <b>P1_DIR Reset: 00</b> <sub>H</sub><br>P1 Direction Register | Reset: 00 <sub>H</sub> | Bit Field | P7 | P6 | P5   | P4 | P3 | P2   | P1 | P0 |
|                  |                                                                              | er                     | Туре      | rw | rw | rw   | rw | rw | rw   | rw | rw |
| 92 <sub>H</sub>  | P5_DATA Reset: 00                                                            | Reset: 00 <sub>H</sub> | Bit Field | P7 | P6 | P5   | P4 | P3 | P2   | P1 | P0 |
| P5 Data Register |                                                                              | Туре                   | rw        | rw | rw | rw   | rw | rw | rw   | rw |    |
| 93 <sub>H</sub>  | P5_DIR Reset: 00 <sub>H</sub>                                                | Reset: 00 <sub>H</sub> | Bit Field | P7 | P6 | P5   | P4 | P3 | P2   | P1 | P0 |
|                  | P5 Direction Registe                                                         | er                     | Туре      | rw | rw | rw   | rw | rw | rw   | rw | rw |
| A0 <sub>H</sub>  | P2_DATA F                                                                    | Reset: 00 <sub>H</sub> | Bit Field | P7 | P6 | P5   | P4 | P3 | P2   | P1 | P0 |
|                  | P2 Data Register                                                             |                        | Туре      | rw | rw | rw   | rw | rw | rw   | rw | rw |
| A1 <sub>H</sub>  | P2_DIR F                                                                     | Reset: 00 <sub>H</sub> | Bit Field | P7 | P6 | P5   | P4 | P3 | P2   | P1 | P0 |
|                  | P2 Direction Registe                                                         | er                     | Туре      | rw | rw | rw   | rw | rw | rw   | rw | rw |
| во <sub>Н</sub>  | P3_DATA F                                                                    | Reset: 00 <sub>H</sub> | Bit Field | P7 | P6 | P5   | P4 | P3 | P2   | P1 | P0 |
|                  | P3 Data Register                                                             |                        | Туре      | rw | rw | rw   | rw | rw | rw   | rw | rw |
| в1 <sub>Н</sub>  | P3_DIR F                                                                     | Reset: 00 <sub>H</sub> | Bit Field | P7 | P6 | P5   | P4 | P3 | P2   | P1 | P0 |
|                  | P3 Direction Registe                                                         | er                     | Туре      | rw | rw | rw   | rw | rw | rw   | rw | rw |
| C8 <sub>H</sub>  | P4_DATA F                                                                    | Reset: 00 <sub>H</sub> | Bit Field | P7 | P6 | P5   | P4 | P3 | P2   | P1 | P0 |
|                  | P4 Data Register                                                             |                        | Туре      | rw | rw | rw   | rw | rw | rw   | rw | rw |
| C9 <sub>H</sub>  | P4_DIR F                                                                     | Reset: 00 <sub>H</sub> | Bit Field | P7 | P6 | P5   | P4 | P3 | P2   | P1 | P0 |
|                  | P4 Direction Register                                                        | er                     | Туре      | rw | rw | rw   | rw | rw | rw   | rw | rw |



## XC886/888CLM

#### **Functional Description**

#### Table 10Port Register Overview (cont'd)

| Addr            | Register Name                                                                              | Bit       | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|-----------------|--------------------------------------------------------------------------------------------|-----------|----|----|----|----|----|----|----|----|
| RMAP =          | = 0, PAGE 1                                                                                |           |    |    |    |    |    |    |    |    |
| 80 <sub>H</sub> | P0_PUDSEL Reset: FF <sub>H</sub>                                                           | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P0 Pull-Up/Pull-Down Select<br>Register                                                    | Туре      | rw |
| 86 <sub>H</sub> | P0_PUDEN Reset: C4 <sub>H</sub>                                                            | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P0 Pull-Up/Pull-Down Enable<br>Register                                                    | Туре      | rw |
| 90 <sub>H</sub> | P1_PUDSEL Reset: FF <sub>H</sub>                                                           | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P1 Pull-Up/Pull-Down Select<br>Register                                                    | Туре      | rw |
| 91 <sub>H</sub> | P1_PUDEN Reset: FF <sub>H</sub>                                                            | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P1 Pull-Up/Pull-Down Enable<br>Register                                                    | Туре      | rw |
| 92 <sub>H</sub> | P5_PUDSEL Reset: FF <sub>H</sub>                                                           | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P5 Pull-Up/Pull-Down Select<br>Register                                                    | Туре      | rw |
| 93 <sub>H</sub> | P5_PUDEN Reset: FF <sub>H</sub>                                                            | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P5 Pull-Up/Pull-Down Enable<br>Register                                                    | Туре      | rw |
| A0 <sub>H</sub> | P2_PUDSEL Reset: FF <sub>H</sub>                                                           | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P2 Pull-Op/Pull-Down Select<br>Register                                                    | Туре      | rw |
| A1 <sub>H</sub> | A1 <sub>H</sub> P2_PUDEN Reset: 00 <sub>H</sub><br>P2 Pull-Up/Pull-Down Enable<br>Register | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 |                                                                                            | Туре      | rw |
| во <sub>Н</sub> | H P3_PUDSEL Reset: BF <sub>H</sub>                                                         | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P3 Pull-Up/Pull-Down Select<br>Register                                                    | Туре      | rw |
| B1 <sub>H</sub> | P3_PUDEN Reset: 40 <sub>H</sub>                                                            | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P3 Pull-Up/Pull-Down Enable<br>Register                                                    | Туре      | rw |
| C8 <sub>H</sub> | P4_PUDSEL Reset: FF <sub>H</sub>                                                           | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P4 Pull-Up/Pull-Down Select<br>Register                                                    | Туре      | rw |
| C9 <sub>H</sub> | P4_PUDEN Reset: 04 <sub>H</sub>                                                            | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P4 Pull-Up/Pull-Down Enable<br>Register                                                    | Туре      | rw |
| RMAP =          | = 0, PAGE 2                                                                                |           |    | •  |    |    |    | •  |    |    |
| <sup>80</sup> H | P0_ALTSEL0 Reset: 00 <sub>H</sub>                                                          | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P0 Alternate Select 0 Register                                                             | Туре      | rw |
| 86 <sub>H</sub> | P0_ALTSEL1 Reset: 00 <sub>H</sub>                                                          | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | PU Alternate Select 1 Register                                                             | Туре      | rw |
| 90 <sub>H</sub> | P1_ALTSEL0 Reset: 00 <sub>H</sub>                                                          | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | PT Alternate Select 0 Register                                                             | Туре      | rw |
| <sup>91</sup> H | P1_ALTSEL1 Reset: 00 <sub>H</sub>                                                          | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | I Allemale Select I Register                                                               | Туре      | rw |
| 92 <sub>H</sub> | P5_ALTSEL0 Reset: 00 <sub>H</sub>                                                          | Bit Field | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 |
|                 | P5 Alternate Select 0 Register                                                             | Туре      | rw |



#### Table 14CCU6 Register Overview (cont'd)

| Addr            | Register Name                                                       | Bit       | 7     | 6            | 5            | 4          | 3            | 2          | 1            | 0          |
|-----------------|---------------------------------------------------------------------|-----------|-------|--------------|--------------|------------|--------------|------------|--------------|------------|
| Fe <sub>H</sub> | CCU6_CMPSTATL Reset: 00 <sub>H</sub><br>Compare State Register Low  | Bit Field | 0     | CC63<br>ST   | CC<br>POS2   | CC<br>POS1 | CC<br>POS0   | CC62<br>ST | CC61<br>ST   | CC60<br>ST |
|                 |                                                                     | Туре      | r     | rh           | rh           | rh         | rh           | rh         | rh           | rh         |
| FF <sub>H</sub> | CCU6_CMPSTATH Reset: 00 <sub>H</sub><br>Compare State Register High | Bit Field | T13IM | COUT<br>63PS | COUT<br>62PS | CC62<br>PS | COUT<br>61PS | CC61<br>PS | COUT<br>60PS | CC60<br>PS |
|                 |                                                                     | Туре      | rwh   | rwh          | rwh          | rwh        | rwh          | rwh        | rwh          | rwh        |

#### 3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

#### Table 15 UART1 Register Overview

| Addr            | Register Name                             | Bit       | 7   | 6   | 5   | 4    | 3    | 2     | 1    | 0   |
|-----------------|-------------------------------------------|-----------|-----|-----|-----|------|------|-------|------|-----|
| RMAP =          | : 1                                       |           |     |     |     |      |      |       |      |     |
| C8 <sub>H</sub> | SCON Reset: 00 <sub>H</sub>               | Bit Field | SM0 | SM1 | SM2 | REN  | TB8  | RB8   | TI   | RI  |
|                 | Serial Channel Control Register           | Туре      | rw  | rw  | rw  | rw   | rw   | rwh   | rwh  | rwh |
| C9 <sub>H</sub> | SBUF Reset: 00 <sub>H</sub>               | Bit Field | VAL |     |     |      |      |       |      |     |
|                 | Serial Data Buffer Register               |           | rwh |     |     |      |      |       |      |     |
| CA <sub>H</sub> | BCON Reset: 00 <sub>H</sub>               | Bit Field |     | 0   |     |      |      | BRPRE |      | R   |
|                 | Baud Rate Control Register                | Туре      |     |     | r   |      |      | rw    |      | rw  |
| св <sub>Н</sub> | CB <sub>H</sub> BG Reset: 00 <sub>H</sub> |           |     |     |     | BR_V | ALUE |       |      |     |
|                 | Baud Rate Timer/Reload<br>Register        | Туре      | rwh |     |     |      |      |       |      |     |
| сс <sub>Н</sub> | FDCON Reset: 00 <sub>H</sub>              | Bit Field | 0   |     |     |      | NDOV | FDM   | FDEN |     |
|                 | Fractional Divider Control<br>Register    | Туре      |     | ſ   |     |      |      | rwh   | rw   | rw  |
| CD <sub>H</sub> | FDSTEP Reset: 00 <sub>H</sub>             | Bit Field |     |     |     | ST   | ΈP   |       |      |     |
|                 | Fractional Divider Reload<br>Register     | Туре      | rw  |     |     |      |      |       |      |     |
| CeH             | FDRES Reset: 00 <sub>H</sub>              | Bit Field |     |     |     | RES  | ULT  |       |      |     |
|                 | Fractional Divider Result<br>Register     | Туре      |     |     |     | r    | h    |       |      |     |



## 3.7 Reset Control

The XC886/888 has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When the XC886/888 is first powered up, the status of certain pins (see **Table 23**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

In order to power up the system properly, the external reset pin  $\overrightarrow{\text{RESET}}$  must be asserted until  $V_{\text{DDC}}$  reaches 0.9\* $V_{\text{DDC}}$ . The delay of external reset can be realized by an external capacitor at  $\overrightarrow{\text{RESET}}$  pin. This capacitor value must be selected so that  $V_{\text{RESET}}$  reaches 0.4 V, but not before  $V_{\text{DDC}}$  reaches 0.9\*  $V_{\text{DDC}}$ .

A typical application example is shown in Figure 22. The  $V_{\text{DDP}}$  capacitor value is 100 nF while the  $V_{\text{DDC}}$  capacitor value is 220 nF. The capacitor connected to RESET pin is 100 nF.

Typically, the time taken for  $V_{DDC}$  to reach  $0.9^*V_{DDC}$  is less than 50 µs once  $V_{DDP}$  reaches 2.3V. Hence, based on the condition that 10% to 90%  $V_{DDP}$  (slew rate) is less than 500 µs, the RESET pin should be held low for 500 µs typically. See Figure 23.



Figure 22 Reset Circuitry



## 3.11 Multiplication/Division Unit

The Multiplication/Division Unit (MDU) provides fast 16-bit multiplication, 16-bit and 32-bit division as well as shift and normalize features. It has been integrated to support the XC886/888 Core in real-time control applications, which require fast mathematical computations.

#### Features

- Fast signed/unsigned 16-bit multiplication
- Fast signed/unsigned 32-bit divide by 16-bit and 16-bit divide by 16-bit operations
- 32-bit unsigned normalize operation
- 32-bit arithmetic/logical shift operations

 Table 28 specifies the number of clock cycles used for calculation in various operations.

| Operation                | Result | Remainder | No. of Clock Cycles<br>used for calculation |
|--------------------------|--------|-----------|---------------------------------------------|
| Signed 32-bit/16-bit     | 32-bit | 16-bit    | 33                                          |
| Signed 16-bit/16bit      | 16-bit | 16-bit    | 17                                          |
| Signed 16-bit x 16-bit   | 32-bit | -         | 16                                          |
| Unsigned 32-bit/16-bit   | 32-bit | 16-bit    | 32                                          |
| Unsigned 16-bit/16-bit   | 16-bit | 16-bit    | 16                                          |
| Unsigned 16-bit x 16-bit | 32-bit | -         | 16                                          |
| 32-bit normalize         | -      | -         | No. of shifts + 1 (Max. 32)                 |
| 32-bit shift L/R         | -      | -         | No. of shifts + 1 (Max. 32)                 |

 Table 28
 MDU Operation Characteristics



## 3.12 CORDIC Coprocessor

The CORDIC Coprocessor provides CPU with hardware support for the solving of circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions.

#### Features

- Modes of operation
  - Supports all CORDIC operating modes for solving circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions
  - Integrated look-up tables (LUTs) for all operating modes
- Circular vectoring mode: Extended support for values of initial X and Y data up to full range of [-2<sup>15</sup>,(2<sup>15</sup>-1)] for solving angle and magnitude
- Circular rotation mode: Extended support for values of initial Z data up to full range of  $[-2^{15},(2^{15}-1)]$ , representing angles in the range  $[-\pi,((2^{15}-1)/2^{15})\pi]$  for solving trigonometry
- Implementation-dependent operational frequency of up to 80 MHz
- Gated clock input to support disabling of module
- 16-bit accessible data width
  - 24-bit kernel data width plus 2 overflow bits for X and Y each
  - 20-bit kernel data width plus 1 overflow bit for Z
  - With KEEP bit to retain the last value in the kernel register for a new calculation
- 16 iterations per calculation: Approximately 41 clock-cycles or less, from set of start (ST) bit to set of end-of-calculation flag, excluding time taken for write and read access of data bytes.
- Twos complement data processing
- Only exception: X result data with user selectable option for unsigned result
- X and Y data generally accepted as integer or rational number; X and Y must be of the same data form
- Entries of LUTs are 20-bit signed integers
  - Entries of atan and atanh LUTs are integer representations (S19) of angles with the scaling such that  $[-2^{15},(2^{15}-1)]$  represents the range  $[-\pi,((2^{15}-1)/2^{15})\pi]$
  - Accessible Z result data for circular and hyperbolic functions is integer in data form of S15
- Emulated LUT for linear function
  - Data form is 1 integer bit and 15-bit fractional part (1.15)
  - Accessible Z result data for linear function is rational number with fixed data form of S4.11 (signed 4Q16)
- Truncation Error
  - The result of a CORDIC calculation may return an approximation due to truncation of LSBs
  - Good accuracy of the CORDIC calculated result data, especially in circular mode
- Interrupt
  - On completion of a calculation



fractional divider) for generating a wide range of baud rates based on its input clock  $f_{\text{PCLK}}$ , see **Figure 30**.



#### Figure 30 Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider ( $f_{MOD}$ ) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler ( $f_{DIV}$ ) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate ( $f_{BR}$ ) value is dependent on the following parameters:

- Input clock  $f_{PCLK}$
- Prescaling factor (2<sup>BRPRE</sup>) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR\_VALUE) for the baud rate timer defined by register BG



The following formulas calculate the final baud rate without and with the fractional divider respectively:

baud rate = 
$$\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR VALUE + 1)}$$
 where  $2^{BRPRE} \times (BR_VALUE + 1) > 1$ 

(3.5)

baud rate =  $\frac{f_{PCLK}}{16 \times 2^{BRPRE} \times (BR_VALUE + 1)} \times \frac{STEP}{256}$ 

(3.6)

The maximum baud rate that can be generated is limited to  $f_{\text{PCLK}}/32$ . Hence, for a module clock of 24 MHz, the maximum achievable baud rate is 0.75 MBaud.

Standard LIN protocol can support a maximum baud rate of 20 kHz, the baud rate accuracy is not critical and the fractional divider can be disabled. Only the prescaler is used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of 20 kHz to 115.2 kHz, the higher baud rates require the use of the fractional divider for greater accuracy.

**Table 30** lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 24 MHz is used.

| Baud rate  | Prescaling Factor<br>(2BRPRE) | Reload Value<br>(BR_VALUE + 1) | Deviation Error |  |  |
|------------|-------------------------------|--------------------------------|-----------------|--|--|
| 19.2 kBaud | 1 (BRPRE=000 <sub>B</sub> )   | 78 (4E <sub>H</sub> )          | 0.17 %          |  |  |
| 9600 Baud  | 1 (BRPRE=000 <sub>B</sub> )   | 156 (9C <sub>H</sub> )         | 0.17 %          |  |  |
| 4800 Baud  | 2 (BRPRE=001 <sub>B</sub> )   | 156 (9C <sub>H</sub> )         | 0.17 %          |  |  |
| 2400 Baud  | 4 (BRPRE=010 <sub>B</sub> )   | 156 (9C <sub>H</sub> )         | 0.17 %          |  |  |

 Table 30
 Typical Baud rates for UART with Fractional Divider disabled

The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. **Table 31** lists the resulting deviation errors from generating a baud rate of 115.2 kHz, using different module clock frequencies. The fractional divider is enabled (fractional divider mode) and the corresponding parameter settings are shown.



#### XC886/888CLM

#### **Functional Description**



Figure 33 CCU6 Block Diagram



## 3.22 On-Chip Debug Support

The On-Chip Debug Support (OCDS) provides the basic functionality required for the software development and debugging of XC800-based systems.

The OCDS design is based on these principles:

- Use the built-in debug functionality of the XC800 Core
- · Add a minimum of hardware overhead
- Provide support for most of the operations by a Monitor Program
- Use standard interfaces to communicate with the Host (a Debugger)

#### Features

- Set breakpoints on instruction address and on address range within the Program Memory
- Set breakpoints on internal RAM address range
- Support unlimited software breakpoints in Flash/RAM code region
- Process external breaks via JTAG and upon activating a dedicated pin
- Step through the program code

The OCDS functional blocks are shown in **Figure 37**. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals.

After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work-data and Monitor-stack).

The OCDS system is accessed through the JTAG<sup>1)</sup>, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control.

Note: All the debug functionality described here can normally be used only after XC886/888 has been started in OCDS mode.

<sup>1)</sup> The pins of the JTAG port can be assigned to either the primary port (Port 0) or either of the secondary ports (Ports 1 and 2/Port 5).

User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.



#### Table 36Chip Identification Number (cont'd)

| Product Variant   | Chip Identification Number |                       |                       |  |  |  |  |  |
|-------------------|----------------------------|-----------------------|-----------------------|--|--|--|--|--|
|                   | AA-Step                    | AB-Step               | AC-Step               |  |  |  |  |  |
| XC886-6FFA 3V3    | -                          | 095D1562 <sub>H</sub> | 0B5D1562 <sub>H</sub> |  |  |  |  |  |
| XC888-6FFA 3V3    | -                          | 095D1563 <sub>H</sub> | 0B5D1563 <sub>H</sub> |  |  |  |  |  |
| XC886CLM-8FFA 5V  | -                          | 09900102 <sub>H</sub> | 0B900102 <sub>H</sub> |  |  |  |  |  |
| XC888CLM-8FFA 5V  | -                          | 09900103 <sub>H</sub> | 0B900103 <sub>H</sub> |  |  |  |  |  |
| XC886LM-8FFA 5V   | -                          | 09900122 <sub>H</sub> | 0B900122 <sub>H</sub> |  |  |  |  |  |
| XC888LM-8FFA 5V   | -                          | 09900123 <sub>H</sub> | 0B900123 <sub>H</sub> |  |  |  |  |  |
| XC886CLM-6FFA 5V  | -                          | 09951502 <sub>H</sub> | 0B951502 <sub>H</sub> |  |  |  |  |  |
| XC888CLM-6FFA 5V  | -                          | 09951503 <sub>н</sub> | 0B951503 <sub>Н</sub> |  |  |  |  |  |
| XC886LM-6FFA 5V   | -                          | 09951522 <sub>н</sub> | 0B951522 <sub>H</sub> |  |  |  |  |  |
| XC888LM-6FFA 5V   | -                          | 09951523 <sub>н</sub> | 0B951523 <sub>Н</sub> |  |  |  |  |  |
| XC886CM-8FFA 5V   | -                          | 09980102 <sub>H</sub> | 0B980102 <sub>H</sub> |  |  |  |  |  |
| XC888CM-8FFA 5V   | -                          | 09980103 <sub>H</sub> | 0B980103 <sub>H</sub> |  |  |  |  |  |
| XC886C-8FFA 5V    | -                          | 09980142 <sub>H</sub> | 0B980142 <sub>H</sub> |  |  |  |  |  |
| XC888C-8FFA 5V    | -                          | 09980143 <sub>H</sub> | 0B980143 <sub>H</sub> |  |  |  |  |  |
| XC886-8FFA 5V     | -                          | 09980162 <sub>H</sub> | 0B980162 <sub>H</sub> |  |  |  |  |  |
| XC888-8FFA 5V     | -                          | 09980163 <sub>н</sub> | 0B980163 <sub>H</sub> |  |  |  |  |  |
| XC886CM-6FFA 5V   | -                          | 099D1502 <sub>H</sub> | 0B9D1502 <sub>H</sub> |  |  |  |  |  |
| XC888CM-6FFA 5V   | -                          | 099D1503 <sub>H</sub> | 0B9D1503 <sub>H</sub> |  |  |  |  |  |
| XC886C-6FFA 5V    | -                          | 099D1542 <sub>H</sub> | 0B9D1542 <sub>H</sub> |  |  |  |  |  |
| XC888C-6FFA 5V    | -                          | 099D1543 <sub>H</sub> | 0B9D1543 <sub>H</sub> |  |  |  |  |  |
| XC886-6FFA 5V     | -                          | 099D1562 <sub>H</sub> | 0B9D1562 <sub>H</sub> |  |  |  |  |  |
| XC888-6FFA 5V     | -                          | 099D1563 <sub>H</sub> | 0B9D1563 <sub>H</sub> |  |  |  |  |  |
| ROM Devices       |                            |                       |                       |  |  |  |  |  |
| XC886CLM-8RFA 3V3 | 22400502 <sub>H</sub>      | -                     | -                     |  |  |  |  |  |
| XC888CLM-8RFA 3V3 | 22400503 <sub>H</sub>      | -                     | -                     |  |  |  |  |  |
| XC886LM-8RFA 3V3  | 22400522 <sub>H</sub>      | -                     | -                     |  |  |  |  |  |
| XC888LM-8RFA 3V3  | 22400523 <sub>H</sub>      | -                     | -                     |  |  |  |  |  |
| XC886CLM-6RFA 3V3 | 22411502 <sub>H</sub>      | -                     | -                     |  |  |  |  |  |
| XC888CLM-6RFA 3V3 | 22411503 <sub>H</sub>      | -                     | -                     |  |  |  |  |  |



Table 37

#### **Electrical Parameters**

#### **Operating Conditions** 4.1.3

The following operating conditions must not be exceeded in order to ensure correct operation of the XC886/888. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

|           | opora |  |        |      |          |      |        |  |  |  |  |
|-----------|-------|--|--------|------|----------|------|--------|--|--|--|--|
| Parameter |       |  | Symbol | Limi | t Values | Unit | Notes/ |  |  |  |  |
|           |       |  |        | min. | max.     |      | Condit |  |  |  |  |
| B: II I   |       |  | 17     | 4 -  |          |      |        |  |  |  |  |

**Operating Condition Parameters** 

|                                      |                  | min. | max.  |     | Conditions        |
|--------------------------------------|------------------|------|-------|-----|-------------------|
| Digital power supply voltage         | $V_{DDP}$        | 4.5  | 5.5   | V   | 5V Device         |
| Digital power supply voltage         | V <sub>DDP</sub> | 3.0  | 3.6   | V   | 3.3V Device       |
| Digital ground voltage               | V <sub>SS</sub>  | 0    |       | V   |                   |
| Digital core supply voltage          | V <sub>DDC</sub> | 2.3  | 2.7   | V   |                   |
| System Clock Frequency <sup>1)</sup> | $f_{\rm SYS}$    | 88.8 | 103.2 | MHz |                   |
| Ambient temperature                  | T <sub>A</sub>   | -40  | 85    | °C  | SAF-<br>XC886/888 |
|                                      |                  | -40  | 125   | °C  | SAK-<br>XC886/888 |

1)  $f_{SYS}$  is the PLL output clock. During normal operating mode, CPU clock is  $f_{SYS}$  / 4. Please refer to Figure 26 for detailed description.



#### **Electrical Parameters**

| Parameter                                                      | Symbol            |    | Limit                       | Values                      | Unit | Test Conditions           |  |
|----------------------------------------------------------------|-------------------|----|-----------------------------|-----------------------------|------|---------------------------|--|
|                                                                |                   |    | min.                        | max.                        |      |                           |  |
| Maximum current out of $V_{\rm SS}$                            | I <sub>MVSS</sub> | SR | -                           | 120                         | mA   | 3)                        |  |
| $V_{\text{DDP}}$ = 3.3 V Range                                 |                   |    |                             |                             |      |                           |  |
| Output low voltage                                             | $V_{OL}$          | CC | _                           | 1.0                         | V    | I <sub>OL</sub> = 8 mA    |  |
|                                                                |                   |    | -                           | 0.4                         | V    | I <sub>OL</sub> = 2.5 mA  |  |
| Output high voltage                                            | V <sub>OH</sub>   | CC | V <sub>DDP</sub> -<br>1.0   | -                           | V    | I <sub>OH</sub> = -8 mA   |  |
|                                                                |                   |    | V <sub>DDP</sub> - 0.4      | -                           | V    | I <sub>OH</sub> = -2.5 mA |  |
| Input low voltage on<br>port pins<br>(all except P0.0 & P0.1)  | V <sub>ILP</sub>  | SR | -                           | $0.3 \times V_{\text{DDP}}$ | V    | CMOS Mode                 |  |
| Input low voltage on<br>P0.0 & P0.1                            | V <sub>ILP0</sub> | SR | -0.2                        | $0.3 \times V_{ m DDP}$     | V    | CMOS Mode                 |  |
| Input low voltage on RESET pin                                 | $V_{ILR}$         | SR | -                           | $0.3 \times V_{ m DDP}$     | V    | CMOS Mode                 |  |
| Input low voltage on<br>TMS pin                                | V <sub>ILT</sub>  | SR | -                           | $0.3 \times V_{\text{DDP}}$ | V    | CMOS Mode                 |  |
| Input high voltage on<br>port pins<br>(all except P0.0 & P0.1) | V <sub>IHP</sub>  | SR | $0.7 \times V_{\text{DDP}}$ | -                           | V    | CMOS Mode                 |  |
| Input high voltage on P0.0 & P0.1                              | V <sub>IHP0</sub> | SR | $0.7 \times V_{\text{DDP}}$ | V <sub>DDP</sub>            | V    | CMOS Mode                 |  |
| Input high voltage on RESET pin                                | $V_{IHR}$         | SR | $0.7 \times V_{\text{DDP}}$ | -                           | V    | CMOS Mode                 |  |
| Input high voltage on TMS pin                                  | V <sub>IHT</sub>  | SR | $0.75 \times V_{ m DDP}$    | -                           | V    | CMOS Mode                 |  |
| Input Hysteresis                                               | HYS               | CC | $0.03 \times V_{ m DDP}$    | -                           | V    | CMOS Mode <sup>1)</sup>   |  |
| Input Hysteresis on XTAL1                                      | HYSX              | CC | $0.07 \times V_{ m DDC}$    | -                           | V    | 1)                        |  |
| Input low voltage at XTAL1                                     | V <sub>ILX</sub>  | SR | V <sub>SS</sub> -<br>0.5    | $0.3 \times V_{ m DDC}$     | V    |                           |  |



#### **Electrical Parameters**

# Table 43Power Supply Current Parameters (Operating Conditions apply;<br/> $V_{\text{DDP}}$ = 3.3V range)

| Parameter                     | Symbol           | Limit Values       |                    | Unit | <b>Test Condition</b>      |
|-------------------------------|------------------|--------------------|--------------------|------|----------------------------|
|                               |                  | typ. <sup>1)</sup> | max. <sup>2)</sup> |      |                            |
| $V_{\text{DDP}}$ = 3.3V Range |                  |                    |                    |      |                            |
| Active Mode                   | I <sub>DDP</sub> | 25.6               | 31.0               | mA   | Flash Device <sup>3)</sup> |
|                               |                  | 23.4               | 28.6               | mA   | ROM Device <sup>3)</sup>   |
| Idle Mode                     | I <sub>DDP</sub> | 19.9               | 24.7               | mA   | Flash Device <sup>4)</sup> |
|                               |                  | 17.5               | 20.7               | mA   | ROM Device <sup>4)</sup>   |
| Active Mode with slow-down    | I <sub>DDP</sub> | 13.3               | 16.2               | mA   | Flash Device <sup>5)</sup> |
| enabled                       |                  | 11.5               | 13.7               | mA   | ROM Device <sup>5)</sup>   |
| Idle Mode with slow-down      | I <sub>DDP</sub> | 11.1               | 14.4               | mA   | lash Device <sup>6)</sup>  |
| enabled                       |                  | 9.3                | 11.4               | mA   | ROM Device <sup>6)</sup>   |

1) The typical  $I_{\text{DDP}}$  values are periodically measured at  $T_{\text{A}}$  = + 25 °C and  $V_{\text{DDP}}$  = 3.3 V.

2) The maximum  $I_{\text{DDP}}$  values are measured under worst case conditions ( $T_{\text{A}}$  = + 125 °C and  $V_{\text{DDP}}$  = 3.6 V).

3)  $I_{\text{DDP}}$  (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL\_CON to 1001<sub>B</sub>), RESET =  $V_{\text{DDP}}$ , no load on ports.

4)  $I_{\text{DDP}}$  (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET =  $V_{\text{DDP}}$ , no load on ports.

5)  $I_{\text{DDP}}$  (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110<sub>B</sub>, RESET =  $V_{\text{DDP}}$ , no load on ports.

6)  $I_{\text{DDP}}$  (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110<sub>B</sub>,, RESET =  $V_{\text{DDP}}$ , no load on ports.



#### XC886/888CLM

**Electrical Parameters** 



Figure 44 Power-on Reset Timing



#### **Electrical Parameters**

## 4.3.5 External Clock Drive XTAL1

**Table 48** shows the parameters that define the external clock supply for XC886/888. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

| Symbol                |                                          | Limit Values                                            |                                                                                                                              | Unit                                                                                                                                                                                                                    | <b>Test Conditions</b>                                                                                                                                                                                                                                           |
|-----------------------|------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                          | Min.                                                    | Max.                                                                                                                         |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                  |
| t <sub>osc</sub>      | SR                                       | 83.3                                                    | 250                                                                                                                          | ns                                                                                                                                                                                                                      | 1)2)                                                                                                                                                                                                                                                             |
| <i>t</i> <sub>1</sub> | SR                                       | 25                                                      | -                                                                                                                            | ns                                                                                                                                                                                                                      | 2)3)                                                                                                                                                                                                                                                             |
| <i>t</i> <sub>2</sub> | SR                                       | 25                                                      | -                                                                                                                            | ns                                                                                                                                                                                                                      | 2)3)                                                                                                                                                                                                                                                             |
| t <sub>3</sub>        | SR                                       | -                                                       | 20                                                                                                                           | ns                                                                                                                                                                                                                      | 2)3)                                                                                                                                                                                                                                                             |
| <i>t</i> <sub>4</sub> | SR                                       | -                                                       | 20                                                                                                                           | ns                                                                                                                                                                                                                      | 2)3)                                                                                                                                                                                                                                                             |
|                       | Symbol $t_{osc}$ $t_1$ $t_2$ $t_3$ $t_4$ | Symbol $t_{osc}$ SR $t_1$ SR $t_2$ SR $t_3$ SR $t_4$ SR | Symbol         Limit $t_{osc}$ SR         83.3 $t_1$ SR         25 $t_2$ SR         25 $t_3$ SR         - $t_4$ SR         - | Symbol         Limit $>$ lues           Min.         Max. $t_{osc}$ SR         83.3         250 $t_1$ SR         25         - $t_2$ SR         25         - $t_3$ SR         -         20 $t_4$ SR         -         20 | Symbol         Limit $>$ lues         Unit $Min.$ Max. $t_{osc}$ SR         83.3         250         ns $t_1$ SR         25         -         ns $t_2$ SR         25         -         ns $t_3$ SR         -         20         ns $t_4$ SR         -         ns |

 Table 48
 External Clock Drive Characteristics (Operating Conditions apply)

1) The clock input signals with 45-55% duty cycle are used.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) The clock input signal must reach the defined levels  $V_{\rm ILX}$  and  $V_{\rm IHX}$ .



Figure 45 External Clock Drive XTAL1



#### Package and Quality Declaration

# 5 Package and Quality Declaration

Chapter 5 provides the information of the XC886/888 package and reliability section.

#### 5.1 Package Parameters

Table 1 provides the thermal characteristics of the package used in XC886 and XC888.

| Parameter                        | Symbol             |    | Limit | Values  | Unit | Notes |
|----------------------------------|--------------------|----|-------|---------|------|-------|
|                                  |                    |    | Min.  | n. Max. |      |       |
| PG-TQFP-48 (XC886)               | 1                  |    |       | 1       | 1    | 1     |
| Thermal resistance junction case | R <sub>TJC</sub> C | CC | -     | 13      | K/W  | 1)2)  |
| Thermal resistance junction lead | R <sub>TJL</sub> C | CC | -     | 32.5    | K/W  | 1)2)_ |
| PG-TQFP-64 (XC888)               |                    | •  |       |         |      |       |
| Thermal resistance junction case | R <sub>TJC</sub> C | CC | -     | 12.6    | K/W  | 1)2)  |
| Thermal resistance junction lead | R <sub>TJL</sub> C | CC | -     | 33.4    | K/W  | 1)2)  |
|                                  | 1                  |    |       |         | I    |       |

#### Table 1 Thermal Characteristics of the Packages

1) The thermal resistances between the case and the ambient  $(R_{TCA})$ , the lead and the ambient  $(R_{TLA})$  are to be combined with the thermal resistances between the junction and the case  $(R_{TJC})$ , the junction and the lead  $(R_{TJL})$  given above, in order to calculate the total thermal resistance between the junction and the ambient  $(R_{TJA})$ . The thermal resistances between the case and the ambient  $(R_{TCA})$ , the lead and the ambient  $(R_{TLA})$ . The thermal resistances between the case and the ambient  $(R_{TCA})$ , the lead and the ambient  $(R_{TLA})$  depend on the external system (PCB, case) characteristics, and are under user responsibility.

The junction temperature can be calculated using the following equation:  $T_J = T_A + R_{TJA} \times P_D$ , where the  $R_{TJA}$  is the total thermal resistance between the junction and the ambient. This total junction ambient resistance  $R_{TJA}$  can be obtained from the upper four partial thermal resistances, by

a) simply adding only the two thermal resistances (junction lead and lead ambient), or

b) by taking all four resistances into account, depending on the precision needed.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.



#### Package and Quality Declaration

#### 5.2 Package Outline

Figure 48 shows the package outlines of the XC886.



Figure 48 PG-TQFP-48 Package Outline