

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc8868ffi5vacfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2009-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

General Device Information

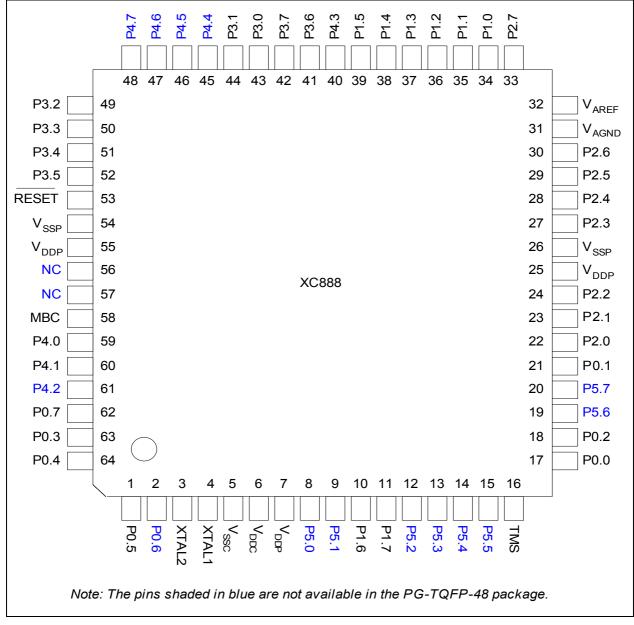


Figure 5 XC888 Pin Configuration, PG-TQFP-64 Package (top view)

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function					
P1		I/O		Port 1 Port 1 is an 8-bit bidirectional general purpo I/O port. It can be used as alternate function for the JTAG, CCU6, UART, Timer 0, Timer Timer 2, Timer 21, MultiCAN and SSC.					
P1.0	26/34		PU	RXD_0 T2EX RXDC0_0	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input				
P1.1	27/35		PU	EXINT3 T0_1 TDO_1 TXD_0 TXDC0_0	External Interrupt Input 3 Timer 0 Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output				
P1.2	28/36		PU	SCK_0	SSC Clock Input/Output				
P1.3	29/37		PU	MTSR_0 TXDC1_3	SSC Master Transmit Output/Slave Receive Input MultiCAN Node 1 Transmitter Output				
P1.4	30/38		PU	MRST_0 EXINT0_1 RXDC1_3	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input				
P1.5	31/39		PU	CCPOS0_1 EXINT5 T1_1 EXF2_0 RXDO_0	CCU6 Hall Input 0 External Interrupt Input 5 Timer 1 Input Timer 2 External Flag Output UART Transmit Data Output				

Table 3Pin Definitions and Functions (cont'd)

XC886/888CLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P1.6	8/10		PU	CCPOS1_1 T12HR_0	•
				EXINT6_0 RXDC0_2 T21_1	• •
P1.7	9/11		PU	CCPOS2_1 T13HR_0 T2 1	CCU6 Hall Input 2 CCU6 Timer 13 Hardware Run Input Timer 2 Input
				TXDC0_2	•
					.6 can be used as a software chip t for the SSC.

Flash Protection	Without hardware protection	With hardware protection					
P-Flash program and erase	Possible	Not possible	Not possible				
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D-Flash				
External access to D-Flash	Not possible	Not possible	Not possible				
D-Flash program	Possible	Possible	Not possible				
D-Flash erase	Possible	Possible, on condition that bit DFLASHEN in register MISC_CON is set to 1 prior to each erase operation	Not possible				

Table 4Flash Protection Modes (cont'd)

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. The Flash protection is then disabled upon the next reset.

For the ROM device, the ROM is protected at all times and BSL mode 6 is used only to block external access to the device. However, unlike the Flash device, it is not possible to disable the memory protection of the ROM device. Here, entering BSL mode 6 will result in a protection error.

Note: If ROM read-out protection is enabled, only read instructions in the ROM memory can target the ROM contents.

Although no protection scheme can be considered infallible, the XC886/888 memory protection strategy provides a very high level of protection for a general purpose microcontroller.

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable The access to the standard SFR area is enabled The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC886/888 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 9**.

3.2.4.8 Timer 2 Registers

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
c₀H	T2_T2CON Reset: 00 _H Timer 2 Control Register	Bit Field	TF2	EXF2	()	EXEN 2	TR2	C/T2	CP/ RL2
		Туре	rwh	rwh	I	r	rw	rwh	rw	rw
C1 _H	T2_T2MOD Reset: 00 _H Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H	T2_RC2L Reset: 00 _H	Bit Field	RC2							
	Timer 2 Reload/Capture Register Low	Туре	rwh							
C3 _H	T2_RC2H Reset: 00 _H	Bit Field				R	C2			
	Timer 2 Reload/Capture Register High	Туре				rv	vh			
C4 _H	T2_T2L Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register Low	Туре	rwh							
C5 _H	5 _H T2_T2H Reset: 00 _H		d THL2							
	Timer 2 Register High	Туре				rv	vh			

Table 12T2 Register Overview

3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 13T21 Register Overview

	0										
Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 1										
C0H	T21_T2CONReset: 00HTimer 2 Control Register	Bit Field	TF2	EXF2	(0	EXEN 2	TR2	C/T2	CP/ RL2	
		Туре	rwh	rwh	I	r	rw	rwh	rw	rw	
C1 _H	T21_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN	
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
C2 _H	T21_RC2L Reset: 00 _H	Bit Field	RC2								
	Timer 2 Reload/Capture Register Low	Туре	rwh								
C3 _H	T21_RC2H Reset: 00 _H	Bit Field				R	C2				
	Timer 2 Reload/Capture Register High	Туре	rwh								
C4 _H	T21_T2L Reset: 00 _H	Bit Field	THL2								
	Timer 2 Register Low	Туре				٢٧	vh				

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
FB _H	CCU6_CC60RH Reset: 00 _H	Bit Field		1	1	CC6	60VH	1	1	1	
	Capture/Compare Register for Channel CC60 High	Туре				r	'n				
FC _H	CCU6_CC61RL Reset: 00 _H	Bit Field				CC6	61VL				
	Capture/Compare Register for Channel CC61 Low	Туре		rh							
FD _H	CCU6_CC61RH Reset: 00 _H	Bit Field				CC6	61VH				
	Capture/Compare Register for Channel CC61 High	Туре				r	'n				
FE _H	CCU6_CC62RL Reset: 00 _H	Bit Field				CC6	62VL				
	Capture/Compare Register for Channel CC62 Low	Туре				r	h				
FF _H	CCU6_CC62RH Reset: 00 _H	Bit Field				CC6	62VH				
	Capture/Compare Register for Channel CC62 High	Туре				r	'n				
RMAP =	0, PAGE 2	_					_				
9A _H	CCU6_T12MSELL Reset: 00 _H	Bit Field		MS	EL61			MSE	EL60		
	T12 Capture/Compare Mode Select Register Low	Туре		r	w			r	w		
9В _Н	CCU6_T12MSELH Reset: 00H		DBYP		HSYNC			MSE	EL62		
	T12 Capture/Compare Mode Select Register High	Туре	rw		rw		r		w		
9CH	CCU6_IENL Reset: 00 _H	Bit Field	ENT1	ENT1	ENCC	ENCC	ENCC	ENCC	ENCC	ENCC	
	Capture/Compare Interrupt Enable Register Low		2 PM	2 OM	62F	62R	61F	61R	60F	60R	
		Туре	rw	rw							
9D _H	CCU6_IENH Reset: 00 _H Capture/Compare Interrupt Enable	Bit Field	EN STR	EN IDLE	EN WHE	EN CHE	0	EN TRPF	ENT1 3PM	ENT1 3CM	
	Register High	Туре	rw	rw	rw	rw	r	rw	rw	rw	
9E _H	CCU6_INPL Reset: 40 _H	Bit Field	INP	CHE	INPO	CC62	INPCC61		INPCC60		
	Capture/Compare Interrupt Node Pointer Register Low	Туре	r	w	r	w	r	w	rw		
9F _H	CCU6_INPH Reset: 39 _H	Bit Field	(0	INPT13		INF	PT12	INPERR		
	Capture/Compare Interrupt Node Pointer Register High	Туре		r	r	w	r	w	r	w	
A4 _H	CCU6_ISSL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	ST12 PM	ST12 OM	SCC6 2F	SCC6 2R	SCC6 1F	SCC6 1R	SCC6 0F	SCC6 0R	
	Set Register Low	Туре	w	w	w	w	w	w	w	w	
A5 _H	CCU6_ISSH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	SSTR	SIDLE	SWHE	SCHE	SWH C	STRP F	ST13 PM	ST13 CM	
	Set Register High	Туре	w	w	w	w	w	w	w	w	
A6 _H	CCU6_PSLR Reset: 00 _H	Bit Field	PSL63	0			P	SL	•		
	Passive State Level Register	Туре	rwh	r	rwh						
а7 _Н	CCU6_MCMCTR Reset: 00 _H	Bit Field	(0	SW	SYN	0		SWSEL		
	Multi-Channel Mode Control Register	Туре		r	r	w	r		rw		
FA _H	CCU6_TCTR2LReset: 00HTimer Control Register 2 Low	Bit Field	0	T13	TED		T13TEC		T13 SSC	T12 SSC	
		Туре	r	r	W		rw		rw	rw	

3.2.4.12 SSC Registers

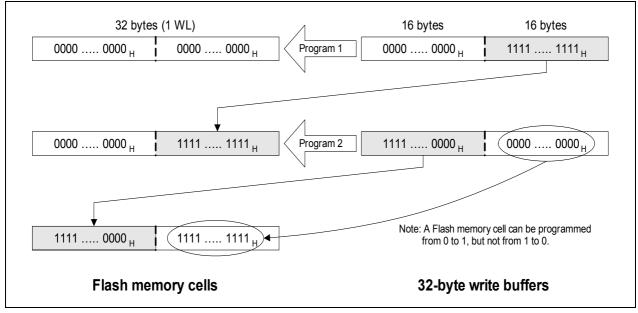
The SSC SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
A9 _H	SSC_PISEL Reset: 00 _H	Bit Field		0				CIS	SIS	MIS
	Port Input Select Register	Туре			r			rw	rw	rw
AA _H	SSC_CONL Reset: 00 _H	Bit Field	LB	PO	PH	HB		В	М	
	Control Register Low Programming Mode	Туре	rw	rw	rw	rw	rw			
AA _H	SSC_CONL Reset: 00 _H	Bit Field		()			В	С	
	Control Register Low Operating Mode	Туре		r			rh			
ав _Н	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	AREN	BEN	PEN	REN	TEN
	Control Register High Programming Mode	Туре	rw	rw	r	rw	rw	rw	rw	rw
ав _Н	SSC_CONH Reset: 00 _H	Bit Field	EN	MS	0	BSY	BE	PE	RE	TE
	Control Register High Operating Mode	Туре	rw	rw	r	rh	rwh	rwh	rwh	rwh
ac _h	SSC_TBL Reset: 00 _H	Bit Field	Bit Field TB_VALUE							
	Transmitter Buffer Register Low	Туре	rw							
ad _H	SSC_RBL Reset: 00 _H	Bit Field				RB_V	ALUE			
	Receiver Buffer Register Low	Туре				rl	า			
ае _Н	SSC_BRL Reset: 00 _H	Bit Field	ld BR_VALUE							
	Baud Rate Timer Reload Register Low	Туре	rw							
af _h	SSC_BRH Reset: 00 _H	Bit Field				BR_V	ALUE			
	Baud Rate Timer Reload Register High	Туре				n	N			

Table 16 SSC Register Overview

3.2.4.13 MultiCAN Registers

The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0).


Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	RMAP = 0										
D8 _H	D8 _H ADCON Reset: 00 _H		V3	V2	V1	V0	AU	AD	BSY	RWEN	
	CAN Address/Data Control Register	Туре	rw	rw	rw	rw	rw		rh	rw	
D9 _H	ADL Reset: 00 _H	Bit Field	CA9	CA8	CA7	CA6	CA5	CA4	CA3	CA2	
	CAN Address Register Low	Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
da _h	ADH Reset: 00 _H	Bit Field	0				CA13	CA12	CA11	CA10	
	CAN Address Register High	Туре			ſ		rwh	rwh	rwh	rwh	

3.3.3 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see **Figure 12**)

Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

3.7.1 Module Reset Behavior

Table 22 lists the functions of the XC886/888 and the various reset types that affect these functions. The symbol "■" signifies that the particular function is reset to its default state.

Module/	Wake-Up	Watchdog	Hardware	Power-On	Brownout
Function	Reset	Reset	Reset	Reset	Reset
CPU Core					
Peripherals					
On-Chip Static RAM	Not affected, Reliable	Not affected, Reliable	Not affected, Reliable	Affected, un- reliable	Affected, un- reliable
Oscillator, PLL		Not affected			
Port Pins					
EVR	The voltage regulator is switched on	Not affected			
FLASH					
NMI	Disabled	Disabled			

Table 22Effect of Reset on Device Functions

3.7.2 Booting Scheme

When the XC886/888 is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. Table 23 shows the available boot options in the XC886/888.

MBC	TMS	P0.0	Type of Mode	PC Start Value				
1	0	Х	User Mode ¹⁾ ; on-chip OSC/PLL non-bypassed	0000 _H				
0	0	Х	BSL Mode; on-chip OSC/PLL non-bypassed ²⁾	0000 _H				
0	1	0	OCDS Mode; on-chip OSC/PLL non- bypassed	0000 _H				
1	1	0	User (JTAG) Mode ³⁾ ; on-chip OSC/PLL non- bypassed (normal)	0000 _H				

Table 23	XC886/888 Boot Selection

PLL Mode

The system clock is derived from the oscillator clock, multiplied by the N factor, and divided by the P and K factors. Both VCO bypass and PLL bypass must be inactive for this PLL mode. The PLL mode is used during normal system operation.

$$f_{SYS} = f_{OSC} \times \frac{N}{P \times K}$$

(3.3)

System Frequency Selection

For the XC886/888, the value of P is fixed to 1. In order to obtain the required fsys, the value of N and K can be selected by bits NDIV and KDIV respectively for different oscillator inputs. The output frequency must always be configured for 96 MHz. Table 24 provides examples on how $f_{\rm sys}$ = 96 MHz can be obtained for the different oscillator sources.

Table 24	System frequency (f _{svs} = 96 MHz)
----------	--

Oscillator	Fosc	Ν	Р	К	Fsys
On-chip	9.6 MHz	20	1	2	96 MHz
External	8 MHz	24	1	2	96 MHz
	6 MHz	32	1	2	96 MHz
	4 MHz	48	1	2	96 MHz

For power saving purposes, the clocks may be disabled or slowed down according to **Table 26**.

Table 26System frequency (f_{sys} = 96 MHz)

Power Saving Mode	Action				
Idle	Clock to the CPU is disabled.				
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.				
Power-down	Oscillator and PLL are switched off.				

3.18 Timer 2 and Timer 21

Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode, see **Table 33**. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled).

Table 33	Timer 2 Modes
Mode	Description
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event
	 Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition Reload event triggered by underflow condition
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number				
	AA-Step	AB-Step	AC-Step		
XC886LM-6RFA 3V3	22411522 _H	-	-		
XC888LM-6RFA 3V3	22411523 _H	-	-		
XC886CM-8RFA 3V3	22480502 _H	-	-		
XC888CM-8RFA 3V3	22480503 _H	-	-		
XC886C-8RFA 3V3	22480542 _H	-	-		
XC888C-8RFA 3V3	22480543 _H	-	-		
XC886-8RFA 3V3	22480562 _H	-	-		
XC888-8RFA 3V3	22480563 _H	-	-		
XC886CM-6RFA 3V3	22491502 _H	-	-		
XC888CM-6RFA 3V3	22491503 _H	-	-		
XC886C-6RFA 3V3	22491542 _H	-	-		
XC888C-6RFA 3V3	22491543 _H	-	-		
XC886-6RFA 3V3	22491562 _H	-	-		
XC888-6RFA 3V3	22491563 _H	-	-		
XC886CLM-8RFA 5V	22800502 _H	-	-		
XC888CLM-8RFA 5V	22800503 _H	-	-		
XC886LM-8RFA 5V	22800522 _H	-	-		
XC888LM-8RFA 5V	22800523 _H	-	-		
XC886CLM-6RFA 5V	22811502 _H	-	-		
XC888CLM-6RFA 5V	22811503 _H	-	-		
XC886LM-6RFA 5V	22811522 _H	-	-		
XC888LM-6RFA 5V	22811523 _H	-	-		
XC886CM-8RFA 5V	22880502 _H	-	-		
XC888CM-8RFA 5V	22880503 _H	-	-		
XC886C-8RFA 5V	22880542 _H	-	-		
XC888C-8RFA 5V	22880543 _H	-	-		
XC886-8RFA 5V	22880562 _H	-	-		
XC888-8RFA 5V	22880563 _H	-	-		
XC886CM-6RFA 5V	22891502 _H	-	-		

4 Electrical Parameters

Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the XC886/888.

4.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in **Section 4.2** and **Section 4.3**.

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC886/888 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

These parameters indicate **C**ontroller **C**haracteristics, which are distinctive features of the XC886/888 and must be regarded for a system design.

• SR

These parameters indicate **S**ystem **R**equirements, which must be provided by the microcontroller system in which the XC886/888 is designed in.

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC886/888 can be subjected to without permanent damage.

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		
Ambient temperature	T _A	-40	125	°C	under bias
Storage temperature	T _{ST}	-65	150	°C	1)
Junction temperature	T _J	-40	150	°C	under bias ¹⁾
Voltage on power supply pin with respect to $V_{\rm SS}$	V _{DDP}	-0.5	6	V	1)
Voltage on any pin with respect to $V_{\rm SS}$	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	whichever is lower ¹⁾
Input current on any pin during overload condition	I _{IN}	-10	10	mA	1)
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	-	50	mA	1)

Table 4-1	Absolute Maximum Rating Parameters
-----------	------------------------------------

1) Not subjected to production test, verified by design/characterization.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Parameter	Symbol	Limit Values		Unit	Test Condition	
		typ. ¹⁾	max. ²⁾			
V _{DDP} = 5V Range					•	
Power-Down Mode	I _{PDP}	1	10	μA	$T_{\rm A}$ = + 25 °C ³⁾⁴⁾	
		-	30	μA	$T_{\rm A}$ = + 85 °C ⁴⁾⁵⁾	

Power Down Current (Operating Conditions apply: U able 10 - E V (man ma)

1) The typical I_{PDP} values are measured at V_{DDP} = 5.0 V.

2) The maximum I_{PDP} values are measured at V_{DDP} = 5.5 V.

3) I_{PDP} has a maximum value of 200 μ A at T_A = + 125 °C.

4) I_{PDP} is measured with: RESET = V_{DDP} , V_{AGND} = V_{SS} , RXD/INT0 = V_{DDP} ; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

5) Not subjected to production test, verified by design/characterization.

4.3 AC Parameters

The electrical characteristics of the AC Parameters are detailed in this section.

4.3.1 Testing Waveforms

The testing waveforms for rise/fall time, output delay and output high impedance are shown in **Figure 40**, **Figure 41** and **Figure 42**.

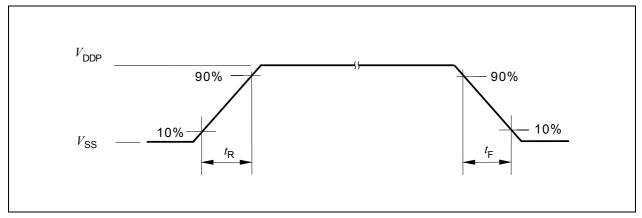


Figure 40 Rise/Fall Time Parameters

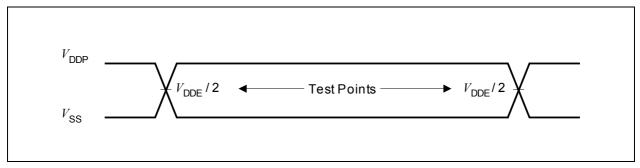


Figure 41 Testing Waveform, Output Delay

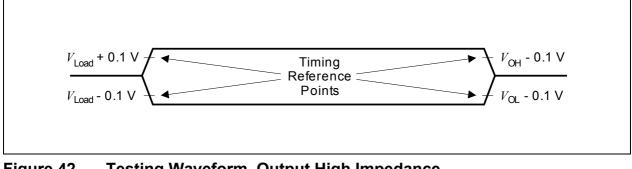


Figure 42 Testing Waveform, Output High Impedance

4.3.5 External Clock Drive XTAL1

Table 48 shows the parameters that define the external clock supply for XC886/888. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

Parameter	Symbol		Limit Values		Unit	Test Conditions
			Min.	Max.		
Oscillator period	t _{osc}	SR	83.3	250	ns	1)2)
High time	<i>t</i> ₁	SR	25	-	ns	2)3)
Low time	<i>t</i> ₂	SR	25	-	ns	2)3)
Rise time	t ₃	SR	-	20	ns	2)3)
Fall time	t_4	SR	-	20	ns	2)3)

 Table 48
 External Clock Drive Characteristics (Operating Conditions apply)

1) The clock input signals with 45-55% duty cycle are used.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) The clock input signal must reach the defined levels $V_{\rm ILX}$ and $V_{\rm IHX}$.

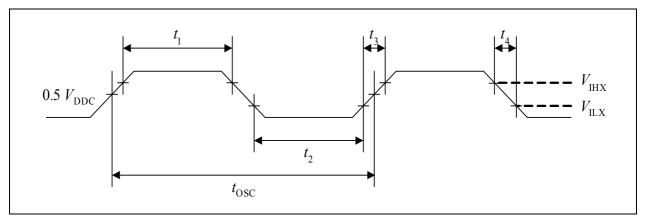


Figure 45 External Clock Drive XTAL1