

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc8868ffi5vackxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Features: (continued)

- Power-on reset generation
- Brownout detection for core logic supply
- On-chip OSC and PLL for clock generation
 - PLL loss-of-lock detection
- Power saving modes
 - slow-down mode
 - idle mode
 - power-down mode with wake-up capability via RXD or EXINT0
 - clock gating control to each peripheral
- Programmable 16-bit Watchdog Timer (WDT)
- Six ports
 - Up to 48 pins as digital I/O
 - 8 pins as digital/analog input
- 8-channel, 10-bit ADC
- Four 16-bit timers
 - Timer 0 and Timer 1 (T0 and T1)
 - Timer 2 and Timer 21 (T2 and T21)
- Multiplication/Division Unit for arithmetic operations (MDU)
- Software libraries to support floating point and MDU calculations
- CORDIC Coprocessor for computation of trigonometric, hyperbolic and linear functions
- MultiCAN with 2 nodes, 32 message objects
- Capture/compare unit for PWM signal generation (CCU6)
- Two full-duplex serial interfaces (UART and UART1)
- Synchronous serial channel (SSC)
- On-chip debug support
 - 1 Kbyte of monitor ROM (part of the 12-Kbyte Boot ROM)
 - 64 bytes of monitor RAM
- Packages:
 - PG-TQFP-48
 - PG-TQFP-64
- Temperature range *T*_A:
 - SAF (-40 to 85 °C)
 - SAK (-40 to 125 °C)

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function				
P5		I/O		Port 5 Port 5 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for UART, UART1 and JTAG.				
P5.0	-/8		PU	EXINT1_1	External Interrupt Input 1			
P5.1	-/9		PU	EXINT2_1	External Interrupt Input 2			
P5.2	-/12		PU	RXD_2	UART Receive Data Input			
P5.3	-/13		PU	TXD_2	UART Transmit Data Output/Clock Output			
P5.4	_/14		PU	RXDO_2	UART Transmit Data Output			
P5.5	-/15		PU	TDO_2 TXD1_2	JTAG Serial Data Output UART1 Transmit Data Output/ Clock Output			
P5.6	-/19		PU	TCK_2 RXDO1_2	JTAG Clock Input UART1 Transmit Data Output			
P5.7	-/20		PU	TDI_2 RXD1_2	JTAG Serial Data Input UART1 Receive Data Input			

Table 3Pin Definitions and Functions (cont'd)

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_{H} to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

3.2.3.1 Password Register

PASSWD

Pass	word	Register					Reset	Value: 07 _H
	7	6	5	4	3	2	1	0
		1	PASS	1		PROTECT _S	МС	DE
			wh			rh	r	W

Field	Bits	Туре	Description
MODE	[1:0]	rw	 Bit Protection Scheme Control Bits 00 Scheme disabled - direct access to the protected bits is allowed. 11 Scheme enabled - the bit field PASS has to be written with the passwords to open and close the access to protected bits. (default) Others:Scheme Enabled. These two bits cannot be written directly. To change the value between 11_B and 00_B, the bit field PASS must be written with 11000_B; only then, will the MODE[1:0] be registered.
PROTECT_S	2	rh	 Bit Protection Signal Status Bit This bit shows the status of the protection. 0 Software is able to write to all protected bits. 1 Software is unable to write to any protected bits.
PASS	[7:3]	wh	Password BitsThe Bit Protection Scheme only recognizes threepatterns. 11000_B Enables writing of the bit field MODE. 10011_B Opens access to writing of all protected bits. 10101_B Closes access to writing of all protected bits

Table 9WDT Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
ве _Н	WDTL Reset: 00 _H	Bit Field		WDT							
	Watchdog Timer Register Low	Type rh									
bf _h	WDTH Reset: 00 _H			W	WDT						
	Watchdog Timer Register High	Туре				r	h				

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0	1								<u>.</u>
B2 _H	PORT_PAGE Reset: 00 _H	Bit Field	OP		ST	STNR		0 PAGE		
	Page Register	Туре	١	N	١	N	r		rw	
RMAP =	= 0, PAGE 0				•		•			
80 _H	P0_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
86 _H	P0_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
90 _H	P1_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
91 _H	P1_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
92 _H	P5_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
93 _H	P5_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
A0 _H	P2_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
A1 _H	P2_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
во _Н	P3_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
в1 _Н	P3_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
C8 _H	P4_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
C9 _H	P4_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw

XC886/888CLM

Functional Description

Table 10Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0, PAGE 1								L	
80 _H	P0_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Select Register	Туре	rw							
86 _H	P0_PUDEN Reset: C4 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Enable Register	Туре	rw							
90 _H	P1_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Select Register	Туре	rw							
91 _H	P1_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Enable Register	Туре	rw							
92 _H	P5_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Select Register	Туре	rw							
93 _H	P5_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Enable Register	Туре	rw							
A0 _H	P2_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Select Register	Туре	rw							
A1 _H	P2_PUDEN Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Enable Register	Туре	rw							
во _Н	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
в1 _Н	P3_PUDEN Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8 _H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	= 0, PAGE 2									
⁸⁰ H	P0_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00 _H P0 Alternate Select 1 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00 _H P1 Alternate Select 0 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
91 _H	P1_ALTSEL1 Reset: 00 _H P1 Alternate Select 1 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
92 _H	P5_ALTSEL0 Reset: 00 _H P5 Alternate Select 0 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							

Table 18OCDS Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
EC _H	MMWR2 Reset: 00 _H	Bit Field			MMWR2					
	Monitor Work Register 2	Туре				n	w			

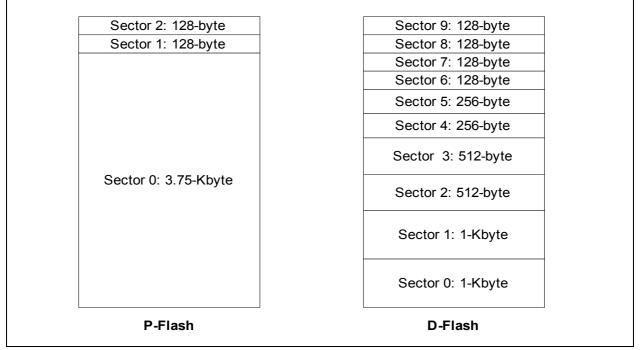


Figure 11 Flash Bank Sectorization

The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s.

The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

3.3.2 Parallel Read Access of P-Flash

To enhance system performance, the P-Flash banks are configured for parallel read to allow two bytes of linear code to be read in 4 x CCLK cycles, compared to 6 x CCLK cycles if serial read is performed. This is achieved by reading two bytes in parallel from a P-Flash bank pair within the 3 x CCLK cycles access time and storing them in a cache. Subsequent read from the cache by the CPU does not require a wait state and can be completed within 1 x CCLK cycle. The result is the average instruction fetch time from the P-Flash banks is reduced and thus, the MIPS (Mega Instruction Per Second) of the system is increased.

However, if the parallel read feature is not desired due to certain timing constraints, it can be disabled by calling the parallel read disable subroutine.

3.4.2 Interrupt Source and Vector

Each interrupt event source has an associated interrupt vector address for the interrupt node it belongs to. This vector is accessed to service the corresponding interrupt node request. The interrupt service of each interrupt source can be individually enabled or disabled via an enable bit. The assignment of the XC886/888 interrupt sources to the interrupt vector address and the corresponding interrupt node enable bits are summarized in Table 20.

Interrupt Source	Vector Address	Assignment for XC886/888	Enable Bit	SFR
NMI	0073 _H	Watchdog Timer NMI	NMIWDT	NMICON
		PLL NMI	NMIPLL	
		Flash NMI	NMIFLASH	
		VDDC Prewarning NMI	NMIVDD	
		VDDP Prewarning NMI	NMIVDDP	
		Flash ECC NMI	NMIECC	
XINTR0	0003 _H	External Interrupt 0	EX0	IEN0
XINTR1	000B _H	Timer 0	ET0	
XINTR2	0013 _H	External Interrupt 1	EX1	
XINTR3	001B _H	Timer 1	ET1	
XINTR4	0023 _H	UART	ES	
XINTR5	002B _H	T2	ET2	
		UART Fractional Divider (Normal Divider Overflow)		
		MultiCAN Node 0		
		LIN	1	

Table 20 Interrupt Vector Addresses

Functional Description

Interrupt Source	Vector Address	Assignment for XC886/888	Enable Bit	SFR
XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1
		ADC[1:0]		
XINTR7	003B _H	SSC	ESSC	
XINTR8	0043 _H	External Interrupt 2	EX2	
		T21		
		CORDIC		
		UART1		
		UART1 Fractional Divider (Normal Divider Overflow)		
		MDU[1:0]	1	
XINTR9	004B _H	External Interrupt 3	EXM	
		External Interrupt 4	1	
		External Interrupt 5		
		External Interrupt 6		
		MultiCAN Node 3		
XINTR10	0053 _H	CCU6 INP0	ECCIP0	
		MultiCAN Node 4		
XINTR11	005B _H	CCU6 INP1	ECCIP1	
		MultiCAN Node 5		
XINTR12	0063 _H	CCU6 INP2	ECCIP2	
		MultiCAN Node 6		
XINTR13	006B _H	CCU6 INP3	ECCIP3	
		MultiCAN Node 7		

3.5 Parallel Ports

The XC886 has 34 port pins organized into five parallel ports, Port 0 (P0) to Port 4 (P4), while the XC888 has 48 port pins organized into six parallel ports, Port 0 (P0) to Port 5 (P5). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. Ports P0, P1, P3, P4 and P5 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected. Port P2 is an input-only port, providing general purpose input functions, alternate input functions for the on-chip peripherals. Converter (ADC).

Bidirectional Port Features

- Configurable pin direction
- Configurable pull-up/pull-down devices
- Configurable open drain mode
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

Input Port Features

- Configurable input driver
- Configurable pull-up/pull-down devices
- Receive of data through digital input (general purpose input)
- Alternate input for on-chip peripherals
- Analog input for ADC module

3.9 Power Saving Modes

The power saving modes of the XC886/888 provide flexible power consumption through a combination of techniques, including:

- Stopping the CPU clock
- Stopping the clocks of individual system components
- Reducing clock speed of some peripheral components
- Power-down of the entire system with fast restart capability

After a reset, the active mode (normal operating mode) is selected by default (see **Figure 27**) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are:

- Idle mode
- Slow-down mode
- Power-down mode

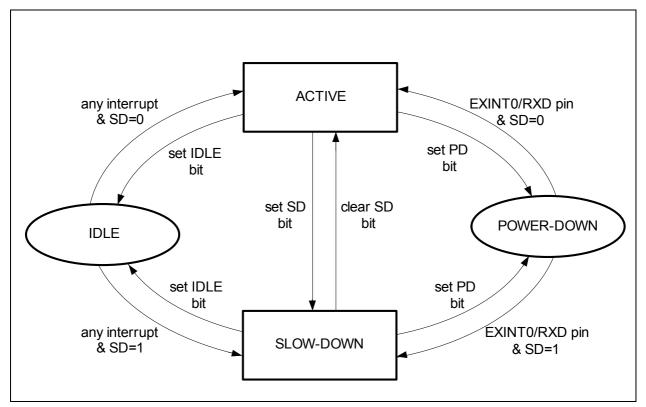


Figure 27 Transition between Power Saving Modes

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC886/888 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC886/888 will be aborted in a user-specified time period.

In debug mode, the WDT is default suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of $f_{PCLK}/2$ or $f_{PCLK}/128$
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. **Figure 28** shows the block diagram of the WDT unit.

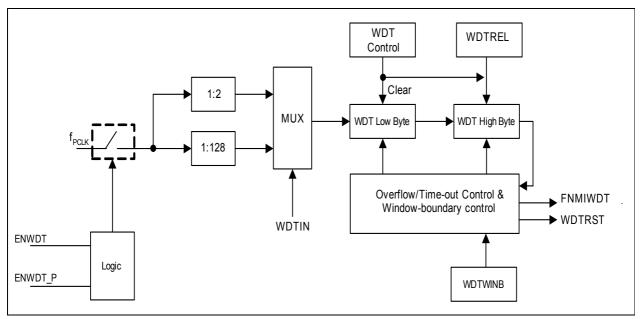


Figure 28 WDT Block Diagram

Table 36Chip Identification Number (cont'd)

Product Variant	C	Chip Identification	Number
	AA-Step	AB-Step	AC-Step
XC886-6FFA 3V3	-	095D1562 _H	0B5D1562 _H
XC888-6FFA 3V3	-	095D1563 _H	0B5D1563 _H
XC886CLM-8FFA 5V	-	09900102 _H	0B900102 _H
XC888CLM-8FFA 5V	-	09900103 _H	0B900103 _H
XC886LM-8FFA 5V	-	09900122 _H	0B900122 _H
XC888LM-8FFA 5V	-	09900123 _H	0B900123 _H
XC886CLM-6FFA 5V	-	09951502 _H	0B951502 _H
XC888CLM-6FFA 5V	-	09951503 _H	0B951503 _H
XC886LM-6FFA 5V	-	09951522 _Н	0B951522 _H
XC888LM-6FFA 5V	-	09951523 _H	0B951523 _H
XC886CM-8FFA 5V	-	09980102 _H	0B980102 _H
XC888CM-8FFA 5V	-	09980103 _H	0B980103 _H
XC886C-8FFA 5V	-	09980142 _H	0B980142 _H
XC888C-8FFA 5V	-	09980143 _H	0B980143 _H
XC886-8FFA 5V	-	09980162 _H	0B980162 _H
XC888-8FFA 5V	-	09980163 _H	0B980163 _H
XC886CM-6FFA 5V	-	099D1502 _H	0B9D1502 _H
XC888CM-6FFA 5V	-	099D1503 _H	0B9D1503 _H
XC886C-6FFA 5V	-	099D1542 _H	0B9D1542 _H
XC888C-6FFA 5V	-	099D1543 _H	0B9D1543 _H
XC886-6FFA 5V	-	099D1562 _H	0B9D1562 _H
XC888-6FFA 5V	-	099D1563 _H	0B9D1563 _H
ROM Devices			
XC886CLM-8RFA 3V3	22400502 _H	-	-
XC888CLM-8RFA 3V3	22400503 _H	-	-
XC886LM-8RFA 3V3	22400522 _H	-	-
XC888LM-8RFA 3V3	22400523 _H	-	-
XC886CLM-6RFA 3V3	22411502 _H	-	-
XC888CLM-6RFA 3V3	22411503 _H	-	-

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number						
	AA-Step	AB-Step	AC-Step				
XC886LM-6RFA 3V3	22411522 _H	-	-				
XC888LM-6RFA 3V3	22411523 _H	-	-				
XC886CM-8RFA 3V3	22480502 _H	-	-				
XC888CM-8RFA 3V3	22480503 _H	-	-				
XC886C-8RFA 3V3	22480542 _H	-	-				
XC888C-8RFA 3V3	22480543 _H	-	-				
XC886-8RFA 3V3	22480562 _H	-	-				
XC888-8RFA 3V3	22480563 _H	-	-				
XC886CM-6RFA 3V3	22491502 _H	-	-				
XC888CM-6RFA 3V3	22491503 _H	-	-				
XC886C-6RFA 3V3	22491542 _H	-	-				
XC888C-6RFA 3V3	22491543 _H	-	-				
XC886-6RFA 3V3	22491562 _H	-	-				
XC888-6RFA 3V3	22491563 _H	-	-				
XC886CLM-8RFA 5V	22800502 _H	-	-				
XC888CLM-8RFA 5V	22800503 _H	-	-				
XC886LM-8RFA 5V	22800522 _H	-	-				
XC888LM-8RFA 5V	22800523 _H	-	-				
XC886CLM-6RFA 5V	22811502 _H	-	-				
XC888CLM-6RFA 5V	22811503 _H	-	-				
XC886LM-6RFA 5V	22811522 _H	-	-				
XC888LM-6RFA 5V	22811523 _H	-	-				
XC886CM-8RFA 5V	22880502 _H	-	-				
XC888CM-8RFA 5V	22880503 _H	-	-				
XC886C-8RFA 5V	22880542 _H	-	-				
XC888C-8RFA 5V	22880543 _H	-	-				
XC886-8RFA 5V	22880562 _H	-	-				
XC888-8RFA 5V	22880563 _H	-	-				
XC886CM-6RFA 5V	22891502 _H	-	-				

4.1.2 Absolute Maximum Rating

Maximum ratings are the extreme limits to which the XC886/888 can be subjected to without permanent damage.

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		
Ambient temperature	T _A	-40	125	°C	under bias
Storage temperature	T _{ST}	-65	150	°C	1)
Junction temperature	T _J	-40	150	°C	under bias ¹⁾
Voltage on power supply pin with respect to $V_{\rm SS}$	V _{DDP}	-0.5	6	V	1)
Voltage on any pin with respect to $V_{\rm SS}$	V _{IN}	-0.5	V _{DDP} + 0.5 or max. 6	V	whichever is lower ¹⁾
Input current on any pin during overload condition	I _{IN}	-10	10	mA	1)
Absolute sum of all input currents during overload condition	$\Sigma I_{IN} $	-	50	mA	1)

Table 4-1	Absolute Maximum Rating Parameters
-----------	------------------------------------

1) Not subjected to production test, verified by design/characterization.

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DDP}$ or $V_{IN} < V_{SS}$) the voltage on V_{DDP} pin with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Table 38 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
Input high voltage at XTAL1	V _{IHX}	SR	$0.7 \times V_{ m DDC}$	V _{DDC} + 0.5	V		
Pull-up current	$I_{\rm PU}$	SR	_	-5	μA	$V_{\mathrm{IHP,min}}$	
			-50	_	μA	$V_{ILP,max}$	
Pull-down current	$I_{\rm PD}$	SR	-	5	μA	$V_{ILP,max}$	
			50	_	μA	V _{IHP,min}	
Input leakage current	I _{OZ1}	СС	-1	1	μA	$0 < V_{IN} < V_{DDP}, T_A \le 125^{\circ}C^{2)}$	
Input current at XTAL1	I_{ILX}	CC	- 10	10	μA		
Overload current on any pin	I _{OV}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	SR	-	25	mA	3)	
Voltage on any pin during $V_{\rm DDP}$ power off	V _{PO}	SR	-	0.3	V	4)	
Maximum current per pin (excluding V_{DDP} and V_{SS})	I _M SR	SR	-	15	mA		
Maximum current for all pins (excluding V_{DDP} and V_{SS})	$\Sigma I_{M} $	SR	-	90	mA		
Maximum current into V_{DDP}	I _{MVDDP}	SR	-	120	mA	3)	
Maximum current out of $V_{\rm SS}$	I _{MVSS}	SR	-	120	mA	3)	

 Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

2) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. TMS pin and RESET pin have internal pull devices and are not included in the input leakage current characteristic.

3) Not subjected to production test, verified by design/characterization.

4) Not subjected to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

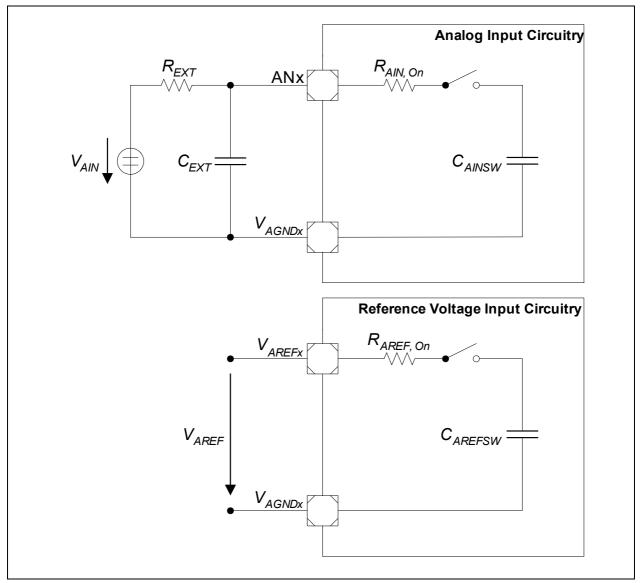


Figure 39 ADC Input Circuits

4.3.5 External Clock Drive XTAL1

Table 48 shows the parameters that define the external clock supply for XC886/888. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

Parameter	Symbo	Symbol		Limit Values		Test Conditions
			Min.	Max.		
Oscillator period	t _{osc}	SR	83.3	250	ns	1)2)
High time	<i>t</i> ₁	SR	25	-	ns	2)3)
Low time	<i>t</i> ₂	SR	25	-	ns	2)3)
Rise time	t ₃	SR	-	20	ns	2)3)
Fall time	t_4	SR	-	20	ns	2)3)

 Table 48
 External Clock Drive Characteristics (Operating Conditions apply)

1) The clock input signals with 45-55% duty cycle are used.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) The clock input signal must reach the defined levels $V_{\rm ILX}$ and $V_{\rm IHX}$.

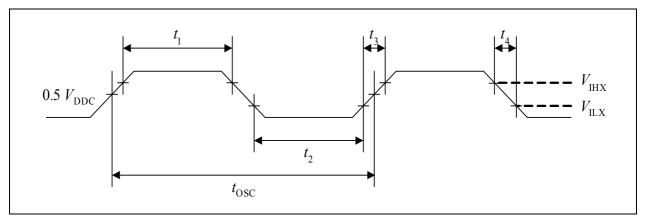


Figure 45 External Clock Drive XTAL1

Package and Quality Declaration

5.2 Package Outline

Figure 48 shows the package outlines of the XC886.

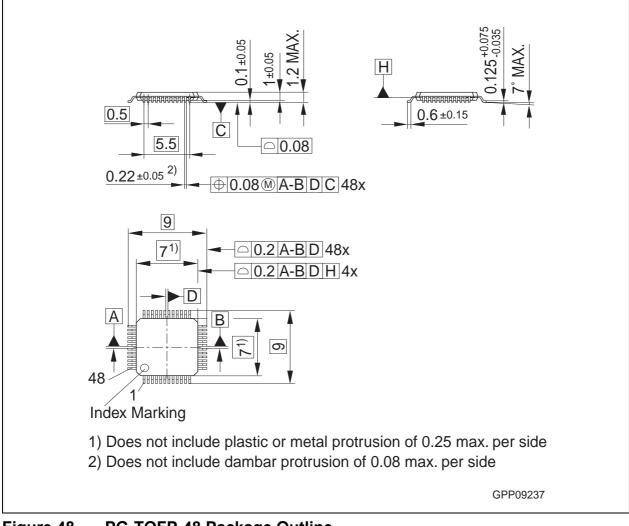


Figure 48 PG-TQFP-48 Package Outline