

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Core ProcessorXC800Core Size8-BitSpeed24MHzConnectivityCANbus, SSI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O34Program Memory Size24KB (24K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size1.75K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 8x10bOperating Temperature-40°C ~ 85°C (TA)Mounting Type-Package / Case-Number Of Case-Nonting Type-Nonting Type-Not Type-	Details	
Core Size8-BitSpeed24MHzConnectivityCANbus, SSI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O34Program Memory Size24KB (24K x 8)Program Memory TypeFLASHEEPROM Size-Nutage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 8x10bOperating TypeInternalOperating Type-Anov C ~ 85°C (TA)Mounting Type-Package / Case-Supplier Device Package-	Product Status	Last Time Buy
Speed24MHzConnectivityCANbus, SSI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O34Program Memory Size24KB (24K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size1.75K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 8x10bOperating Temperature-40°C ~ 85°C (TA)Mounting Type-Package / Case-Supplier Device Package-	Core Processor	XC800
ConnectivityCANbus, SSI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O34Program Memory Size24KB (24K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size1.75K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type-Package / Case-And Size / Case-Oscillator Device Package-	Core Size	8-Bit
PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O34Program Memory Size24KB (24K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size1.75K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Package / Case-And Size-Package / Case-Supplic Device Package-	Speed	24MHz
Number of I/O34Program Memory Size24KB (24K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size1.75K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Package / Case-Supplier Device Package-	Connectivity	CANbus, SSI, UART/USART
Program Memory Size24KB (24K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size1.75K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type-Package / Case-Supplier Device Package-	Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size1.75K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Package / Case-Supplier Device Package-	Number of I/O	34
EEPROM Size-RAM Size1.75K x 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type-Package / Case-Supplier Device Package-	Program Memory Size	24KB (24K x 8)
RAM Size1.75K × 8Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type-Package / Case-Supplier Device Package-	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)4.5V ~ 5.5VData ConvertersA/D 8x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type-Package / Case-Supplier Device Package-	EEPROM Size	-
Data Converters A/D 8x10b Oscillator Type Internal Operating Temperature -40°C ~ 85°C (TA) Mounting Type - Package / Case - Supplier Device Package -	RAM Size	1.75К х 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type-Package / Case-Supplier Device Package-	Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Operating Temperature -40°C ~ 85°C (TA) Mounting Type - Package / Case - Supplier Device Package -	Data Converters	A/D 8x10b
Mounting Type - Package / Case - Supplier Device Package -	Oscillator Type	Internal
Package / Case - Supplier Device Package -	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package -	Mounting Type	-
	Package / Case	-
Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/xc886c6ffa5vackxuma1	Supplier Device Package	-
	Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc886c6ffa5vackxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC886/888 Data Sheet

Revision History: V1.2 2009-07

Previous	s Versions: V1.0, V1.1
Page	Subjects (major changes since last revision)
Changes	s from V1.1 2009-01 to V1.2 2009-07
8 9	Note on LIN baud rate detection is added.
92	RXD slave line in SSC block diagram is updated.
108	Electrical parameters are now valid for all variants, previous note on exclusion of ROM variants is removed.
116	Symbol for ADC error parameters are updated.
120	Power supply current parameters for ROM variants are updated.
128	Test condition for the on-chip oscillator short term deviation is updated.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

Summary of Features

Table 2Device Profile (cont'd)

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAK-XC886*/888*-8FFA 3V3	Flash	32	3.3	-40 to 125	Automotive
SAK-XC886*/888*-6FFA 3V3	Flash	24	3.3	-40 to 125	Automotive
SAF-XC886*/888*-8FFA 3V3	Flash	32	3.3	-40 to 85	Automotive
SAF-XC886*/888*-6FFA 3V3	Flash	24	3.3	-40 to 85	Automotive
SAF-XC886*/888*-8FFI 3V3	Flash	32	3.3	-40 to 85	Industrial
SAF-XC886*/888*-6FFI 3V3	Flash	24	3.3	-40 to 85	Industrial

- Note: The asterisk (*) above denotes the device configuration letters from **Table 1**. Corresponding ROM derivatives will be available on request.
- Note: For variants with LIN BSL support, only LIN BSL is available regardless of the availability of the CAN module.

As this document refers to all the derivatives, some description may not apply to a specific product. For simplicity, all versions are referred to by the term XC886/888 throughout this document.

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- The package and the type of delivery

For the available ordering codes for the XC886/888, please refer to your responsible sales representative or your local distributor.

Note: The ordering codes for the Mask-ROM versions are defined for each product after verification of the respective ROM code.

code or data. Therefore, even though the ROM device contains either a 24-Kbyte or 32-Kbyte ROM, the maximum size of code that can be placed in the ROM is the given size less four bytes.

3.2.1 Memory Protection Strategy

The XC886/888 memory protection strategy includes:

- Read-out protection: The user is able to protect the contents in the Flash (for Flash devices) and ROM (for ROM devices) memory from being read
 - Flash protection is enabled by programming a valid password (8-bit non-zero value) via BSL mode 6.
 - ROM protection is fixed with the ROM mask and is always enabled.
- Flash program and erase protection: This feature is available only for Flash devices.

3.2.1.1 Flash Memory Protection

As long as a valid password is available, all external access to the device, including the Flash, will be blocked.

For additional security, the Flash hardware protection can be enabled to implement a second layer of read-out protection, as well as to enable program and erase protection.

Flash hardware protection is available only for Flash devices and comes in two modes:

- Mode 0: Only the P-Flash is protected; the D-Flash is unprotected
- Mode 1: Both the P-Flash and D-Flash are protected

The selection of each protection mode and the restrictions imposed are summarized in **Table 4**.

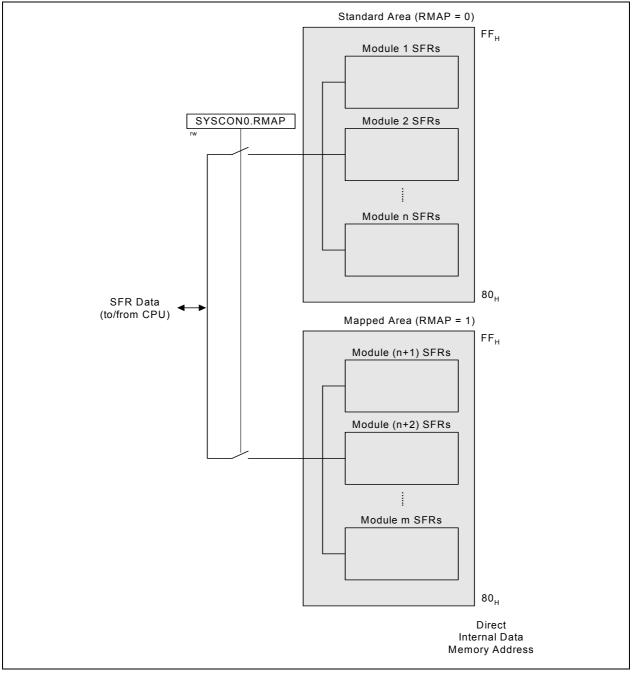
Flash Protection	Without hardware protection	With hardware protection								
Hardware Protection Mode	-	0	1							
Activation	Program a valid passv	password via BSL mode 6								
Selection	Bit 4 of password = 0	Bit 4 of password = 1 MSB of password = 0	Bit 4 of password = 1 MSB of password = 1							
P-Flash contents can be read by	Read instructions in any program memory	Read instructions in the P-Flash	Read instructions in the P-Flash or D- Flash							
External access to P-Flash	Not possible	Not possible	Not possible							

Table 4Flash Protection Modes

3.2.2 Special Function Register

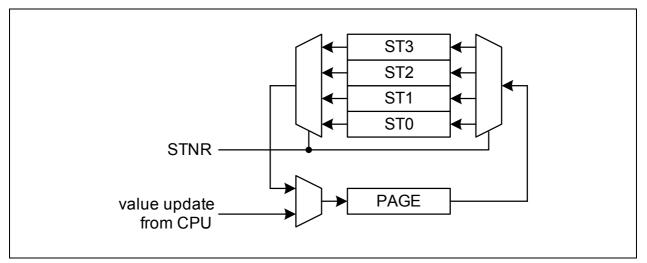
The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_{H} to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging


3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.



Address Extension by Mapping

 Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE

(this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

Figure 10 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC886/888 supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

The page register has the following definition:

MOD_PAGE Page Register for module MOD

Reset Value: 00_H

7	6	5	4	3	2	1	0
0	Ρ	ST	NR	0		PAGE	
v	V	V	V	r		rw	I

Field	Bits	Туре	Description
PAGE	[2:0]	rw	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.
STNR	[5:4]	W	Storage NumberThis number indicates which storage bit field is the target of the operation defined by bit field OP.If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value.If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.00ST0 is selected. 0101ST1 is selected. 1010ST2 is selected. 1111ST3 is selected.

3.2.4 XC886/888 Register Overview

The SFRs of the XC886/888 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Chapter 3.2.4.1** to **Chapter 3.2.4.14**.

Note: The addresses of the bitaddressable SFRs appear in bold typeface.

3.2.4.1 CPU Registers

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 0 or 1	I.										
81 _H	SP Reset: 07 _H	Bit Field	Field SP									
	Stack Pointer Register	Туре				r	W					
82 _H	DPL Reset: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0		
	Data Pointer Register Low	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
83 _H	DPH Reset: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0		
	Data Pointer Register High	Туре	rw	rw	rw	rw	rw	rw	rw	rw		
87 _H	PCON Reset: 00 _H	Bit Field	SMOD		0		GF1	GF0	0	IDLE		
	Power Control Register	Туре	rw		r		rw	rw	r	rw		
⁸⁸ H	TCON Reset: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
	Timer Control Register	Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw		
89 _H	TMOD Reset: 00 _H Timer Mode Register	Bit Field	GATE 1	T1S	T1	1M	GATE 0	TOS	TOS TOM			
		Туре	rw	rw	r	w	rw	rw	r	w		
8A _H	TL0 Reset: 00 _H	Bit Field		•		V	AL	•				
	Timer 0 Register Low	Туре		rwh								
8B _H	TL1 Reset: 00 _H	Bit Field	VAL									
	Timer 1 Register Low	Туре	rwh									
8C _H	THO Reset: 00 _H	Bit Field				V	AL					
	Timer 0 Register High	Туре				rv	vh					
8D _H	TH1 Reset: 00 _H	Bit Field				V	AL					
	Timer 1 Register High	Туре				rv	vh					
98 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI		
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh		
99 _H	SBUF Reset: 00 _H	Bit Field	Field VAL									
	Serial Data Buffer Register	Туре				rv	vh					
A2 _H	EO Reset: 00 _H Extended Operation Register	Bit Field		0		TRAP_ EN	0			DPSE L0		
		Туре		r		rw	r			rw		

Table 5 CPU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
A8 _H	IEN0 Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0
	Interrupt Enable Register 0	Туре	rw	r	rw	rw	rw	rw	rw	rw
B8 _H	IP Reset: 00 _H	Bit Field	()	PT2	PS	PT1	PX1	PT0	PX0
	Interrupt Priority Register	Туре		r	rw	rw	rw	rw	rw	rw
в9 _Н	IPH Reset: 00 _H	Bit Field	()	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
	Interrupt Priority High Register	Туре		r	rw	rw	rw	rw	rw	rw
D0 _H	PSW Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р
	Program Status Word Register	Туре	rwh	rwh	rw	rw	rw	rwh	rw	rh
E0 _H	ACC Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0
	Accumulator Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
E8 _H	IEN1 Reset: 00 _H Interrupt Enable Register 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F0 _H	B Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Reset: 00 _H Interrupt Priority 1 Register	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Reset: 00 _H Interrupt Priority 1 High Register	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSC H	PADC H
		Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 5CPU Register Overview (cont'd)

3.2.4.2 MDU Registers

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 6MDU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1	•		•	•	•	•	•	•	
в0 _Н	MDUSTAT Reset: 00 _H	Bit Field			0		BSY	IERR	IRDY	
	MDU Status Register	Туре			r			rh	rwh	rwh
в1 _Н	MDUCON Reset: 00 _H MDU Control Register	Bit Field	IE	IR	RSEL	STAR T		OPCODE		
		Туре	rw	rw	rw	rwh		r	w	
B2 _H	MD0 Reset: 00 _H	Bit Field DATA								
	MDU Operand Register 0	Туре	rw							
B2 _H	MR0 Reset: 00 _H	Bit Field	DATA							
	MDU Result Register 0		rh							
вз _Н	MD1 Reset: 00 _H	Bit Field	DATA							
M	MDU Operand Register 1	Туре				r	W			

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
B3 _H	MR1 Reset: 00 _H	Bit Field		DATA nh DATA nW DATA nW DATA nh DATA nW DATA nh DATA nh DATA nh DATA nh DATA nW DATA nW nh nh						
	MDU Result Register 1	Туре				r	h			
B4 _H	MD2 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 2	Туре				r	w			
B4 _H	MR2 Reset: 00 _H	Bit Field				DATA				
	MDU Result Register 2	Туре				r	h			
в5 _Н	MD3 Reset: 00 _H	Bit Field		DATA						
	MDU Operand Register 3	Туре		rw						
в5 _Н	MR3 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 3	Туре	rh							
B6 _H	MD4 Reset: 00 _H	Bit Field				DA	TA			
	MDU Operand Register 4	Туре				r	w			
B6 _H	MR4 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 4	Туре				r	h			
в7 _Н	MD5 Reset: 00 _H	Bit Field	DATA							
	MDU Operand Register 5	Туре								
в7 _Н	MR5 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 5	Туре				r	'n			

Table 6MDU Register Overview (cont'd)

3.2.4.3 CORDIC Registers

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 7 CORDIC Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
RMAP =	= 1							1				
9A _H	CD_CORDXL Reset: 00 _H	Bit Field	DATAL									
	CORDIC X Data Low Byte	Туре	rw									
9B _H	CD_CORDXH Reset: 00 _H	Bit Field				DA	TAH					
	CORDIC X Data High Byte	Туре	rw									
9CH	CD_CORDYL Reset: 00 _H	Bit Field	DATAL									
	CORDIC Y Data Low Byte	Туре	rw									
9D _H	CD_CORDYH Reset: 00 _H	Bit Field				DA	TAH					
	CORDIC Y Data High Byte	Туре				r	W					
9E _H	CD_CORDZL Reset: 00 _H	Bit Field				DA	TAL					
	CORDIC Z Data Low Byte	Туре				r	W					
9F _H	CD_CORDZH Reset: 00 _H	Bit Field	DATAH									
	CORDIC Z Data High Byte	Туре	rw									

Table 8SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
вс _Н	NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	FNMI VDD	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT	
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
вd _Н	BCON Reset: 00 _H	Bit Field	BG	SEL	0	BRDIS		BRPRE		R	
	Baud Rate Control Register		rw r rw				rw			rw	
be _h	BG Reset: 00 _H	Bit Field	BR_VALUE								
	Baud Rate Timer/Reload Register	Туре	rwh								
E9 _H	FDCON Reset: 00 _H Fractional Divider Control	Bit Field	BGS	SYNE N	ERRS YN	EOFS YN	BRK	NDOV	FDM	FDEN	
	Register	Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw	
EA _H	FDSTEP Reset: 00 _H	Bit Field	STEP								
	Fractional Divider Reload Register	Туре	rw								
EB _H	FDRES Reset: 00 _H	Bit Field	RESULT								
	Fractional Divider Result Register	Туре	rh								
RMAP =	: 0, PAGE 1										
вз _Н	ID Reset: UU _H Identity Register	Bit Field	PRODID					VERID			
		Туре		r				r	r		
B4 _H	PMCON0 Reset: 00 _H Power Mode Control Register 0	Bit Field	0	WDT RST	WKRS	WK SEL	SD	PD	V	/S	
		Туре	r	rwh	rwh	rw	rw	rwh	rw		
в5 _Н	PMCON1 Reset: 00 _H Power Mode Control Register 1	Bit Field	0	CDC_ DIS	CAN_ DIS	MDU_ DIS	T2_ DIS	CCU_ DIS	SSC_ DIS	ADC_ DIS	
		Туре	r	rw	rw	rw	rw	rw	rw	rw	
в6 _Н	OSC_CON Reset: 08 _H OSC Control Register	Bit Field	0 OSC PD			XPD	OSC SS	ORD RES	OSCR		
		Туре		r		rw	rw	rw	rwh	rh	
в7 _Н	PLL_CON Reset: 90 _H PLL Control Register	Bit Field	NDIV			VCO BYP	OSC DISC	RESL D	LOCK		
		Туре		r	w rw		rw	rw	rwh	rh	
βΑ _Η	CMCON Reset: 10 _H Clock Control Register	Bit Field	VCO SEL	KDIV	0	FCCF G		CLKREL			
		Туре	rw	rw	r	rw	rw				
вв _Н	PASSWD Reset: 07 _H Password Register	Bit Field	eld PASS		PROT MODE ECT_S			DE			
		Туре	wh rh rw						w		
вс _Н	FEAL Reset: 00 _H	Bit Field	ECCERRADDR								
	Flash Error Address Register	Туре	rh								
вd _Н	FEAH Reset: 00 _H	Bit Field	ECCERRADDR								
	Flash Error Address Register	Туре	rh								

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
CDH	ADC_LCBR Reset: B7 _H	Bit Field	BOUND1				BOUND0				
	Limit Check Boundary Register	Туре	rw rw								
CEH	ADC_INPCR0 Reset: 00 _H	Bit Field	STC								
	Input Class 0 Register	Туре				r	w				
CF _H	ADC_ETRCR Reset: 00 _H External Trigger Control	Bit Field	SYNE N1	SYNE ETRSEL1			ETRSEL0				
	Register	Туре	rw rw rw				rw				
RMAP =	0, PAGE 1	•		•							
CAH	ADC_CHCTR0 Reset: 00 _H	Bit Field	0	LCC			0		RESRSEL		
	Channel Control Register 0	Туре	r	rw				r	n	N	
св _Н	ADC_CHCTR1 Reset: 00 _H	Bit Field	0	LCC			0		RESE	RSEL	
	Channel Control Register 1	Туре	r	rw				r	n	N	
сс _Н	ADC_CHCTR2 Reset: 00 _H	Bit Field	0	LCC			(0		RSEL	
	Channel Control Register 2	Туре	r		rw			r		rw	
CDH	ADC_CHCTR3 Reset: 00 _H	Bit Field	0		LCC		(C	RESE	RSEL	
	Channel Control Register 3	Туре	r	rw			r		rw		
CEH	ADC_CHCTR4 Reset: 00 _H Channel Control Register 4	Bit Field	0	LCC			0		RESRSEL		
Ch		Туре	r	r rw			r		rw		
CFH	ADC_CHCTR5 Reset: 00 _H	Bit Field	0	LCC		0		RESE	RSEL		
	Channel Control Register 5	Туре	r	r rw				r		N	
D2 _H	ADC_CHCTR6 Reset: 00 _H	Bit Field	0	0 LCC			(C	RESE	RSEL	
	Channel Control Register 6	Туре	r	r rw			r		n	N	
D3 _H	ADC_CHCTR7 Reset: 00 _H	Bit Field	0	LCC			()	RESE	RSEL	
	Channel Control Register 7	Туре	r	r rw			r		n	N	
RMAP =	0, PAGE 2		•								
CA _H	ADC_RESR0L Reset: 00 _H	Bit Field	RES	SULT	0	VF	DRC		CHNR		
	Result Register 0 Low	Туре	rh r rh				rh rh				
св _Н	ADC_RESR0H Reset: 00 _H Result Register 0 High	Bit Field	RESULT								
		Туре	rh								
сс _Н	ADC_RESR1L Reset: 00 _H Result Register 1 Low	Bit Field	RES	SULT 0 VF DF		DRC	CHNR				
		Туре	rh r rh		rh	rh					
CDH	ADC_RESR1H Reset: 00 _H Result Register 1 High	Bit Field	RESULT								
		Туре	rh								
Ceh	ADC_RESR2L Reset: 00 _H Result Register 2 Low	Bit Field	RESULT 0 VF DRC CHNR								
		Туре	rh r rh rh rh								
CF _H	ADC_RESR2H Reset: 00 _H	Bit Field	RESULT								
	Result Register 2 High	Туре	rh								
D2 _H	ADC_RESR3L Reset: 00 _H	Bit Field	RESULT 0 VF			DRC CHNR					
	Result Register 3 Low	Туре	r	'n	r	rh	rh		rh		

3.4 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC886/888 interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source.

3.4.1 Interrupt Source

Figure 13 to **Figure 17** give a general overview of the interrupt sources and nodes, and their corresponding control and status flags.

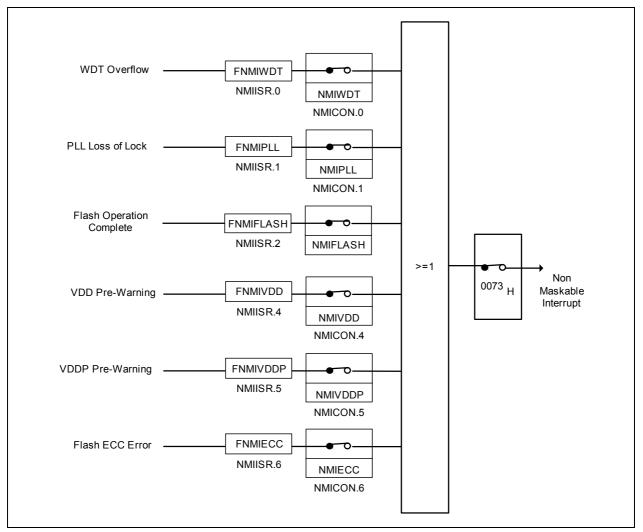


Figure 13 Non-Maskable Interrupt Request Sources

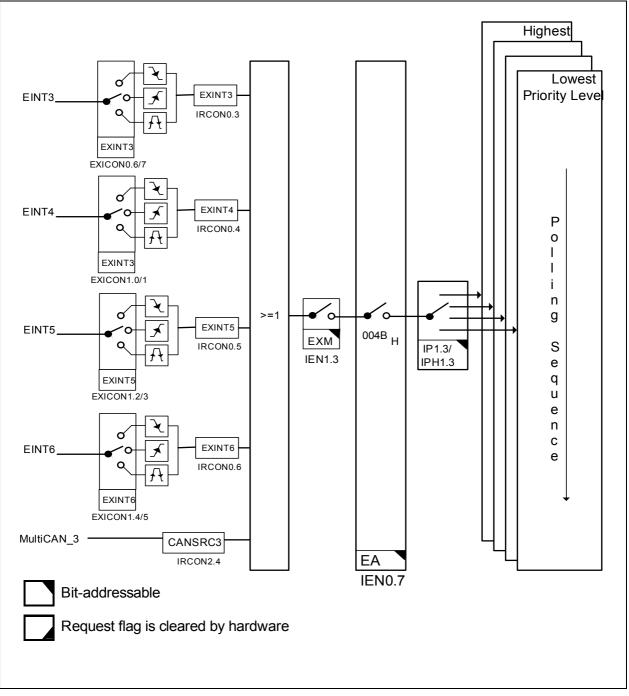


Figure 17 Interrupt Request Sources (Part 4)

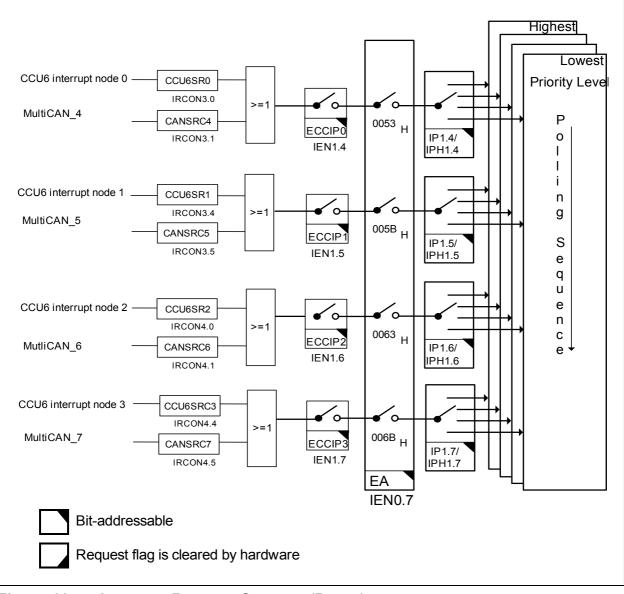
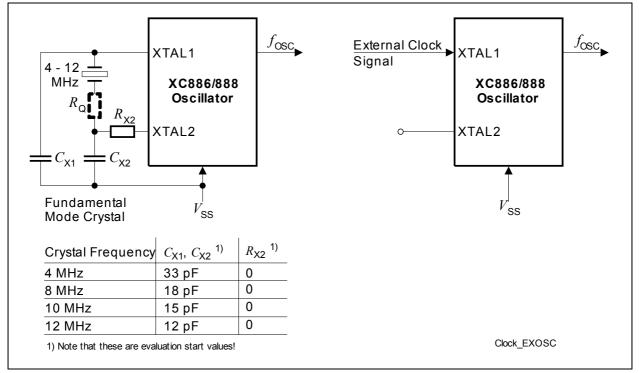



Figure 18 Interrupt Request Sources (Part 5)

Figure 25 External Oscillator Circuitry

Note: For crystal operation, it is strongly recommended to measure the negative resistance in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the minimum and maximum values of the negative resistance specified by the crystal supplier.

XC886/888CLM

Functional Description

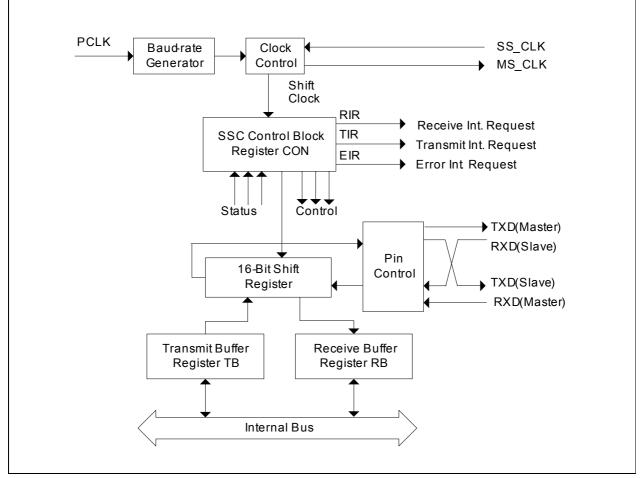


Figure 32 SSC Block Diagram

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number						
	AA-Step	AB-Step	AC-Step				
XC886LM-6RFA 3V3	22411522 _H	-	-				
XC888LM-6RFA 3V3	22411523 _H	-	-				
XC886CM-8RFA 3V3	22480502 _H	-	-				
XC888CM-8RFA 3V3	22480503 _H	-	-				
XC886C-8RFA 3V3	22480542 _H	-	-				
XC888C-8RFA 3V3	22480543 _H	-	-				
XC886-8RFA 3V3	22480562 _H	-	-				
XC888-8RFA 3V3	22480563 _H	-	-				
XC886CM-6RFA 3V3	22491502 _H	-	-				
XC888CM-6RFA 3V3	22491503 _H	-	-				
XC886C-6RFA 3V3	22491542 _H	-	-				
XC888C-6RFA 3V3	22491543 _H	-	-				
XC886-6RFA 3V3	22491562 _H	-	-				
XC888-6RFA 3V3	22491563 _H	-	-				
XC886CLM-8RFA 5V	22800502 _H	-	-				
XC888CLM-8RFA 5V	22800503 _H	-	-				
XC886LM-8RFA 5V	22800522 _H	-	-				
XC888LM-8RFA 5V	22800523 _H	-	-				
XC886CLM-6RFA 5V	22811502 _H	-	-				
XC888CLM-6RFA 5V	22811503 _H	-	-				
XC886LM-6RFA 5V	22811522 _H	-	-				
XC888LM-6RFA 5V	22811523 _H	-	-				
XC886CM-8RFA 5V	22880502 _H	-	-				
XC888CM-8RFA 5V	22880503 _H	-	-				
XC886C-8RFA 5V	22880542 _H	-	-				
XC888C-8RFA 5V	22880543 _H	-	-				
XC886-8RFA 5V	22880562 _H	-	-				
XC888-8RFA 5V	22880563 _H	-	-				
XC886CM-6RFA 5V	22891502 _H	-	-				

Electrical Parameters

4.2.2 Supply Threshold Characteristics

 Table 39 provides the characteristics of the supply threshold in the XC886/888.

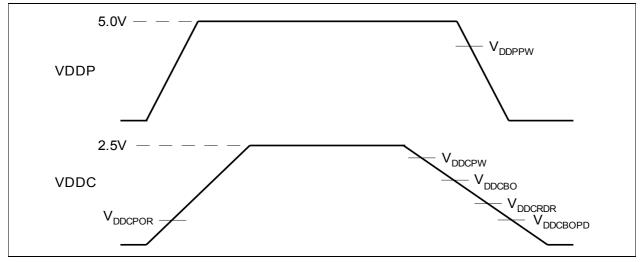


Figure 38 Supply Threshold Parameters

Table 39	Supply Threshold Parameters	(Operating Conditions apply)
----------	-----------------------------	------------------------------

Parameters	Symbol		L	Unit		
			min.	typ.	max.	
$V_{\rm DDC}$ prewarning voltage ¹⁾	V _{DDCPW}	CC	2.2	2.3	2.4	V
V_{DDC} brownout voltage in active mode ¹⁾	V _{DDCBO}	CC	2.0	2.1	2.2	V
RAM data retention voltage	V _{DDCRDR}	CC	0.9	1.0	1.1	V
V_{DDC} brownout voltage in power-down mode ²⁾	V _{DDCBOPD}	CC	1.3	1.5	1.7	V
$V_{\rm DDP}$ prewarning voltage ³⁾	V _{DDPPW}	CC	3.4	4.0	4.6	V
Power-on reset voltage ²⁾⁴⁾	VDDCPOR	CC	1.3	1.5	1.7	V

1) Detection is disabled in power-down mode.

2) Detection is enabled in both active and power-down mode.

 Detection is enabled for external power supply of 5.0V. Detection must be disabled for external power supply of 3.3V.

4) The reset of EVR is extended by 300 µs typically after the VDDC reaches the power-on reset voltage.

Electrical Parameters

4.3.2 Output Rise/Fall Times

Table 45 provides the characteristics of the output rise/fall times in the XC886/888.

Table 45 Output Rise/Fall Times Parameters (Operating Conditions apply)

Parameter	Symbol	Limit Values		Unit	Test Conditions
		min.	max.		
$V_{\rm DDP}$ = 5V Range					
Rise/fall times	t _R , t _F	_	10	ns	20 pF. ¹⁾²⁾³⁾
V_{DDP} = 3.3V Range	·				
Rise/fall times	t _R , t _F	_	10	ns	20 pF. ¹⁾²⁾⁴⁾
					•

1) Rise/Fall time measurements are taken with 10% - 90% of pad supply.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) Additional rise/fall time valid for $C_{\rm L}$ = 20pF - 100pF @ 0.125 ns/pF.

4) Additional rise/fall time valid for $C_{\rm L}$ = 20pF - 100pF @ 0.225 ns/pF.

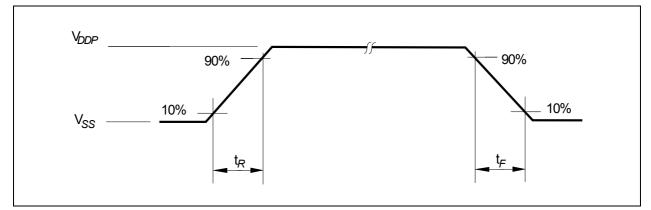


Figure 43 Rise/Fall Times Parameters