

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Discontinued at Digi-Key
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc886c6ffi3v3acfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Table of Contents

1	Summary of Features	1
2 2.1 2.2	General Device Information Block Diagram Logic Symbol Diagram	5 5 6
2.3 2.4	Pin Definitions and Functions	7 9
3	Functional Description	9
3.1	Processor Architecture 1	9
3.2	Memory Organization	0
3.2.1	Memory Protection Strategy 2	1
3.2.1.1	Flash Memory Protection 2	1
3.2.2	Special Function Register 2	3
3.2.2.1	Address Extension by Mapping 2	3
3.2.2.2	Address Extension by Paging 2	5
3.2.3	Bit Protection Scheme	9
3.2.3.1	Password Register	0
3.2.4	XC886/888 Register Overview	1
3.2.4.1	CPU Registers	1
3.2.4.2	MDU Registers	2
3.2.4.3	CORDIC Registers	3
3.2.4.4	System Control Registers 34	4
3.2.4.5	WDT Registers	6
3.2.4.6	Port Registers	7
3.2.4.7	ADC Registers	9
3.2.4.8	Timer 2 Registers 4	3
3.2.4.9	Timer 21 Registers 4	3
3.2.4.10	CCU6 Registers 4	4
3.2.4.11	UART1 Registers 4	8
3.2.4.12	SSC Registers 4	9
3.2.4.13	MultiCAN Registers 4	9
3.2.4.14	OCDS Registers 5	0
3.3	Flash Memory	2
3.3.1	Flash Bank Sectorization 5	3
3.3.2	Parallel Read Access of P-Flash 5	4
3.3.3	Flash Programming Width 5	5
3.4	Interrupt System	6
3.4.1	Interrupt Source	6
3.4.2	Interrupt Source and Vector 6	2
3.4.3	Interrupt Priority	4
3.5	Parallel Ports	5

XC886/888CLM

8-Bit Single Chip Microcontroller

1 Summary of Features

The XC886/888 has the following features:

- High-performance XC800 Core
 - compatible with standard 8051 processor
 - two clocks per machine cycle architecture (for memory access without wait state)
 - two data pointers
- On-chip memory
 - 12 Kbytes of Boot ROM
 - 256 bytes of RAM
 - 1.5 Kbytes of XRAM
 - 24/32 Kbytes of Flash; or
 24/32 Kbytes of ROM, with additional 4 Kbytes of Flash (includes memory protection strategy)
- I/O port supply at 3.3 V or 5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator)

(more features on next page)

Flash or 24K/3	⁻ ROM ¹⁾ 2K x 8	On-Chip De	bug Support	UART	SSC	Port 0	8-bit Digital I/O			
Boot ROM 12K x 8		XC800 Core		Capture/Co 16	ompare Unit -bit	Port 1	8-bit Digital I/O			
XRAM 1.5K x 8	M XC800 Core			Compa 16	are Unit -bit	Port 2	8-bit Digital/ Analog Input			
RAM 256 x 8	Timer 0 16-bit	Timer 1 16-bit	Timer 2 16-bit	Watchdog Timer	Watchdog ADC Timer ADC 10-bit 8-channel		8-bit Digital I/O			
MDU	CORDIC	MultiCAN	Timer 21 16-bit	UART1	Port 5	Port 4	8-bit Digital I/O			
1) All ROM	1) All ROM devices come with an additional 4K x 8 Flash 8-bit Digital I/O									

Figure 1 XC886/888 Functional Units

General Device Information

				· ·	/
Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P0.4	1/64		Hi-Z	MTSR_1	SSC Master Transmit Output/ Slave Receive Input
				CC62_1	Input/Output of Capture/Compare channel 2
				TXD1_0	UART1 Transmit Data Output/Clock Output
P0.5	2/1		Hi-Z	MRST_1 EXINT0_0 T2EX1_1 RXD1_0	SSC Master Receive Input/Slave Transmit Output External Interrupt Input 0 Timer 21 External Trigger Input UART1 Receive Data Input
				COUT62_1	Output of Capture/Compare channel 2
P0.6	-/2		PU	GPIO	
P0.7	47/62		PU	CLKOUT_1	Clock Output

Pin Definitions and Functions (cont'd) Table 3

Table 3

General Device Information

Pin Definitions and Functions (cont'd) Type Reset Function Pin Number Symbol (TQFP-48/64) State **P2** I Port 2 Port 2 is an 8-bit general purpose input-only port. It can be used as alternate functions for

			the digital inp also used as	buts of the JTAG and CCU6. It is the analog inputs for the ADC.
P2.0	14/22	Hi-Z	CCPOS0_0 EXINT1_0 T12HR_2	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input
			TCK_1 CC61_3	JTAG Clock Input Input of Capture/Compare channel 1
			AN0	Analog Input 0
P2.1	15/23	Hi-Z	CCPOS1_0 EXINT2_0 T13HR_2	CCU6 Hall Input 1 External Interrupt Input 2 CCU6 Timer 13 Hardware Run Input
			TDI_1 CC62_3	JTAG Serial Data Input Input of Capture/Compare channel 2
		· ·· -	ANT	
P2.2	16/24	Hi-Z	<u>CCPOS2_</u> 0 CTRAP_1 CC60_3	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare
				channel 0 Apalog Input 2
D2 3	10/27	Ці 7		
F 2.3	19/27		ANJ	
P2.4	20/28	HI-Z	AN4	Analog Input 4
P2.5	21/29	Hi-Z	AN5	Analog Input 5
P2.6	22/30	Hi-Z	AN6	Analog Input 6
P2.7	25/33	Hi-Z	AN7	Analog Input 7

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_{H} to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

Address Extension by Mapping

Table 7CORDIC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
^{∆0} H	CD_STATC Reset: 00 _H CORDIC Status and Data	Bit Field	KEEP Z	KEEP Y	KEEP X	DMAP	INT_E N	EOC	ERRO R	BSY
	Control Register	Туре	rw	rw	rw	rw	rw	rwh	rh	rh
а1 _Н	CD_CON Reset: 00 _H CORDIC Control Register	Bit Field	eld MPS		X_USI GN	ST_M ODE	ROTV EC	MC	DE	ST
		Туре	r	N	rw	rw	rw	r	w	rwh

3.2.4.4 System Control Registers

The system control SFRs can be accessed in the mapped memory area (RMAP = 0).

Addr Bit 7 3 2 1 **Register Name** 6 5 4 0 RMAP = 0 or 1 IMOD 8F_H SYSCON0 Reset: 04_H Bit Field 0 0 1 0 RMAP System Control Register 0 F r r r r rw Туре rw RMAP = 0 SCU_PAGE STNR PAGE BFH Reset: 00_H Bit Field OP 0 Page Register Туре w w r rw RMAP = 0, PAGE 0 Reset: 00_H Bit Field URRIS JTAGT JTAGT EXINT EXINT EXINT URRIS MODPISEL 0 B3_H Peripheral Input Select Register Н DIS CKS 2IS 1IS 0IS rw Туре r rw rw rw rw rw rw Reset: 00_H B4_H **IRCON0** Bit Field 0 **EXINT** EXINT EXINT EXINT EXINT EXINT EXINT Interrupt Request Register 0 4 3 0 6 5 2 1 rwh Туре r rwh rwh rwh rwh rwh rwh Reset: 00_H в5_Н CANS **IRCON1** Bit Field 0 CANS ADCS ADCS RIR TIR EIR Interrupt Request Register 1 RC2 RC1 R0 R1 Туре r rwh rwh rwh rwh rwh rwh rwh B6_H Reset: 00_H 0 CANS 0 CANS **IRCON2** Bit Field Interrupt Request Register 2 RC3 RC0 Туре rwh rwh r r B7_H EXICON0 EXINT3 EXINT2 EXINT1 EXINT0 Reset: F0µ Bit Field External Interrupt Control Туре rw rw rw rw Register 0 Reset: 3F_H BAH EXICON1 Bit Field 0 EXINT6 EXINT5 EXINT4 External Interrupt Control rw rw rw Туре r Register 1 ввн NMICON Reset: 00_H Bit Field 0 NMI NMI NMI NMI NMI NMI NMI NMI Control Register ECC VDDP VDD OCDS FLASH PLL WDT Туре r rw rw rw rw rw rw rw

Table 8SCU Register Overview

Table 9WDT Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
ве _Н	WDTL Reset: 00 _H	Bit Field				W	DT				
	Watchdog Timer Register Low	Туре	rh								
bf _H	WDTH Reset: 00 _H	Bit Field				W	DT				
	Watchdog Timer Register High	Туре				r	h				

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Name	e	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0										
B2 _H	PORT_PAGE	Reset: 00 _H	Bit Field	С	P	ST	NR	0		PAGE	
	Page Register		Туре	١	N	v	v	r		rw	
RMAP =	= 0, PAGE 0							•	•		
80 _H	P0_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register		Туре	rw	rw						
86 _H	P0_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Registe	er	Туре	rw	rw						
90 _H	P1_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register		Туре	rw	rw						
91 _H	P1_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Registe	er	Туре	rw	rw						
92 _H	P5_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register		Туре	rw	rw						
93 _H	P5_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Registe	er	Туре	rw	rw						
A0 _H	P2_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Data Register		Туре	rw	rw						
A1 _H	P2_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Direction Registe	er	Туре	rw	rw						
во _Н	P3_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register		Туре	rw	rw						
в1 _Н	P3_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Registe	er	Туре	rw	rw						
C8 _H	P4_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register		Туре	rw	rw						
C9 _H	P4_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Registe	er	Туре	rw	rw						

3.2.4.8 Timer 2 Registers

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

		1								1	
Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0										
C0H	T2_T2CONReset: 00Timer 2 Control Register	Bit Field	TF2	EXF2	(0	EXEN 2	EXEN TR2 C/T2 2			
		Туре	rwh	rwh		r	rw	rwh	rw	rw	
C1 _H	T2_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE			
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
C2 _H	T2_RC2L Reset: 00 _H	Bit Field	RC2								
	Register Low	Туре	rwh								
C3 _H	T2_RC2H Reset: 00 _H	Bit Field				R	C2				
	Register High	Туре				rv	vh				
C4 _H	T2_T2L Reset: 00 _H	Bit Field				T⊦	IL2				
	Timer 2 Register Low	Туре				rv	vh				
C5 _H	T2_T2H Reset: 00 _H	Bit Field				T⊦	IL2				
	i imer 2 Register High	Туре				rv	vh				

Table 12T2 Register Overview

3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 13T21 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	: : 1			•	•	•					
c₀ _H	T21_T2CONReset: 00HTimer 2 Control Register	Bit Field	TF2	EXF2	(0		TR2	C/T2	<u>CP/</u> RL2	
		Туре	rwh	rwh		r	rw	rwh	rw	rw	
C1 _H	T21_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE D0			
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
C2 _H	T21_RC2L Reset: 00 _H	Bit Field	RC2								
	Timer 2 Reload/Capture Register Low	Туре				rv	vh				
C3 _H	T21_RC2H Reset: 00 _H	Bit Field				R	C2				
	Timer 2 Reload/Capture Register High	Туре	rwh								
C4 _H	T21_T2L Reset: 00 _H	Bit Field				TH	IL2				
	Timer 2 Register Low	Туре				rv	/h				

Table 13T21 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
C5 _H	C5 _H T21_T2H Reset: 00 _H					TH	IL2			
	Timer 2 Register High	Туре	rwh							

3.2.4.10 CCU6 Registers

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 14 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0		I	I		I	I	I	l	
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE	
	Page Register	Туре	١	N	١	N	r		rw	
RMAP =	0, PAGE 0									
9A _H	CCU6_CC63SRL Reset: 00 _H	Bit Field				CC6	3SL			
	for Channel CC63 Low	Туре			rw					
9B _H	CCU6_CC63SRH Reset: 00 _H	Bit Field				CC63SH				
	for Channel CC63 High	Туре				r	w			
9CH	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR	R 0 DT T12 T12R RES RES S					T12R R
		Туре	w	w		r	w	w	w	w
9D _H	CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR		0	T13 T13R T13 RES S R			
		Туре	w	w		r		w w		
9E _H	CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRM CM	0			MCI	MPS		
	Register Low	Туре	w	r			r	w		
9F _H	CCU6_MCMOUTSH Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRH P	0		CURHS			EXPHS	
		Туре	w	r		rw			rw	
A4 _H	CCU6_ISRL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RT12 PM	RT12 OM	RCC6 2F	RCC6 2R	RCC6 1F	RCC6 1R	RCC6 0F	RCC6 0R
		Туре	w	w	w	w	w	w	w	w
A5 _H	CCU6_ISRH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RSTR	RIDLE	RWH E	RCHE	0	RTRP F	RT13 PM	RT13 CM
	Reset Register High	Туре	w	w	w	w	r	w	w	w
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3S	0 MCC6 MCC6 2S 1S				MCC6 0S	
		Туре	r	w		r		w	w	w
а7 _Н	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3R		0		MCC6 2R	MCC6 1R	MCC6 0R
		Туре	r	w		r		w	w	w

3.3.3 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see **Figure 12**)

Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

3.7 Reset Control

The XC886/888 has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset.

When the XC886/888 is first powered up, the status of certain pins (see **Table 23**) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device.

In order to power up the system properly, the external reset pin $\overrightarrow{\text{RESET}}$ must be asserted until V_{DDC} reaches 0.9* V_{DDC} . The delay of external reset can be realized by an external capacitor at $\overrightarrow{\text{RESET}}$ pin. This capacitor value must be selected so that V_{RESET} reaches 0.4 V, but not before V_{DDC} reaches 0.9* V_{DDC} .

A typical application example is shown in Figure 22. The V_{DDP} capacitor value is 100 nF while the V_{DDC} capacitor value is 220 nF. The capacitor connected to RESET pin is 100 nF.

Typically, the time taken for V_{DDC} to reach 0.9^*V_{DDC} is less than 50 µs once V_{DDP} reaches 2.3V. Hence, based on the condition that 10% to 90% V_{DDP} (slew rate) is less than 500 µs, the RESET pin should be held low for 500 µs typically. See Figure 23.

Figure 22 Reset Circuitry

For power saving purposes, the clocks may be disabled or slowed down according to **Table 26**.

Table 26System frequency (f_{sys} = 96 MHz)

Power Saving Mode	Action		
Idle	Clock to the CPU is disabled.		
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.		
Power-down	Oscillator and PLL are switched off.		

3.12 CORDIC Coprocessor

The CORDIC Coprocessor provides CPU with hardware support for the solving of circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions.

Features

- Modes of operation
 - Supports all CORDIC operating modes for solving circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions
 - Integrated look-up tables (LUTs) for all operating modes
- Circular vectoring mode: Extended support for values of initial X and Y data up to full range of [-2¹⁵,(2¹⁵-1)] for solving angle and magnitude
- Circular rotation mode: Extended support for values of initial Z data up to full range of $[-2^{15},(2^{15}-1)]$, representing angles in the range $[-\pi,((2^{15}-1)/2^{15})\pi]$ for solving trigonometry
- Implementation-dependent operational frequency of up to 80 MHz
- Gated clock input to support disabling of module
- 16-bit accessible data width
 - 24-bit kernel data width plus 2 overflow bits for X and Y each
 - 20-bit kernel data width plus 1 overflow bit for Z
 - With KEEP bit to retain the last value in the kernel register for a new calculation
- 16 iterations per calculation: Approximately 41 clock-cycles or less, from set of start (ST) bit to set of end-of-calculation flag, excluding time taken for write and read access of data bytes.
- Twos complement data processing
- Only exception: X result data with user selectable option for unsigned result
- X and Y data generally accepted as integer or rational number; X and Y must be of the same data form
- Entries of LUTs are 20-bit signed integers
 - Entries of atan and atanh LUTs are integer representations (S19) of angles with the scaling such that $[-2^{15},(2^{15}-1)]$ represents the range $[-\pi,((2^{15}-1)/2^{15})\pi]$
 - Accessible Z result data for circular and hyperbolic functions is integer in data form of S15
- Emulated LUT for linear function
 - Data form is 1 integer bit and 15-bit fractional part (1.15)
 - Accessible Z result data for linear function is rational number with fixed data form of S4.11 (signed 4Q16)
- Truncation Error
 - The result of a CORDIC calculation may return an approximation due to truncation of LSBs
 - Good accuracy of the CORDIC calculated result data, especially in circular mode
- Interrupt
 - On completion of a calculation

- Interrupt enabling and corresponding flag

3.13 UART and UART1

The XC886/888 provides two Universal Asynchronous Receiver/Transmitter (UART and UART1) modules for full-duplex asynchronous reception/transmission. Both are also receive-buffered, i.e., they can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, one of the bytes will be lost.

Features

- Full-duplex asynchronous modes
 - 8-bit or 9-bit data frames, LSB first
 - Fixed or variable baud rate
- Receive buffered
- Multiprocessor communication
- Interrupt generation on the completion of a data transmission or reception

The UART modules can operate in the four modes shown in **Table 29**.

Operating Mode	Baud Rate
Mode 0: 8-bit shift register	f _{PCLK} /2
Mode 1: 8-bit shift UART	Variable
Mode 2: 9-bit shift UART	$f_{\rm PCLK}/32 \text{ or } f_{\rm PCLK}/64^{1)}$
Mode 3: 9-bit shift UART	Variable

Table 29UART Modes

1) For UART1 module, the baud rate is fixed at $f_{PCLK}/64$.

There are several ways to generate the baud rate clock for the serial port, depending on the mode in which it is operating. In mode 0, the baud rate for the transfer is fixed at $f_{\rm PCLK}/2$. In mode 2, the baud rate is generated internally based on the UART input clock and can be configured to either $f_{\rm PCLK}/32$ or $f_{\rm PCLK}/64$. For UART1 module, only $f_{\rm PCLK}/64$ is available. The variable baud rate is set by the underflow rate on the dedicated baud-rate generator. For UART module, the variable baud rate alternatively can be set by the overflow rate on Timer 1.

3.13.1 Baud-Rate Generator

Both UART modules have their own dedicated baud-rate generator, which is based on a programmable 8-bit reload value, and includes divider stages (i.e., prescaler and

3.17 Timer 0 and Timer 1

Timer 0 and Timer 1 can function as both timers or counters. When functioning as a timer, Timer 0 and Timer 1 are incremented every machine cycle, i.e. every 2 input clocks (or 2 PCLKs). When functioning as a counter, Timer 0 and Timer 1 are incremented in response to a 1-to-0 transition (falling edge) at their respective external input pins, T0 or T1.

Timer 0 and 1 are fully compatible and can be configured in four different operating modes for use in a variety of applications, see **Table 32**. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized.

Mode	Operation		
0	13-bit timer The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices.		
1	16-bit timer The timer registers, TLx and THx, are concatenated to form a 16-bit counter.		
2	8-bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow.		
3	Timer 0 operates as two 8-bit timersThe timer registers, TL0 and TH0, operate as two separate 8-bit counters.Timer 1 is halted and retains its count even if enabled.		

Table 32Timer 0 and Timer 1 Modes

GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

Figure 35 ADC Clocking Scheme

For module clock f_{ADC} = 24 MHz, the analog clock f_{ADCI} frequency can be selected as shown in **Table 34**.

Table 34	f _{ADCI} Frequency Selection
----------	---------------------------------------

$\frac{f_{ADC}}{Module Clock f_{ADC}}$	СТС	Prescaling Ratio	Analog Clock f_{ADCI}
24 MHz	00 _B	÷ 2	12 MHz (N.A)
	01 _B	÷ 3	8 MHz
	10 _B	÷ 4	6 MHz
	11 _B (default)	÷ 32	750 kHz

As $f_{\rm ADCI}$ cannot exceed 10 MHz, bit field CTC should not be set to $00_{\rm B}$ when $f_{\rm ADC}$ is 24 MHz. During slow-down mode where $f_{\rm ADC}$ may be reduced to 12 MHz, 6 MHz etc., CTC can be set to $00_{\rm B}$ as long as the divided analog clock $f_{\rm ADCI}$ does not exceed 10 MHz.

However, it is important to note that the conversion error could increase due to loss of charges on the capacitors, if f_{ADC} becomes too low during slow-down mode.

3.21.2 ADC Conversion Sequence

The analog-to-digital conversion procedure consists of the following phases:

- Synchronization phase (*t*_{SYN})
- Sample phase (t_S)
- Conversion phase
- Write result phase (t_{WR})

Figure 36 ADC Conversion Timing

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number			
	AA-Step	AB-Step	AC-Step	
XC886LM-6RFA 3V3	22411522 _H	-	-	
XC888LM-6RFA 3V3	22411523 _H	-	-	
XC886CM-8RFA 3V3	22480502 _H	-	-	
XC888CM-8RFA 3V3	22480503 _H	-	-	
XC886C-8RFA 3V3	22480542 _H	-	-	
XC888C-8RFA 3V3	22480543 _H	-	-	
XC886-8RFA 3V3	22480562 _H	-	-	
XC888-8RFA 3V3	22480563 _H	-	-	
XC886CM-6RFA 3V3	22491502 _H	-	-	
XC888CM-6RFA 3V3	22491503 _H	-	-	
XC886C-6RFA 3V3	22491542 _H	-	-	
XC888C-6RFA 3V3	22491543 _H	-	-	
XC886-6RFA 3V3	22491562 _H	-	-	
XC888-6RFA 3V3	22491563 _H	-	-	
XC886CLM-8RFA 5V	22800502 _H	-	-	
XC888CLM-8RFA 5V	22800503 _H	-	-	
XC886LM-8RFA 5V	22800522 _H	-	-	
XC888LM-8RFA 5V	22800523 _H	-	-	
XC886CLM-6RFA 5V	22811502 _H	-	-	
XC888CLM-6RFA 5V	22811503 _H	-	-	
XC886LM-6RFA 5V	22811522 _H	-	-	
XC888LM-6RFA 5V	22811523 _H	-	-	
XC886CM-8RFA 5V	22880502 _H	-	-	
XC888CM-8RFA 5V	22880503 _H	-	-	
XC886C-8RFA 5V	22880542 _H	-	-	
XC888C-8RFA 5V	22880543 _H	-	-	
XC886-8RFA 5V	22880562 _H	-	-	
XC888-8RFA 5V	22880563 _H	-	-	
XC886CM-6RFA 5V	22891502 _H	-	-	

Package and Quality Declaration

5.2 Package Outline

Figure 48 shows the package outlines of the XC886.

Figure 48 PG-TQFP-48 Package Outline