

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K × 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc886c8ffi5vacfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8-Bit

XC886/888CLM

8-Bit Single Chip Microcontroller

Data Sheet V1.2 2009-07

Microcontrollers

Table 3

General Device Information

Pin Definitions and Functions (cont'd) Type Reset Function Pin Number Symbol (TQFP-48/64) State **P2** I Port 2 Port 2 is an 8-bit general purpose input-only port. It can be used as alternate functions for

			the digital inp also used as	buts of the JTAG and CCU6. It is the analog inputs for the ADC.
P2.0	14/22	Hi-Z	CCPOS0_0 EXINT1_0 T12HR_2	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input
			TCK_1 CC61_3	JTAG Clock Input Input of Capture/Compare channel 1
			AN0	Analog Input 0
P2.1	15/23	Hi-Z	CCPOS1_0 EXINT2_0 T13HR_2	CCU6 Hall Input 1 External Interrupt Input 2 CCU6 Timer 13 Hardware Run Input
			TDI_1 CC62_3	JTAG Serial Data Input Input of Capture/Compare channel 2
		· ·· -	ANT	
P2.2	16/24	Hi-Z	<u>CCPOS2_</u> 0 CTRAP_1 CC60_3	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare
				channel 0 Apalog Input 2
D2 3	10/27	Ці 7		
F 2.3	19/27		ANJ	
P2.4	20/28	HI-Z	AN4	Analog Input 4
P2.5	21/29	Hi-Z	AN5	Analog Input 5
P2.6	22/30	Hi-Z	AN6	Analog Input 6
P2.7	25/33	Hi-Z	AN7	Analog Input 7

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P3.7	34/42		Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

Flash Protection	Without hardware protection	With hardware protection					
P-Flash program and erase	Possible	Not possible	Not possible				
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D- Flash				
External access to D-Flash	Not possible	Not possible	Not possible				
D-Flash program	Possible	Possible	Not possible				
D-Flash erase	Possible	Possible, on condition that bit DFLASHEN in register MISC_CON is set to 1 prior to each erase operation	Not possible				

Table 4Flash Protection Modes (cont'd)

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. The Flash protection is then disabled upon the next reset.

For the ROM device, the ROM is protected at all times and BSL mode 6 is used only to block external access to the device. However, unlike the Flash device, it is not possible to disable the memory protection of the ROM device. Here, entering BSL mode 6 will result in a protection error.

Note: If ROM read-out protection is enabled, only read instructions in the ROM memory can target the ROM contents.

Although no protection scheme can be considered infallible, the XC886/888 memory protection strategy provides a very high level of protection for a general purpose microcontroller.

 Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE

(this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

Figure 10 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC886/888 supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

The page register has the following definition:

MOD_PAGE Page Register for module MOD

Reset Value: 00_H

7	6	5	4	3	2	1	0
OF	5	STI	NR	0		PAGE	
W		W	/	r		rw	

Field	Bits	Туре	Description
PAGE	[2:0]	rw	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.
STNR	[5:4]	W	Storage NumberThis number indicates which storage bit field is the target of the operation defined by bit field OP.If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value.If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.00ST0 is selected.01ST1 is selected.10ST2 is selected.11ST3 is selected.

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
A8 _H	IEN0 Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0
	Interrupt Enable Register 0	Туре	rw	r	rw	rw	rw	rw	rw	rw
B8 _H	IP Reset: 00 _H	Bit Field	(0	PT2	PS	PT1	PX1	PT0	PX0
	Interrupt Priority Register	Туре		r	rw	rw	rw	rw	rw	rw
в9 _Н	IPH Reset: 00 _H	Bit Field	(0	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
	Interrupt Priority High Register	Туре		r	rw	rw	rw	rw	rw	rw
D0 _H	PSW Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р
	Program Status Word Register	Туре	rwh	rwh	rw	rw	rw	rwh	rw	rh
E0 _H	ACC Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0
	Accumulator Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
E8 _H	IEN1 Reset: 00 _H Interrupt Enable Register 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F0 _H	B Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Reset: 00 _H Interrupt Priority 1 Register	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Reset: 00 _H Interrupt Priority 1 High Register	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSC H	PADC H
		Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 5CPU Register Overview (cont'd)

3.2.4.2 MDU Registers

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 6MDU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 1										
в0 _Н	MDUSTAT Reset: 00 _H	Bit Field			0			BSY	IERR	IRDY	
	MDU Status Register	Туре			r			rh	rwh	rwh	
в1 _Н	MDUCON Reset: 00 _H MDU Control Register	Bit Field	IE	IR	RSEL	STAR T	OPCODE				
		Туре	rw	rw	rw	rwh		r	W		
B2 _H	MD0 Reset: 00 _H	Bit Field	DATA								
	MDU Operand Register 0	Туре				r	w				
B2 _H	MR0 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 0	Туре				r	h				
B3 _H	MD1 Reset: 00 _H	Bit Field	DATA								
	MDU Operand Register 1	Туре				r	w				

Table 8SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
вс _Н	NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	FNMI VDD	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh
вd _Н	BCON Reset: 00 _H	Bit Field	BG	SEL	0	BRDIS		BRPRE		R
	Baud Rate Control Register	Туре	r	w	r	rw		rw		rw
BE _H	BG Reset: 00 _H	Bit Field			<u> </u>	BR_V	ALUE			
	Baud Rate Timer/Reload Register	Туре				rv	vh			
E9 _H	FDCON Reset: 00 _H Fractional Divider Control	Bit Field	BGS	SYNE N	ERRS YN	EOFS YN	BRK	NDOV	FDM	FDEN
	Register	Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw
EA _H	FDSTEP Reset: 00 _H	Bit Field	STEP							
	Fractional Divider Reload Register	Туре				r	w			
EB _H	FDRES Reset: 00 _H	Bit Field				RES	SULT			
	Fractional Divider Result Register	Туре				r	rh			
RMAP =	= 0, PAGE 1		1							
вз _Н	ID Reset: UU _H	Bit Field	PRODID						VERID	
	Identity Register	Туре			r			r		
B4 _H	PMCON0 Reset: 00 _H Power Mode Control Register 0	Bit Field	0	WDT RST	WKRS	WK SEL	SD	PD	V	/S
		Туре	r	rwh	rwh	rw	rw	rwh	rw	
в5 _Н	PMCON1 Reset: 00 _H Power Mode Control Register 1	Bit Field	0	CDC_ DIS	CAN_ DIS	MDU_ DIS	T2_ DIS	CCU_ DIS	SSC_ DIS	ADC_ DIS
		Туре	r	rw	rw	rw	rw	rw	rw	rw
в6 _Н	OSC_CON Reset: 08 _H OSC Control Register	Bit Field		0		OSC PD	XPD	OSC SS	ORD RES	OSCR
		Туре		r		rw	rw	rw	rwh	rh
в7 _Н	PLL_CON Reset: 90 _H PLL Control Register	Bit Field		N	VIV		VCO BYP	OSC DISC	RESL D	LOCK
		Туре		r	W		rw	rw	rwh	rh
ва _Н	CMCON Reset: 10 _H Clock Control Register	Bit Field	VCO SEL	KDIV	0	FCCF G		CLK	REL	
		Туре	rw	rw	r	rw		r	w	
вв _Н	PASSWD Reset: 07 _H Password Register	Bit Field		PASS PROT MO ECT_S			MC	DE		
		Туре	e wh rh			r	w			
вс _Н	FEAL Reset: 00 _H	Bit Field				ECCER	RADDR			
	Low	Туре				r	h			
вd _Н	FEAH Reset: 00 _H	Bit Field				ECCER	RADDR			
	Hash Error Address Register	Туре				r	h			

Table 9WDT Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
ве _Н	WDTL Reset: 00 _H	Bit Field	WDT								
	Watchdog Timer Register Low	Туре	rh								
bf _H	WDTH Reset: 00 _H	Bit Field	d WDT								
Watchdog Timer Register Hig		Туре	rh								

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Name	e	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0										
B2 _H	PORT_PAGE	Reset: 00 _H	Bit Field	OP		STNR		0		PAGE	
	Page Register		Туре	١	N	v	v	r		rw	
RMAP =	= 0, PAGE 0							•	•		
80 _H	P0_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
86 _H	P0_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Registe	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
90 _H	P1_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
91 _H	P1_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Registe	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
92 _H	H P5_DATA Reset: 00 _H P5 Data Register	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
			Туре	rw	rw	rw	rw	rw	rw	rw	rw
93 _H	P5_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Registe	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
A0 _H	P2_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
A1 _H	P2_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Direction Registe	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
во _Н	P3_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
в1 _Н	P3_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Registe	er	Туре	rw	rw	rw	rw	rw	rw	rw	rw
C8 _H	P4_DATA F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C9 _H	P4_DIR F	Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Register		Туре	rw	rw	rw	rw	rw	rw	rw	rw

3.3.3 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see **Figure 12**)

Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

3.4.2 Interrupt Source and Vector

Each interrupt event source has an associated interrupt vector address for the interrupt node it belongs to. This vector is accessed to service the corresponding interrupt node request. The interrupt service of each interrupt source can be individually enabled or disabled via an enable bit. The assignment of the XC886/888 interrupt sources to the interrupt vector address and the corresponding interrupt node enable bits are summarized in Table 20.

Interrupt Source	Vector Address	Assignment for XC886/888	Enable Bit	SFR
NMI	0073 _H	Watchdog Timer NMI	NMIWDT	NMICON
		PLL NMI	NMIPLL	-
		Flash NMI	NMIFLASH	-
		VDDC Prewarning NMI	NMIVDD	
		VDDP Prewarning NMI	NMIVDDP	-
		Flash ECC NMI	NMIECC	-
XINTR0	0003 _H	External Interrupt 0	EX0	IEN0
XINTR1	000B _H	Timer 0	ET0	-
XINTR2	0013 _H	External Interrupt 1	EX1	
XINTR3	001B _H	Timer 1	ET1	
XINTR4	0023 _H	UART	ES	-
XINTR5	002B _H	T2	ET2	
		UART Fractional Divider (Normal Divider Overflow)		
		MultiCAN Node 0	1	
		LIN		

Table 20 Interrupt Vector Addresses

Figure 20 General Structure of Input Port

If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert FNMIWDT) and the reset prewarning is entered. The prewarning period lasts for $30_{\rm H}$ count, after which the system is reset (assert WDTRST).

The WDT has a "programmable window boundary" which disallows any refresh during the WDT's count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from $0000_{\rm H}$ to the value obtained from the concatenation of WDTWINB and $00_{\rm H}$.

After being serviced, the WDT continues counting up from the value ($\langle WDTREL \rangle * 2^8$). The time period for an overflow of the WDT is programmable in two ways:

- The input frequency to the WDT can be selected to be either $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$
- The reload value WDTREL for the high byte of WDT can be programmed in register WDTREL

The period, $P_{\rm WDT}$, between servicing the WDT and the next overflow can be determined by the following formula:

$$P_{WDT} = \frac{2^{(1 + WDTIN \times 6)} \times (2^{16} - WDTREL \times 2^8)}{f_{PCLK}}$$

(3.4)

If the Window-Boundary Refresh feature of the WDT is enabled, the period $P_{\rm WDT}$ between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see **Figure 29**. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB cannot be smaller than WDTREL.

Figure 29 WDT Timing Diagram

Table 27 lists the possible watchdog time ranges that can be achieved using a certain module clock. Some numbers are rounded to 3 significant digits.

Table 27Watchdog Time Ranges

Reload value In WDTREL	Prescaler for f_{PCLK}	Prescaler for <i>f</i> _{PCLK}							
	2 (WDTIN = 0)	128 (WDTIN = 1)							
	24 MHz	24 MHz							
FF _H	21.3 μs	1.37 ms							
7F _H	2.75 ms	176 ms							
00 _H	5.46 ms	350 ms							

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 30**.

Figure 30 Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

Electrical Parameters

4.2 DC Parameters

The electrical characteristics of the DC Parameters are detailed in this section.

4.2.1 Input/Output Characteristics

Table 38 provides the characteristics of the input/output pins of the XC886/888.

Table 38	Input/Output Characteristics	(Operating	Conditions	apply)
----------	------------------------------	------------	------------	--------

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
V _{DDP} = 5 V Range							
Output low voltage	V _{OL}	CC	-	1.0	V	I _{OL} = 15 mA	
			-	1.0	V	I_{OL} = 5 mA, current into all pins > 60 mA	
			-	0.4	V	$I_{\rm OL}$ = 5 mA, current into all pins \leq 60 mA	
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{ОН} = -15 mA	
			V _{DDP} - 1.0	-	V	$I_{\rm OH}$ = -5 mA, current from all pins > 60 mA	
			V _{DDP} - 0.4	-	V	$I_{\rm OH}$ = -5 mA, current from all pins ≤ 60 mA	
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP}	SR	-	$0.3 \times V_{ m DDP}$	V	CMOS Mode	
Input low voltage on P0.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
Input low voltage on RESET pin	V _{ILR}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
Input low voltage on TMS pin	V _{ILT}	SR	-	$0.3 \times V_{ m DDP}$	V	CMOS Mode	
Input high voltage on port pins (all except P0.0 & P0.1)	V _{IHP}	SR	$0.7 \times V_{\text{DDP}}$	_	V	CMOS Mode	
Input high voltage on P0.0 & P0.1	V _{IHP0}	SR	$0.7 \times V_{\text{DDP}}$	V _{DDP}	V	CMOS Mode	

Electrical Parameters

4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. The ADC can be used with an analog power supply down to 3 V. But in this case, the analog parameters may show a reduced performance. All ground pins ($V_{\rm SS}$) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

Parameter	Symbol		Lir	nit Val	ues	Unit	Test Conditions/	
			min.	typ.	max.		Remarks	
Analog reference voltage	V _{AREF}	SR	V _{AGND} + 1	V _{DDP}	V _{DDP} + 0.05	V	1)	
Analog reference ground	V_{AGND}	SR	V _{SS} - 0.05	V _{SS}	V _{AREF} - 1	V	1)	
Analog input voltage range	V_{AIN}	SR	V_{AGND}	_	V_{AREF}	V		
ADC clocks	$f_{\sf ADC}$		-	24	25.8	MHz	module clock ¹⁾	
	f _{adci}		_	_	10	MHz	internal analog clock ¹⁾ See Figure 35	
Sample time	t _S	CC	$(2 + INPCR0.STC) \times t_{ADCI}$		μS	1)		
Conversion time	t _C	CC	See Se	ection	4.2.3.1	μS	1)	
Total unadjusted	TUE	CC	-	-	1	LSB	8-bit conversion ²⁾	
error			-	-	2	LSB	10-bit conversion ²⁾	
Differential Nonlinearity	$ EA_{DNL} $	СС	_	1	-	LSB	10-bit conversion ¹⁾	
Integral Nonlinearity	EA _{INL}	CC	_	1	_	LSB	10-bit conversion ¹⁾	
Offset	$ EA_{OFF} $	CC	-	1	-	LSB	10-bit conversion ¹⁾	
Gain	$ EA_{GAIN} $	CC	_	1	-	LSB	10-bit conversion ¹⁾	
Overload current coupling factor for	K _{OVA}	СС	_	_	1.0 x 10 ⁻⁴	_	$I_{\rm OV} > 0^{1)3)}$	
analog inputs			_	_	1.5 x 10 ⁻³	_	$I_{\rm OV} < 0^{1)3)}$	

Table 40ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Electrical Parameters

4.3.6 JTAG Timing

Table 49 provides the characteristics of the JTAG timing in the XC886/888.

Table 49TCK Clock Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Symbol		Lin	nits	Unit	Test Conditions
			min	max		
TCK clock period	t _{TCK}	SR	50	-	ns	1)
TCK high time	t ₁	SR	20	_	ns	1)
TCK low time	<i>t</i> ₂	SR	20	-	ns	1)
TCK clock rise time	t ₃	SR	-	4	ns	1)
TCK clock fall time	<i>t</i> ₄	SR	-	4	ns	1)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

Figure 46 TCK Clock Timing

Table 50JTAG Timing (Operating Conditions apply; CL = 50 pF)

Parameter	Symbol		Lir	nits	Unit	Test
			min	max		Conditions
TMS setup to TCK	t ₁	SR	8	-	ns	1)
TMS hold to TCK	<i>t</i> ₂	SR	24	-	ns	1)
TDI setup to TCK ∡	<i>t</i> ₁	SR	11	-	ns	1)
TDI hold to TCK	<i>t</i> ₂	SR	24	-	ns	1)
TDO valid output from TCK	t_3	CC	-	21	ns	5V Device ¹⁾
			-	28	ns	3.3V Device ¹⁾

Package and Quality Declaration

5.3 Quality Declaration

Table 2 shows the characteristics of the quality parameters in the XC886/888.

Table 2Quality Parameters

Parameter	Symbol	Limit Va	lues	Unit	Notes
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V _{HBM}	-	2000	V	Conforming to EIA/JESD22- A114-B ¹⁾
ESD susceptibility according to Charged Device Model (CDM) pins	V _{CDM}	-	500	V	Conforming to JESD22-C101-C ¹⁾

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

www.infineon.com

Published by Infineon Technologies AG