

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc886cm8ffi5vacfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

2.3 Pin Configuration

The pin configuration of the XC886, which is based on the PG-TQFP-48 package, is shown in **Figure 4**, while that of the XC888, which is based on the PG-TQFP-64 package, is shown in **Figure 5**.

Figure 4 XC886 Pin Configuration, PG-TQFP-48 Package (top view)

XC886/888CLM

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P1.6	8/10		PU	CCPOS1_1 T12HR_0	CCU6 Hall Input 1 CCU6 Timer 12 Hardware Run Input
				EXINT6_0 RXDC0_2 T21_1	External Interrupt Input 6 MultiCAN Node 0 Receiver Input Timer 21 Input
P1.7	9/11		PU	CCPOS2_1 T13HR_0 T2_1 TXDC0_2	CCU6 Hall Input 2 CCU6 Timer 13 Hardware Run Input Timer 2 Input MultiCAN Node 0 Transmitter
				P1.5 and P1.	Output 6 can be used as a software chip for the SSC

XC886/888CLM

General Device Information

Reset **Function** Symbol **Pin Number** Type (TQFP-48/64) State **P4** I/O Port 4 Port 4 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for CCU6, Timer 0, Timer 1, Timer 21 and MultiCAN. RXDC0 3 MultiCAN Node 0 Receiver Input P4.0 Hi-Z 45/59 CC60 1 Output of Capture/Compare channel 0 P4.1 46/60 Hi-Z TXDC0 3 MultiCAN Node 0 Transmitter Output Output of Capture/Compare COUT60 1 channel 0 P4.2 -/61 PU EXINT6 1 External Interrupt Input 6 T21 0 Timer 21 Input P4.3 32/40 Hi-Z EXF21 1 Timer 21 External Flag Output COUT63 2 **Output of Capture/Compare** channel 3 CCPOS0_3 -/45 Hi-Z CCU6 Hall Input 0 P4.4 Timer 0 Input T0 0 CC61 4 **Output of Capture/Compare** channel 1 CCPOS1 3 CCU6 Hall Input 1 P4.5 -/46 Hi-Z T1 0 Timer 1 Input COUT61 2 Output of Capture/Compare channel 1 P4.6 -/47 Hi-Z CCPOS2 3 CCU6 Hall Input 2 T2 0 Timer 2 Input CC62 2 **Output of Capture/Compare** channel 2 CTRAP 3 CCU6 Trap Input P4.7 -/48 Hi-Z COUT62 2 Output of Capture/Compare channel 2

Table 3Pin Definitions and Functions (cont'd)

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_{H} to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

SYSCON0

Functional Description

System Control Register 0 Reset Value: 04 7 5 4 3 2 1 0 6 IMODE 1 RMAP 0 0 0 r r r r rw rw

Field	Bits	Туре	Description
RMAP	0	rw	 Interrupt Node XINTR0 Enable 0 The access to the standard SFR area is enabled 1 The access to the mapped SFR area is enabled
1	2	r	Reserved Returns 1 if read; should be written with 1.
0	[7:5], 3,1	r	Reserved Returns 0 if read; should be written with 0.

Note: The RMAP bit should be cleared/set by ANL or ORL instructions.

3.2.2.2 Address Extension by Paging

Address extension is further performed at the module level by paging. With the address extension by mapping, the XC886/888 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in **Figure 9**.

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
cc ^H	ADC_CHINSR Reset: 00 _H Channel Interrupt Set Register	Bit Field	CHINS 7	CHINS 6	CHINS 5	CHINS 4	CHINS 3	CHINS 2	CHINS 1	CHINS 0
		Туре	w	w	w	w	w	w	w	w
CD _H	ADC_CHINPR Reset: 00 _H Channel Interrupt Node Pointer	Bit Field	CHINP 7	CHINP 6	CHINP 5	CHINP 4	CHINP 3	CHINP 2	CHINP 1	CHINP 0
	Register	Туре	rw							
CeH	ADC_EVINFR Reset: 00 _H Event Interrupt Flag Register	Bit Field	EVINF 7	EVINF 6	EVINF 5	EVINF 4	(0	EVINF 1	EVINF 0
		Туре	rh	rh	rh	rh		r	rh	rh
CF _H	ADC_EVINCR Reset: 00 _H Event Interrupt Clear Flag	Bit Field	EVINC 7	EVINC 6	EVINC 5	EVINC 4	(0	EVINC 1	EVINC 0
	Register	Туре	w	w	w	w		r	w	w
D2 _H	ADC_EVINSR Reset: 00 _H Event Interrupt Set Flag Register	Bit Field	EVINS 7	EVINS 6	EVINS 5	EVINS 4	(D	EVINS 1	EVINS 0
			w	w	w	w		r	w	w
D3 _H	D3 _H ADC_EVINPR Reset: 00 _H Event Interrupt Node Pointer Register		EVINP 7	EVINP 6	EVINP 5	EVINP 4	0		EVINP 1	EVINP 0
			rw	rw	rw	rw		r	rw	rw
RMAP =	= 0, PAGE 6	_	-							
CA _H ADC_CRCR1 Reset: 00 _H		Bit Field	CH7	CH6	CH5	CH4		()	
	Register 1	Туре	rwh	rwh	rwh	rwh	r			
св _Н	ADC_CRPR1 Reset: 00 _H	Bit Field	CHP7	CHP6	CHP5	CHP4	0			
	Register 1	Туре	rwh	rwh	rwh	rwh		l	r	
cc ^H	ADC_CRMR1 Reset: 00 _H Conversion Request Mode	Bit Field	Rsv	LDEV	CLRP ND	SCAN	ENSI	ENTR	0	ENGT
	Register 1	Туре	r	w	w	rw	rw	rw	r	rw
CDH	ADC_QMR0 Reset: 00 _H Queue Mode Register 0	Bit Field	CEV	TREV	FLUS H	CLRV	0	ENTR	0	ENGT
		Туре	w	w	w	w	r	rw	r	rw
CEH	CE _H ADC_QSR0 Reset: 20 _H Queue Status Register 0		Rsv	0	EMPT Y	EV	0 FILL		LL	
		Туре	r	r	rh	rh		r	r	h
CFH	ADC_Q0R0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२
		Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QBUR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	V	0	F	REQCHN	२
	Queue Dackup Register U	Туре	rh	rh	rh	rh	r		rh	
D2 _H	ADC_QINR0 Reset: 00 _H	Bit Field	EXTR	ENSI	RF	()	F	REQCHN	ર
		Туре	w	w	w		r		w	

3.3.3 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see **Figure 12**)

Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

3.4 Interrupt System

The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC886/888 interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source.

3.4.1 Interrupt Source

Figure 13 to **Figure 17** give a general overview of the interrupt sources and nodes, and their corresponding control and status flags.

Figure 13 Non-Maskable Interrupt Request Sources

XC886/888CLM

Functional Description

Figure 14 Interrupt Request Sources (Part 1)

PLL Mode

The system clock is derived from the oscillator clock, multiplied by the N factor, and divided by the P and K factors. Both VCO bypass and PLL bypass must be inactive for this PLL mode. The PLL mode is used during normal system operation.

$$f_{SYS} = f_{OSC} \times \frac{N}{P \times K}$$

(3.3)

System Frequency Selection

For the XC886/888, the value of P is fixed to 1. In order to obtain the required fsys, the value of N and K can be selected by bits NDIV and KDIV respectively for different oscillator inputs. The output frequency must always be configured for 96 MHz. Table 24 provides examples on how $f_{\rm sys}$ = 96 MHz can be obtained for the different oscillator sources.

Table 24	System frequency (<i>f</i> _{svs} = 96 MHz)
----------	--

Oscillator	Fosc	Ν	Ρ	κ	Fsys	
On-chip	9.6 MHz	20	1	2	96 MHz	
External	8 MHz	24	1	2	96 MHz	
	6 MHz	32	1	2	96 MHz	
	4 MHz	48	1	2	96 MHz	

 Table 25 shows the VCO range for the XC886/888.

Table 25 VCC Rallye	Table	25	VCO	Range
---------------------	-------	----	-----	-------

<i>f</i> _{VCOmin}	f _{vcomax}	$f_{\sf VCOFREEmin}$	<i>f</i> _{VCOFREEmax}	Unit
150	200	20	80	MHz
100	150	10	80	MHz

3.8.1 Recommended External Oscillator Circuits

The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz to 12 MHz. Additionally, it is necessary to have two load capacitances C_{X1} and C_{X2} , and depending on the crystal type, a series resistor R_{X2} , to limit the current. A test resistor R_Q may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. R_Q values are typically specified by the crystal vendor. The C_{X1} and C_{X2} values shown in **Figure 25** can be used as starting points for the negative resistance evaluation and for non-productive systems. The exact values and related operating range are dependent on the crystal frequency and have to be determined and optimized together with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system.

When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected).

The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor. **Figure 25** shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode.

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC886/888 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC886/888 will be aborted in a user-specified time period.

In debug mode, the WDT is default suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of $f_{PCLK}/2$ or $f_{PCLK}/128$
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. **Figure 28** shows the block diagram of the WDT unit.

Figure 28 WDT Block Diagram

- Interrupt enabling and corresponding flag

3.13 UART and UART1

The XC886/888 provides two Universal Asynchronous Receiver/Transmitter (UART and UART1) modules for full-duplex asynchronous reception/transmission. Both are also receive-buffered, i.e., they can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, one of the bytes will be lost.

Features

- Full-duplex asynchronous modes
 - 8-bit or 9-bit data frames, LSB first
 - Fixed or variable baud rate
- Receive buffered
- Multiprocessor communication
- Interrupt generation on the completion of a data transmission or reception

The UART modules can operate in the four modes shown in **Table 29**.

Operating Mode	Baud Rate
Mode 0: 8-bit shift register	f _{PCLK} /2
Mode 1: 8-bit shift UART	Variable
Mode 2: 9-bit shift UART	$f_{\rm PCLK}/32 \text{ or } f_{\rm PCLK}/64^{1)}$
Mode 3: 9-bit shift UART	Variable

Table 29UART Modes

1) For UART1 module, the baud rate is fixed at $f_{PCLK}/64$.

There are several ways to generate the baud rate clock for the serial port, depending on the mode in which it is operating. In mode 0, the baud rate for the transfer is fixed at $f_{\rm PCLK}/2$. In mode 2, the baud rate is generated internally based on the UART input clock and can be configured to either $f_{\rm PCLK}/32$ or $f_{\rm PCLK}/64$. For UART1 module, only $f_{\rm PCLK}/64$ is available. The variable baud rate is set by the underflow rate on the dedicated baud-rate generator. For UART module, the variable baud rate alternatively can be set by the overflow rate on Timer 1.

3.13.1 Baud-Rate Generator

Both UART modules have their own dedicated baud-rate generator, which is based on a programmable 8-bit reload value, and includes divider stages (i.e., prescaler and

3.17 Timer 0 and Timer 1

Timer 0 and Timer 1 can function as both timers or counters. When functioning as a timer, Timer 0 and Timer 1 are incremented every machine cycle, i.e. every 2 input clocks (or 2 PCLKs). When functioning as a counter, Timer 0 and Timer 1 are incremented in response to a 1-to-0 transition (falling edge) at their respective external input pins, T0 or T1.

Timer 0 and 1 are fully compatible and can be configured in four different operating modes for use in a variety of applications, see **Table 32**. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized.

Mode	Operation
0	13-bit timer The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices.
1	16-bit timer The timer registers, TLx and THx, are concatenated to form a 16-bit counter.
2	8-bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow.
3	Timer 0 operates as two 8-bit timersThe timer registers, TL0 and TH0, operate as two separate 8-bit counters.Timer 1 is halted and retains its count even if enabled.

Table 32Timer 0 and Timer 1 Modes

3.22.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID register contents for the XC886/888 Flash devices are given in Table 35.

Device Type	Device Name	JTAG ID	
Flash	XC886/888*-8FF	1012 0083 _H	
	XC886/888*-6FF	1012 5083 _H	
ROM	XC886/888*-8RF	1013 C083 _H	
	XC886/888*-6RF	1013 D083 _H	

Table 35JTAG ID Summary

Note: The asterisk (*) above denotes all possible device configurations.

103

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number					
	AA-Step	AB-Step	AC-Step			
XC886LM-6RFA 3V3	22411522 _H	-	-			
XC888LM-6RFA 3V3	22411523 _H	-	-			
XC886CM-8RFA 3V3	22480502 _H	-	-			
XC888CM-8RFA 3V3	22480503 _H	-	-			
XC886C-8RFA 3V3	22480542 _H	-	-			
XC888C-8RFA 3V3	22480543 _H	-	-			
XC886-8RFA 3V3	22480562 _H	-	-			
XC888-8RFA 3V3	22480563 _H	-	-			
XC886CM-6RFA 3V3	22491502 _H	-	-			
XC888CM-6RFA 3V3	22491503 _H	-	-			
XC886C-6RFA 3V3	22491542 _H	-	-			
XC888C-6RFA 3V3	22491543 _H	-	-			
XC886-6RFA 3V3	22491562 _H	-	-			
XC888-6RFA 3V3	22491563 _H	-	-			
XC886CLM-8RFA 5V	22800502 _H	-	-			
XC888CLM-8RFA 5V	22800503 _H	-	-			
XC886LM-8RFA 5V	22800522 _H	-	-			
XC888LM-8RFA 5V	22800523 _H	-	-			
XC886CLM-6RFA 5V	22811502 _H	-	-			
XC888CLM-6RFA 5V	22811503 _H	-	-			
XC886LM-6RFA 5V	22811522 _H	-	-			
XC888LM-6RFA 5V	22811523 _H	-	-			
XC886CM-8RFA 5V	22880502 _H	-	-			
XC888CM-8RFA 5V	22880503 _H	-	-			
XC886C-8RFA 5V	22880542 _H	-	-			
XC888C-8RFA 5V	22880543 _H	-	-			
XC886-8RFA 5V	22880562 _H	-	-			
XC888-8RFA 5V	22880563 _H	-	-			
XC886CM-6RFA 5V	22891502 _H	-	-			

Electrical Parameters

4.2.3 ADC Characteristics

The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. The ADC can be used with an analog power supply down to 3 V. But in this case, the analog parameters may show a reduced performance. All ground pins ($V_{\rm SS}$) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV.

Parameter	Symbol		Lir	nit Val	ues	Unit	Test Conditions/	
			min.	typ.	max.		Remarks	
Analog reference voltage	V _{AREF}	SR	V _{AGND} + 1	V _{DDP}	V _{DDP} + 0.05	V	1)	
Analog reference ground	V_{AGND}	SR	V _{SS} - 0.05	V _{SS}	V _{AREF} - 1	V	1)	
Analog input voltage range	V_{AIN}	SR	V_{AGND}	_	V_{AREF}	V		
ADC clocks	$f_{\sf ADC}$		-	24	25.8	MHz	module clock ¹⁾	
	f _{adci}		_	_	10	MHz	internal analog clock ¹⁾ See Figure 35	
Sample time	t _S	CC	$(2 + INPCR0.STC) \times t_{ADCI}$			μS	1)	
Conversion time	t _C	CC	See Section 4.2.3.1			μS	1)	
Total unadjusted	TUE	CC	-	-	1	LSB	8-bit conversion ²⁾	
error			-	-	2	LSB	10-bit conversion ²⁾	
Differential Nonlinearity	$ EA_{DNL} $	СС	_	1	-	LSB	10-bit conversion ¹⁾	
Integral Nonlinearity	EA _{INL}	CC	_	1	_	LSB	10-bit conversion ¹⁾	
Offset	$ EA_{OFF} $	CC	-	1	-	LSB	10-bit conversion ¹⁾	
Gain	$ EA_{GAIN} $	CC	_	1	-	LSB	10-bit conversion ¹⁾	
Overload current coupling factor for	K _{OVA}	СС	_	_	1.0 x 10 ⁻⁴	_	$I_{\rm OV} > 0^{1)3)}$	
analog inputs			_	_	1.5 x 10 ⁻³	_	$I_{\rm OV} < 0^{1)3)}$	

Table 40ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Electrical Parameters

Table 44Power Down Current (Operating Conditions apply; $V_{DDP} = 3.3V$
range)

Parameter	Symbol	Limit Values		Unit	Test Condition
		typ. ¹⁾	max. ²⁾		
$V_{\rm DDP}$ = 3.3V Range	·	·			
Power-Down Mode	I _{PDP}	1	10	μA	$T_{A} = + 25 \ ^{\circ}C^{3)4)}$
		-	30	μA	$T_{A} = + 85 \ ^{\circ}C^{4)5)}$
	- $ +$ V $ 0.0$	1			•

1) The typical I_{PDP} values are measured at V_{DDP} = 3.3 V.

2) The maximum $I_{\rm PDP}$ values are measured at $V_{\rm DDP}$ = 3.6 V.

3) I_{PDP} has a maximum value of 200 μ A at T_A = + 125 °C.

4) I_{PDP} is measured with: $\overline{RESET} = V_{DDP}$, $V_{AGND} = V_{SS}$, RXD/INT0 = V_{DDP} ; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

5) Not subjected to production test, verified by design/characterization.

Electrical Parameters

4.3.3 Power-on Reset and PLL Timing

Table 49 provides the characteristics of the power-on reset and PLL timing in the XC886/888.

Table 46	Power-On Reset and PLL Timing (Operating Conditions appl	ly)

Parameter	Symbol		Limit Values			Unit	Test Conditions
			min.	typ.	max.	-	
Pad operating voltage	V _{PAD}	CC	2.3	_	-	V	1)
On-Chip Oscillator start-up time	t _{OSCST}	CC	_	_	500	ns	1)
Flash initialization time	t _{FINIT}	CC	_	160	-	μS	1)
RESET hold time	t _{RST}	SR	_	500	_	μS	$V_{\rm DDP}$ rise time (10% – 90%) \leq 500µs ¹⁾²⁾
PLL lock-in in time	t _{LOCK}	CC	_	_	200	μS	1)
PLL accumulated jitter	D _P		_	-	0.7	ns	1)3)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

2) RESET signal has to be active (low) until V_{DDC} has reached 90% of its maximum value (typ. 2.5 V).

3) PLL lock at 96 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 48 and P = 1.

XC886/888CLM

Electrical Parameters

Figure 44 Power-on Reset Timing