

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc886lm6ffa5vackxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.2 Special Function Register

The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80_{H} to FF_H. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include:

- Mapping
- Paging

3.2.2.1 Address Extension by Mapping

Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80_H to FF_H, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address $8F_H$. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in **Figure 8**.

As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software.

3.2.4 XC886/888 Register Overview

The SFRs of the XC886/888 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Chapter 3.2.4.1** to **Chapter 3.2.4.14**.

Note: The addresses of the bitaddressable SFRs appear in bold typeface.

3.2.4.1 CPU Registers

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0 or 1	I.									
81 _H	SP Reset: 07 _H	Bit Field				S	P				
	Stack Pointer Register	Туре				r	W				
82 _H	DPL Reset: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0	
	Data Pointer Register Low	Туре	rw	rw	rw	rw	rw	rw	rw	rw	
83 _H	DPH Reset: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0	
	Data Pointer Register High	Туре	rw	rw	rw	rw	rw	rw	rw	rw	
87 _H	PCON Reset: 00 _H	Bit Field	SMOD		0		GF1	GF0	0	IDLE	
	Power Control Register	Туре	rw		r		rw	rw	r	rw	
⁸⁸ H	TCON Reset: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
	Timer Control Register	Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw	
89 _H	TMOD Reset: 00 _H Timer Mode Register	Bit Field	GATE 1	T1S	T1	1M	GATE 0	TOS	T	M	
		Туре	rw	rw	r	w	rw	rw	r	w	
8A _H	TL0 Reset: 00 _H	Bit Field		•		V	AL	•			
	Timer 0 Register Low	Туре	rwh								
8B _H	TL1 Reset: 00 _H	Bit Field				V	AL				
	Timer 1 Register Low	Туре				rv	vh				
8C _H	THO Reset: 00 _H	Bit Field	VAL								
	Timer 0 Register High	Туре				rv	vh				
8D _H	TH1 Reset: 00 _H	Bit Field				V	AL				
	Timer 1 Register High	Туре				rv	vh				
98 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh	
99 _H	SBUF Reset: 00 _H	Bit Field				V	AL				
	Serial Data Buffer Register	Туре	rwh								
A2 _H	EO Reset: 00 _H Extended Operation Register	Bit Field		0		TRAP_ EN		0		DPSE L0	
	· · ·	Туре		r		rw		r		rw	

Table 5 CPU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0				
B3 _H	MR1 Reset: 00 _H	Bit Field				DA	TA							
	MDU Result Register 1	Туре	rh											
B4 _H	MD2 Reset: 00 _H	Bit Field				DA	TA							
	MDU Operand Register 2	Туре	rw											
B4 _H	MR2 Reset: 00 _H	Bit Field		DATA										
	MDU Result Register 2	Туре				r	h							
в5 _Н	MD3 Reset: 00 _H	Bit Field				DA	TA							
	MDU Operand Register 3	Туре	rw											
в5 _Н	MR3 Reset: 00 _H	Bit Field		DATA										
	MDU Result Register 3	Туре	rh											
B6 _H	MD4 Reset: 00 _H	Bit Field	DATA											
	MDU Operand Register 4	Туре				r	w							
B6 _H	MR4 Reset: 00 _H	Bit Field				DA	TA							
	MDU Result Register 4	Туре				r	h							
в7 _Н	MD5 Reset: 00 _H	Bit Field	Field DATA											
	MDU Operand Register 5	Туре	e rw											
в7 _Н	MDU Result Register 5	Bit Field				DA	TA							
		Туре				r	'n							

Table 6MDU Register Overview (cont'd)

3.2.4.3 CORDIC Registers

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 7 CORDIC Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0			
RMAP =	= 1							1					
9A _H	CD_CORDXL Reset: 00 _H	Bit Field				DA	TAL						
	CORDIC X Data Low Byte	Туре	rw										
9B _H	CD_CORDXH Reset: 00 _H	Bit Field				DA	TAH						
	CORDIC X Data High Byte	Туре	rw										
9CH	CD_CORDYL Reset: 00 _H	Bit Field	DATAL										
	CORDIC Y Data Low Byte	Туре	rw										
9D _H	CD_CORDYH Reset: 00 _H	Bit Field	DATAH										
	CORDIC Y Data High Byte	Туре				r	W						
9E _H	CD_CORDZL Reset: 00 _H	Bit Field	DATAL										
	CORDIC Z Data Low Byte	Туре	rw										
9F _H	CD_CORDZH Reset: 00 _H	Bit Field				DA	ТАН						
	CORDIC Z Data High Byte	Туре				r	W						

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
ве _Н	COCON Reset: 00 _H Clock Output Control Register	Bit Field	()	TLEN	COUT S		CO	REL	<u> </u>
		Туре		r	rw	rw	rw			
E9 _H	MISC_CON Reset: 00 _H Miscellaneous Control Register	Bit Field				0				DFLAS HEN
		Туре				r				rwh
RMAP =	= 0, PAGE 3									
вз _Н	XADDRH Reset: F0 _H	Bit Field				ADI	ORH			
	On-chip XRAM Address Higher Order	Туре				r	w			
B4 _H	IRCON3 Reset: 00 _H Interrupt Request Register 3	Bit Field	()	CANS RC5	CCU6 SR1	()	CANS RC4	CCU6 SR0
		Туре	1	r	rwh	rwh	r		rwh	rwh
в5 _Н	IRCON4 Reset: 00 _H Interrupt Request Register 4	Bit Field	()	CANS RC7	CCU6 SR3	0		CANS RC6	CCU6 SR2
		Туре	I	r	rwh	rwh	l	r	rwh	rwh
в7 _Н	MODPISEL1 Reset: 00 _H Peripheral Input Select Register	Bit Field	EXINT 6IS	()	UR′	IRIS	T21EX IS	JTAGT DIS1	JTAGT CKS1
	1	Туре	rw		r	r	w	rw	rw	rw
ва _Н	MODPISEL2 Reset: 00 _H	Bit Field		()		T21IS	T2IS	T1IS	TOIS
	Peripheral Input Select Register 2	Туре			r		rw	rw	rw	rw
вв _Н	PMCON2 Reset: 00 _H Power Mode Control Register 2	Bit Field	0			0			UART 1_DIS	T21_D IS
		Туре	r				rw	rw		
вd _Н	MODSUSP Reset: 01 _H Module Suspend Control	Bit Field	0			T21SU SP	T2SUS P	T13SU SP	T12SU SP	WDTS USP
	Register	Туре		r		rw	rw	rw	rw	rw

Table 8SCU Register Overview (cont'd)

3.2.4.5 WDT Registers

The WDT SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 9WDT Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	RMAP = 1									
вв _Н	Watchdog Timer Control		()	WINB EN	WDTP R	0	WDTE N	WDTR S	WDTI N
	Register	Туре	pe r		rw	rh	r	rw	rwh	rw
вс _Н	H WDTREL Reset: 00 _H		WDTREL							
	Watchdog Timer Reload Register	Туре			rw					
вd _Н	WDTWINB Reset: 00 _H	Bit Field				WDT	WINB			
	Watchdog Window-Boundary Count Register	Туре				r	w			

XC886/888CLM

Functional Description

Table 10Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0, PAGE 1								L	
80 _H	P0_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Select Register	Туре	rw							
86 _H	P0_PUDEN Reset: C4 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Enable Register	Туре	rw							
90 _H	P1_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Select Register	Туре	rw							
91 _H	P1_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Enable Register	Туре	rw							
92 _H	P5_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Select Register	Туре	rw							
93 _H	P5_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Enable Register	Туре	rw							
A0 _H	P2_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Select Register	Туре	rw							
A1 _H	P2_PUDEN Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Enable Register	Туре	rw							
во _Н	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
в1 _Н	P3_PUDEN Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8 _H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	= 0, PAGE 2									
⁸⁰ H	P0_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00 _H P0 Alternate Select 1 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00 _H P1 Alternate Select 0 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
91 _H	P1_ALTSEL1 Reset: 00 _H P1 Alternate Select 1 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							
92 _H	P5_ALTSEL0 Reset: 00 _H P5 Alternate Select 0 Register	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							

3.2.4.8 Timer 2 Registers

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
c₀H	T2_T2CON Reset: 00 _H Timer 2 Control Register	Bit Field	TF2	EXF2	()	EXEN 2	TR2	C/T2	CP/ RL2
		Туре	rwh	rwh	I	r	rw	rwh	rw	rw
C1 _H	T2_T2MOD Reset: 00 _H Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H	2 _H T2_RC2L Reset: 00 _H					R	C2			
	Timer 2 Reload/Capture Register Low	Туре	rwh							
C3 _H	T2_RC2H Reset: 00 _H	Bit Field	RC2							
	Timer 2 Reload/Capture Register High	Туре				rv	vh			
C4 _H	T2_T2L Reset: 00 _H	Bit Field				TH	IL2			
	Timer 2 Register Low	Туре	Гуре rwh							
C5 _H	H T2_T2H Reset: 00 _H	Bit Field				T⊦	IL2			
	Timer 2 Register High	Туре				rv	vh			

Table 12T2 Register Overview

3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 13T21 Register Overview

	0										
Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 1										
C0H	T21_T2CONReset: 00HTimer 2 Control Register	Bit Field	TF2	EXF2	(0		TR2	C/T2	CP/ RL2	
		Туре	rwh	rwh	I	r	rw	rwh	rw	rw	
C1 _H	T21_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN	T2PRE		DCEN		
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
C2 _H	T21_RC2L Reset: 00 _H	Bit Field	RC2								
	Timer 2 Reload/Capture Register Low	Туре	rwh								
C3 _H	T21_RC2H Reset: 00 _H	Bit Field				R	C2				
	Timer 2 Reload/Capture Register High	Туре	rwh								
C4 _H	¹ H T21_T2L Reset: 00_H Timer 2 Register Low					TH	IL2				
						٢٧	vh				

3.3 Flash Memory

The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The sectorization of the Flash memory allows each sector to be erased independently.

Features

- In-System Programming (ISP) via UART
- In-Application Programming (IAP)
- Error Correction Code (ECC) for dynamic correction of single-bit errors
- Background program and erase operations for CPU load minimization
- Support for aborting erase operation
- Minimum program width¹⁾ of 32-byte for D-Flash and 64-byte for P-Flash
- 1-sector minimum erase width
- 1-byte read access
- Flash is delivered in erased state (read all zeros)
- Operating supply voltage: 2.5 V ± 7.5 %
- Read access time: $3 \times t_{CCLK} = 125 \text{ ns}^{2}$
- Program time: 248256 / $f_{SYS}^{(3)}$ = 2.6 ms³⁾
- Erase time: 9807360 / f_{SYS} = 102 ms³⁾

¹⁾ P-Flash: 64-byte wordline can only be programmed once, i.e., one gate disturb allowed. D-Flash: 32-byte wordline can be programmed twice, i.e., two gate disturbs allowed.

²⁾ Values shown here are typical values. f_{sys} = 96 MHz ± 7.5% (f_{CCLK} = 24 MHz ± 7.5 %) is the maximum frequency range for Flash read access.

³⁾ Values shown here are typical values. $f_{sys} = 96 \text{ MHz} \pm 7.5\%$ is the only frequency range for Flash programming and erasing. f_{sysmin} is used for obtaining the worst case timing.

3.6 Power Supply System with Embedded Voltage Regulator

The XC886/888 microcontroller requires two different levels of power supply:

- 3.3 V or 5.0 V for the Embedded Voltage Regulator (EVR) and Ports
- 2.5 V for the core, memory, on-chip oscillator, and peripherals

Figure 21 shows the XC886/888 power supply system. A power supply of 3.3 V or 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps to reduce the power consumption of the whole chip and the complexity of the application board design.

The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption.

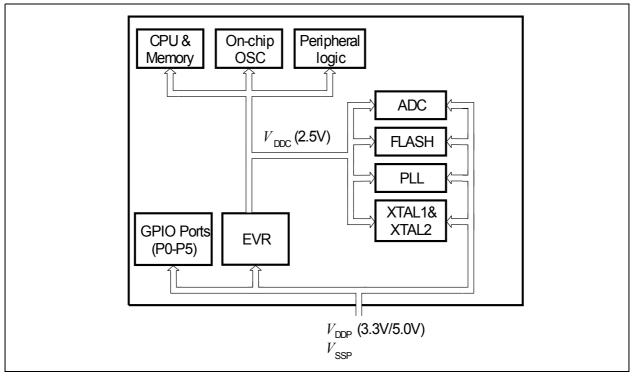


Figure 21 XC886/888 Power Supply System

EVR Features

- Input voltage (V_{DDP}): 3.3 V/5.0 V
- Output voltage (V_{DDC}): 2.5 V ± 7.5%
- · Low power voltage regulator provided in power-down mode
- V_{DDC} and V_{DDP} prewarning detection
- V_{DDC} brownout detection

- 1) BSL mode is automatically entered if no valid password is installed and data at memory address 0000H equals zero.
- 2) OSC is bypassed in MultiCAN BSL mode
- 3) Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose.

Note: The boot options are valid only with the default set of UART and JTAG pins.

3.8 Clock Generation Unit

The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC886/888. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state.

Features

- Phase-Locked Loop (PLL) for multiplying clock source by different factors
- PLL Base Mode
- Prescaler Mode
- PLL Mode
- Power-down mode support

The CGU consists of an oscillator circuit and a PLL. In the XC886/888, the oscillator can be from either of these two sources: the on-chip oscillator (9.6 MHz) or the external oscillator (4 MHz to 12 MHz). The term "oscillator" is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default. The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down.

3.8.2 Clock Management

The CGU generates all clock signals required within the microcontroller from a single clock, f_{sys} . During normal system operation, the typical frequencies of the different modules are as follow:

- CPU clock: CCLK, SCLK = 24 MHz
- Fast clock (used by MultiCAN): FCLK = 24 or 48 MHz
- Peripheral clock: PCLK = 24 MHz
- Flash Interface clock: CCLK2 = 48 MHz and CCLK = 24 MHz

In addition, different clock frequencies can be output to pin CLKOUT (P0.0 or P0.7). The clock output frequency, which is derived from the clock output divider (bit COREL), can further be divided by 2 using toggle latch (bit TLEN is set to 1). The resulting output frequency has a 50% duty cycle. **Figure 26** shows the clock distribution of the XC886/888.

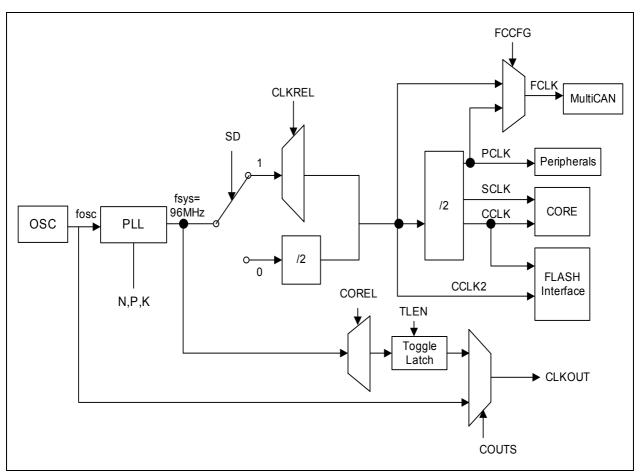


Figure 26 Clock Generation from f_{sys}

3.10 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC886/888 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC886/888 will be aborted in a user-specified time period.

In debug mode, the WDT is default suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging.

Features

- 16-bit Watchdog Timer
- Programmable reload value for upper 8 bits of timer
- Programmable window boundary
- Selectable input frequency of $f_{PCLK}/2$ or $f_{PCLK}/128$
- Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed)

The WDT is a 16-bit timer incremented by a count rate of $f_{\rm PCLK}/2$ or $f_{\rm PCLK}/128$. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. **Figure 28** shows the block diagram of the WDT unit.

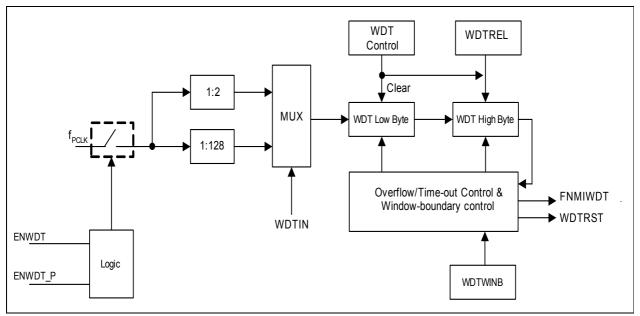
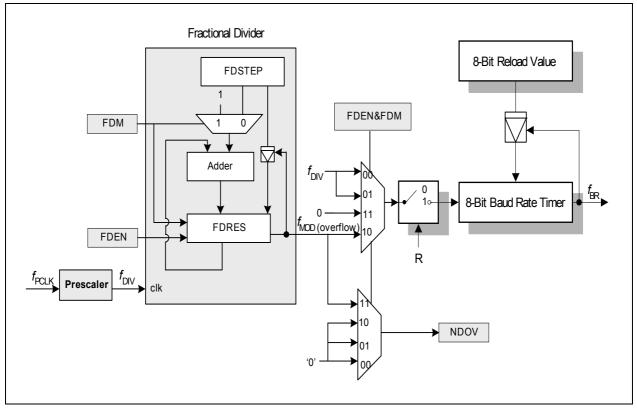



Figure 28 WDT Block Diagram

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 30**.

Figure 30 Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

XC886/888CLM

Functional Description

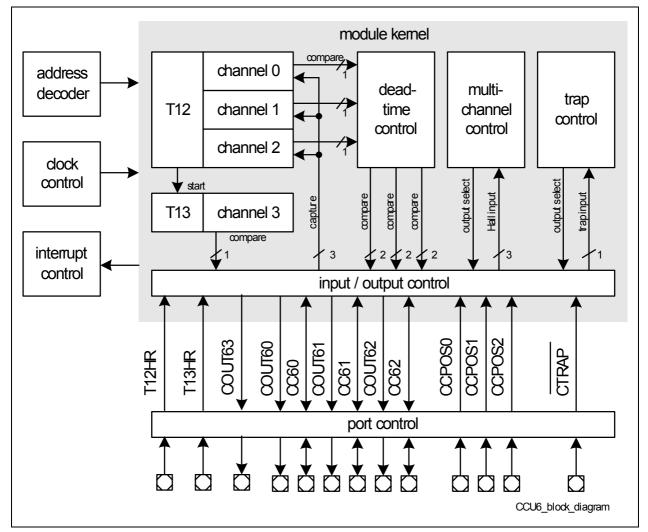



Figure 33 CCU6 Block Diagram

GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required.

Figure 35 ADC Clocking Scheme

For module clock f_{ADC} = 24 MHz, the analog clock f_{ADCI} frequency can be selected as shown in **Table 34**.

Table 34	f _{ADCI} Frequency Selection
----------	---------------------------------------

Module Clock f_{ADC}	СТС	Prescaling Ratio	Analog Clock f_{ADCI}
24 MHz	00 _B	÷ 2	12 MHz (N.A)
	01 _B	÷ 3	8 MHz
	10 _B	÷ 4	6 MHz
	11 _B (default)	÷ 32	750 kHz

As $f_{\rm ADCI}$ cannot exceed 10 MHz, bit field CTC should not be set to $00_{\rm B}$ when $f_{\rm ADC}$ is 24 MHz. During slow-down mode where $f_{\rm ADC}$ may be reduced to 12 MHz, 6 MHz etc., CTC can be set to $00_{\rm B}$ as long as the divided analog clock $f_{\rm ADCI}$ does not exceed 10 MHz.

Table 40ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

				-		-	
Parameter	Symbol		Liı	mit Val	ues	Unit	Test Conditions/
			min.	typ .	max.		Remarks
Overload current coupling factor for	K _{OVD}	CC	-	-	5.0 x 10 ⁻³	-	$I_{\rm OV} > 0^{1)3)$
digital I/O pins			-	-	1.0 x 10 ⁻²	-	$I_{\rm OV} < 0^{1)3)}$
Switched capacitance at the reference voltage input	C _{AREFSW}	CC	_	10	20	pF	1)4)
Switched capacitance at the analog voltage inputs	C _{AINSW}	CC	_	5	7	pF	1)5)
Input resistance of the reference input	R _{AREF}	CC	-	1	2	kΩ	1)
Input resistance of the selected analog channel	R _{AIN}	CC	_	1	1.5	kΩ	1)

1) Not subjected to production test, verified by design/characterization

2) TUE is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{DDP} = 5.0 V.

- 3) An overload current (I_{OV}) through a pin injects a certain error current (I_{INJ}) into the adjacent pins. This error current adds to the respective pin's leakage current (I_{OZ}) . The amount of error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it. The total current through a pin is $|I_{TOT}| = |I_{OZ1}| + (|I_{OV}| \times K_{OV})$. The additional error current may distort the input voltage on analog inputs.
- 4) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.
- 5) The sampling capacity of the conversion C-Network is pre-charged to $V_{AREF}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{AREF}/2$.

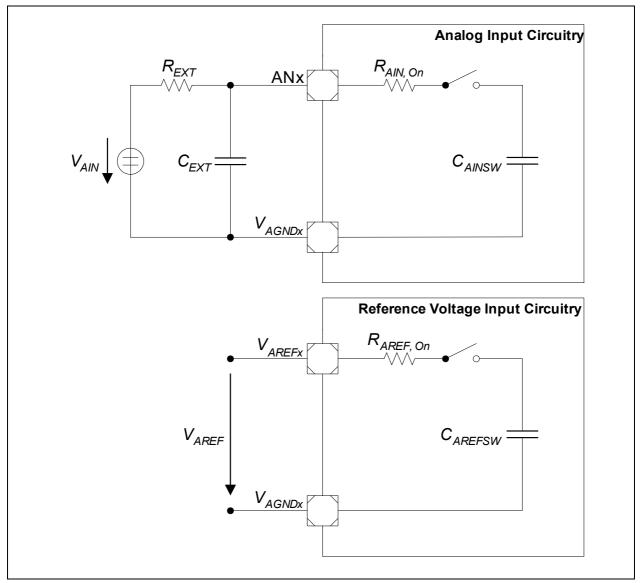
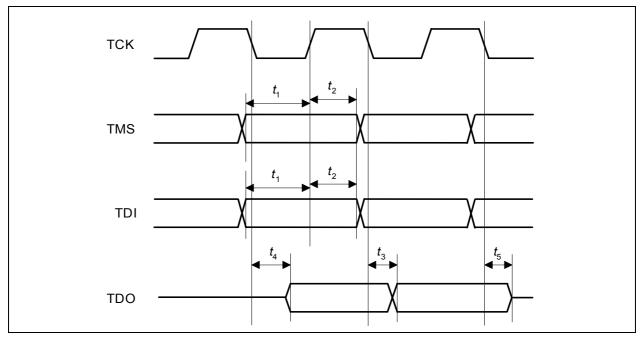


Figure 39 ADC Input Circuits

4.3.4 On-Chip Oscillator Characteristics

 Table 47 provides the characteristics of the on-chip oscillator in the XC886/888.

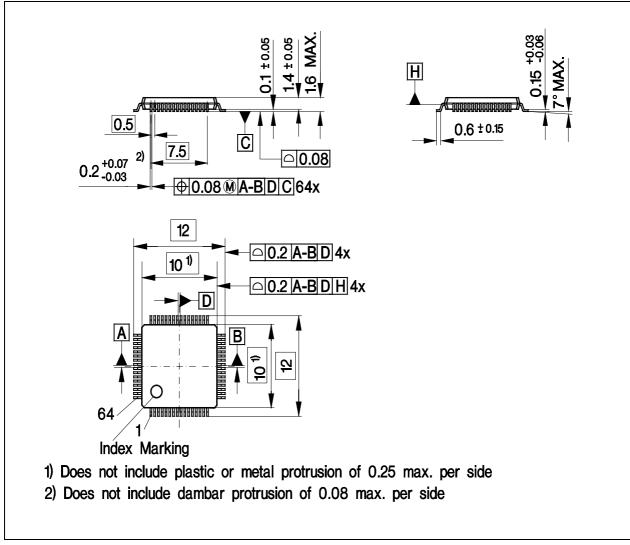
Table 47	On-chip Oscillator Characteristics (Operating Conditions apply)
----------	---


Parameter	Symbol		Limit Values			Unit	Test Conditions	
			min.	typ.	max.			
Nominal frequency	f _{nom}	CC	9.36	9.6	9.84	MHz	under nominal conditions ¹⁾	
Long term frequency deviation	Δf _{LT}	CC	-5.0	-	5.0	%	with respect to f_{NOM} , over lifetime and temperature (-10°C to 125°C), for one given device after trimming	
			-6.0	-	0	%	with respect to f_{NOM} , over lifetime and temperature (-40°C to -10°C), for one given device after trimming	
Short term frequency deviation	Δf_{ST}	CC	-1.0	-	1.0	%	within one LIN message (<10 ms 100 ms)	

1) Nominal condition: V_{DDC} = 2.5 V, T_{A} = + 25°C.

Table 50JTAG Timing (Operating Conditions apply; CL = 50 pF) (cont'd)								
Parameter	Symbol		Limits		Unit	Test		
			min	max		Conditions		
TDO high impedance to valid	<i>t</i> ₄	CC	-	27	ns	5V Device ¹⁾		
output from TCK			-	36	ns	3.3V Device ¹⁾		
TDO valid output to high	t_5	CC	-	22	ns	5V Device ¹⁾		
impedance from TCK			-	28	ns	3.3V Device ¹⁾		

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.



Package and Quality Declaration

Figure 49 PG-TQFP-64 Package Outline

www.infineon.com

Published by Infineon Technologies AG