

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Discontinued at Digi-Key
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc886lm6ffi5vacfxuma1

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Table 2 Device Frome (cont d)	Table 2	Device Profile (cont'd)
--------------------------------------	---------	-------------------------

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAK-XC886*/888*-8FFA 3V3	Flash	32	3.3	-40 to 125	Automotive
SAK-XC886*/888*-6FFA 3V3	Flash	24	3.3	-40 to 125	Automotive
SAF-XC886*/888*-8FFA 3V3	Flash	32	3.3	-40 to 85	Automotive
SAF-XC886*/888*-6FFA 3V3	Flash	24	3.3	-40 to 85	Automotive
SAF-XC886*/888*-8FFI 3V3	Flash	32	3.3	-40 to 85	Industrial
SAF-XC886*/888*-6FFI 3V3	Flash	24	3.3	-40 to 85	Industrial

- Note: The asterisk (*) above denotes the device configuration letters from **Table 1**. Corresponding ROM derivatives will be available on request.
- Note: For variants with LIN BSL support, only LIN BSL is available regardless of the availability of the CAN module.

As this document refers to all the derivatives, some description may not apply to a specific product. For simplicity, all versions are referred to by the term XC886/888 throughout this document.

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- The package and the type of delivery

For the available ordering codes for the XC886/888, please refer to your responsible sales representative or your local distributor.

Note: The ordering codes for the Mask-ROM versions are defined for each product after verification of the respective ROM code.

General Device Information

2 General Device Information

Chapter 2 contains the block diagram, pin configurations, definitions and functions of the XC886/888.

2.1 Block Diagram

The block diagram of the XC886/888 is shown in Figure 2.

Figure 2 XC886/888 Block Diagram

General Device Information

2.3 Pin Configuration

The pin configuration of the XC886, which is based on the PG-TQFP-48 package, is shown in **Figure 4**, while that of the XC888, which is based on the PG-TQFP-64 package, is shown in **Figure 5**.

Figure 4 XC886 Pin Configuration, PG-TQFP-48 Package (top view)

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function					
P1		I/O		Port 1 Port 1 is an 8-bit bidirectional general purp I/O port. It can be used as alternate functi for the JTAG, CCU6, UART, Timer 0, Tim Timer 2, Timer 21, MultiCAN and SSC.					
P1.0	26/34		PU	RXD_0 T2EX RXDC0_0	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input				
P1.1	27/35		PU	EXINT3 T0_1 TDO_1 TXD_0 TXDC0_0	External Interrupt Input 3 Timer 0 Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output				
P1.2	28/36		PU	SCK_0	SSC Clock Input/Output				
P1.3	29/37		PU	MTSR_0 TXDC1_3	SSC Master Transmit Output/Slave Receive Input MultiCAN Node 1 Transmitter Output				
P1.4	30/38		PU	MRST_0 EXINT0_1 RXDC1_3	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input				
P1.5	31/39		PU	CCPOS0_1 EXINT5 T1_1 EXF2_0 RXDO_0	CCU6 Hall Input 0 External Interrupt Input 5 Timer 1 Input Timer 2 External Flag Output UART Transmit Data Output				

Table 3Pin Definitions and Functions (cont'd)

Figure 9 Address Extension by Paging

In order to access a register located in a page different from the actual one, the current page must be exited. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed.

If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can:

• Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or

XC886/888CLM

Functional Description

Table 10Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0, PAGE 1									
80 _H	P0_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Select Register	Туре	rw							
86 _H	P0_PUDEN Reset: C4 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Enable Register	Туре	rw							
90 _H	P1_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Select Register	Туре	rw							
91 _H	P1_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Enable Register	Туре	rw							
92 _H	P5_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Select Register	Туре	rw							
93 _H	P5_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Enable Register	Туре	rw							
A0 _H	P2_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Select Register	Туре	rw							
A1 _H	P2_PUDEN Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Enable Register	Туре	rw							
во _Н	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
B1 _H	P3_PUDEN Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8 _H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	= 0, PAGE 2			•				•		
⁸⁰ H	P0_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	PU Alternate Select 1 Register	Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	PT Alternate Select 0 Register	Туре	rw							
⁹¹ H	P1_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	I Allemale Select I Register	Туре	rw							
92 _H	P5_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							

3.2.4.8 Timer 2 Registers

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

		1								1
Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									
C0H	T2_T2CONReset: 00Timer 2 Control Register	Bit Field	TF2	EXF2	(0	EXEN 2	TR2	C/T2	CP/ RL2
		Туре	rwh	rwh		r	rw	rwh	rw	rw
C1 _H	T2_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
C2 _H	T2_RC2L Reset: 00 _H					R	C2			
	Timer 2 Reload/Capture Register Low	Туре	rwh							
C3 _H	T2_RC2H Reset: 00 _H	Bit Field				R	C2			
	Register High	Туре	rwh							
C4 _H	T2_T2L Reset: 00 _H	Bit Field	THL2							
	Timer 2 Register Low	Туре				rv	vh			
C5 _H	T2_T2H Reset: 00 _H	Bit Field THL2								
	Timer 2 Register High					rv	vh			

Table 12T2 Register Overview

3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 13T21 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	: : 1			•	•	•					
c₀ _H	T21_T2CONReset: 00HTimer 2 Control Register	Bit Field	TF2	EXF2	(0 r		TR2	C/T2	<u>CP/</u> RL2	
		Туре	rwh	rwh				rwh	rw	rw	
C1 _H	T21_T2MODReset: 00Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN	T2PRE		DCEN		
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
C2 _H	T21_RC2L Reset: 00 _H	Bit Field	RC2								
	Timer 2 Reload/Capture Register Low	Туре	rwh								
C3 _H	T21_RC2H Reset: 00 _H	Bit Field				R	C2				
	Timer 2 Reload/Capture Register High	Туре	rwh								
C4 _H	T21_T2L Reset: 00 _H	Bit Field	eld THL2								
	Timer 2 Register Low					rv	/h				

Table 13T21 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
C5 _H	T21_T2H Reset: 00 _H	Bit Field	THL2							
	Timer 2 Register High	Туре	rwh							

3.2.4.10 CCU6 Registers

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 14 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0			
RMAP =	= 0		I					I	l				
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	P	ST	NR	0		PAGE				
	Page Register	Туре	١	N	١	N	r	rw					
RMAP =	0, PAGE 0												
9A _H	CCU6_CC63SRL Reset: 00 _H	Bit Field				CC6	3SL						
	for Channel CC63 Low	Туре	rw										
9B _H	CCU6_CC63SRH Reset: 00 _H	Bit Field	CC63SH										
	for Channel CC63 High	Туре				r	w						
9CH	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR	(0	DT RES	T12 RES	T12R S	T12R R			
		Туре	w	w		r	w	w	w	w			
9D _H	CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High	Bit Field	T13 STD	T13 STR	0		T13 RES	T13R S	T13R R				
		Туре	w	w	r			w	w	w			
9E _H	E _H CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow		STRM CM	0	MCMPS								
	Register Low	Туре	w	r	rw								
9F _H	CCU6_MCMOUTSH Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRH P	0	CURHS				EXPHS				
		Туре	w	r		rw			rw				
A4 _H	CCU6_ISRL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RT12 PM	RT12 OM	RCC6 2F	RCC6 2R	RCC6 1F	RCC6 1R	RCC6 0F	RCC6 0R			
		Туре	w	w	w	w	w	w	w	w			
A5 _H	CCU6_ISRH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RSTR	RIDLE	RWH E	RCHE	0	RTRP F	RT13 PM	RT13 CM			
	Reset Register High	Туре	w	w	w	w	r	w	w	w			
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3S		0		MCC6 2S	MCC6 1S	MCC6 0S			
		Туре	r	w		r			w	w			
а7 _Н	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3R		0		MCC6 2R	MCC6 1R	MCC6 0R			
	High		r	w		r		w	w	w			

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
Fe _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15 UART1 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	: 1									
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh
C9 _H	SBUF Reset: 00 _H	Bit Field	VAL							
	Serial Data Buffer Register	Туре				rv	vh			
CA _H	BCON Reset: 00 _H	Bit Field		0 BRPRE						R
	Baud Rate Control Register	Туре		r rw						rw
св _Н	BG Reset: 00 _H	Bit Field	BR_VALUE							
	Baud Rate Timer/Reload Register	Туре	rwh							
сс _Н	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN
	Fractional Divider Control Register	Туре			r			rwh	rw	rw
CD _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP			
	Fractional Divider Reload Register	Туре	rw							
CeH	FDRES Reset: 00 _H	Bit Field	Id RESULT							
	Fractional Divider Result Register	Туре				r	h			

3.8.2 Clock Management

The CGU generates all clock signals required within the microcontroller from a single clock, f_{sys} . During normal system operation, the typical frequencies of the different modules are as follow:

- CPU clock: CCLK, SCLK = 24 MHz
- Fast clock (used by MultiCAN): FCLK = 24 or 48 MHz
- Peripheral clock: PCLK = 24 MHz
- Flash Interface clock: CCLK2 = 48 MHz and CCLK = 24 MHz

In addition, different clock frequencies can be output to pin CLKOUT (P0.0 or P0.7). The clock output frequency, which is derived from the clock output divider (bit COREL), can further be divided by 2 using toggle latch (bit TLEN is set to 1). The resulting output frequency has a 50% duty cycle. **Figure 26** shows the clock distribution of the XC886/888.

Figure 26 Clock Generation from f_{sys}

3.18 Timer 2 and Timer 21

Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode, see **Table 33**. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled).

Table 33	Timer 2 Modes								
Mode	Description								
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition Reload event triggered by underflow condition 								
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event 								

Table 37

Electrical Parameters

Operating Conditions 4.1.3

The following operating conditions must not be exceeded in order to ensure correct operation of the XC886/888. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

Parameter				Limi	t Values	Unit	Notes/			
				min.	max.		Condit			
B: II I			17	4 -						

Operating Condition Parameters

		min.	max.		Conditions
Digital power supply voltage	V _{DDP}	4.5	5.5	V	5V Device
Digital power supply voltage	V _{DDP}	3.0	3.6	V	3.3V Device
Digital ground voltage	V _{SS}	0		V	
Digital core supply voltage	V _{DDC}	2.3	2.7	V	
System Clock Frequency ¹⁾	f _{sys}	88.8	103.2	MHz	
Ambient temperature	T _A	-40	85	°C	SAF- XC886/888
		-40	125	°C	SAK- XC886/888

1) f_{SYS} is the PLL output clock. During normal operating mode, CPU clock is f_{SYS} / 4. Please refer to Figure 26 for detailed description.

4.2.2 Supply Threshold Characteristics

 Table 39 provides the characteristics of the supply threshold in the XC886/888.

Figure 38 Supply Threshold Parameters

Table 39	Supply Threshold Para	ameters (Operating Conditions ap	ply)
----------	-----------------------	----------------------------------	------

Parameters	Symbol		L	Unit		
			min.	typ.	max.	
$V_{\rm DDC}$ prewarning voltage ¹⁾	V _{DDCPW}	CC	2.2	2.3	2.4	V
$V_{\rm DDC}$ brownout voltage in active mode ¹⁾	V _{DDCBO}	CC	2.0	2.1	2.2	V
RAM data retention voltage	V _{DDCRDR}	CC	0.9	1.0	1.1	V
$V_{\rm DDC}$ brownout voltage in power-down mode ²⁾	V _{DDCBOPD}	CC	1.3	1.5	1.7	V
$V_{\rm DDP}$ prewarning voltage ³⁾	V _{DDPPW}	CC	3.4	4.0	4.6	V
Power-on reset voltage ²⁾⁴⁾	V _{DDCPOR}	CC	1.3	1.5	1.7	V

1) Detection is disabled in power-down mode.

2) Detection is enabled in both active and power-down mode.

 Detection is enabled for external power supply of 5.0V. Detection must be disabled for external power supply of 3.3V.

4) The reset of EVR is extended by 300 µs typically after the VDDC reaches the power-on reset voltage.

Table 40ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Parameter	Symbol		Limit Values			Unit	Test Conditions/	
			min.	typ.	max.		Remarks	
Overload current coupling factor for	K _{OVD}	CC	-	_	5.0 x 10 ⁻³	-	$I_{\rm OV} > 0^{1)3)}$	
digital I/O pins			_	_	1.0 x 10 ⁻²	-	$I_{\rm OV} < 0^{1)3)}$	
Switched capacitance at the reference voltage input	$C_{\sf AREFSW}$	CC	_	10	20	pF	1)4)	
Switched capacitance at the analog voltage inputs	C _{AINSW}	CC	_	5	7	pF	1)5)	
Input resistance of the reference input	R _{AREF}	CC	_	1	2	kΩ	1)	
Input resistance of the selected analog channel	R _{AIN}	CC	_	1	1.5	kΩ	1)	

1) Not subjected to production test, verified by design/characterization

2) TUE is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{DDP} = 5.0 V.

- 3) An overload current (I_{OV}) through a pin injects a certain error current (I_{INJ}) into the adjacent pins. This error current adds to the respective pin's leakage current (I_{OZ}) . The amount of error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it. The total current through a pin is $|I_{TOT}| = |I_{OZ1}| + (|I_{OV}| \times K_{OV})$. The additional error current may distort the input voltage on analog inputs.
- 4) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.
- 5) The sampling capacity of the conversion C-Network is pre-charged to $V_{AREF}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{AREF}/2$.

4.2.4 **Power Supply Current**

 Table 41, Table 42, Table 43 and Table 44 provide the characteristics of the power supply current in the XC886/888.

Table 41Power Supply Current Parameters (Operating Conditions apply; V_{DDP} = 5V range)

Parameter	Symbol	Limit	Values	Unit	Test Condition	
		typ. ¹⁾	max. ²⁾			
V _{DDP} = 5V Range						
Active Mode	I _{DDP}	27.2	32.8	mA	Flash Device ³⁾	
		24.3	29.8	mA	ROM Device ³⁾	
Idle Mode	I _{DDP}	21.1	25.3	mA	Flash Device ⁴⁾	
		18.2	21.6	mA	ROM Device ⁴⁾	
Active Mode with slow-down	I _{DDP}	14.1	17.0	mA	Flash Device ⁵⁾	
enabled		11.9	14.3	mA	ROM Device ⁵⁾	
Idle Mode with slow-down	I _{DDP}	11.7	15.0	mA	Flash Device ⁶⁾	
enabled		9.7	11.9	mA	ROM Device ⁶⁾	

1) The typical I_{DDP} values are periodically measured at T_{A} = + 25 °C and V_{DDP} = 5.0 V.

2) The maximum I_{DDP} values are measured under worst case conditions (T_{A} = + 125 °C and V_{DDP} = 5.5 V).

3) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001_B), RESET = V_{DDP} , no load on ports.

4) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = V_{DDP} , no load on ports.

5) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

6) I_{DDP} (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110_B, RESET = V_{DDP} , no load on ports.

4.3.5 External Clock Drive XTAL1

Table 48 shows the parameters that define the external clock supply for XC886/888. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

Symbol		Limit	Values	Unit	Test Conditions	
		Min.	Max.			
t _{osc}	SR	83.3	250	ns	1)2)	
<i>t</i> ₁	SR	25	-	ns	2)3)	
<i>t</i> ₂	SR	25	-	ns	2)3)	
t ₃	SR	-	20	ns	2)3)	
<i>t</i> ₄	SR	-	20	ns	2)3)	
	Symbol t_{osc} t_1 t_2 t_3 t_4	Symbol t_{osc} SR t_1 SR t_2 SR t_3 SR t_4 SR	Symbol Limit t_{osc} SR 83.3 t_1 SR 25 t_2 SR 25 t_3 SR - t_4 SR -	Symbol Limit \vee lues Min. Max. t_{osc} SR 83.3 250 t_1 SR 25 - t_2 SR 25 - t_3 SR - 20 t_4 SR - 20	Symbol Limit $>$ lues Unit $Min.$ Max. 1 t_{osc} SR 83.3 250 ns t_1 SR 25 - ns t_2 SR 25 - ns t_3 SR - 20 ns t_4 SR - 20 ns	

 Table 48
 External Clock Drive Characteristics (Operating Conditions apply)

1) The clock input signals with 45-55% duty cycle are used.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) The clock input signal must reach the defined levels $V_{\rm ILX}$ and $V_{\rm IHX}$.

Figure 45 External Clock Drive XTAL1

Table 50JTAG Timing (Operating Conditions apply; CL = 50 pF) (cont'd)								
Parameter	Symbol		Lir	nits	Unit	Test		
			min	max		Conditions		
TDO high impedance to valid	t ₄	CC	-	27	ns	5V Device ¹⁾		
output from TCK			-	36	ns	3.3V Device ¹⁾		
TDO valid output to high	<i>t</i> ₅	CC	-	22	ns	5V Device ¹⁾		
impedance from TCK			-	28	ns	3.3V Device ¹⁾		

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

Package and Quality Declaration

Figure 49 PG-TQFP-64 Package Outline

www.infineon.com

Published by Infineon Technologies AG