

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	PG-TQFP-48
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc886lm8ffi5vacfxuma1

XC886/888CLM

	Table of Content	ts
4.3.3 4.3.4 4.3.5 4.3.6 4.3.7	Power-on Reset and PLL Timing	28 29 30
5 5.1 5.2 5.3	Package and Quality Declaration13Package Parameters13Package Outline13Quality Declaration13	33 34

General Device Information

 Table 3
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P1		I/O		I/O port. It ca for the JTAG	B-bit bidirectional general purpose an be used as alternate functions i, CCU6, UART, Timer 0, Timer 1, ler 21, MultiCAN and SSC.
P1.0	26/34		PU	RXD_0 T2EX RXDC0_0	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input
P1.1	27/35		PU	EXINT3 T0_1 TDO_1 TXD_0 TXDC0_0	External Interrupt Input 3 Timer 0 Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output
P1.2	28/36		PU	SCK_0	SSC Clock Input/Output
P1.3	29/37		PU	MTSR_0 TXDC1_3	SSC Master Transmit Output/Slave Receive Input MultiCAN Node 1 Transmitter Output
P1.4	30/38		PU	MRST_0 EXINT0_1 RXDC1_3	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input
P1.5	31/39		PU	CCPOS0_1 EXINT5 T1_1 EXF2_0 RXDO_0	CCU6 Hall Input 0 External Interrupt Input 5 Timer 1 Input Timer 2 External Flag Output UART Transmit Data Output

General Device Information

 Table 3
 Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function					
P5		I/O		Port 5 Port 5 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for UART, UART1 and JTAG.					
P5.0	-/8		PU	EXINT1_1	External Interrupt Input 1				
P5.1	- /9		PU	EXINT2_1	External Interrupt Input 2				
P5.2	-/12		PU	RXD_2	UART Receive Data Input				
P5.3	- /13		PU	TXD_2	UART Transmit Data Output/Clock Output				
P5.4	-/14		PU	RXDO_2	UART Transmit Data Output				
P5.5	-/15		PU	TDO_2 TXD1_2	JTAG Serial Data Output UART1 Transmit Data Output/ Clock Output				
P5.6	- /19		PU	TCK_2 RXDO1_2	JTAG Clock Input UART1 Transmit Data Output				
P5.7	-/20		PU	TDI_2 RXD1_2	JTAG Serial Data Input UART1 Receive Data Input				

Data Sheet 17 V1.2, 2009-07

Table 4 Flash Protection Modes (cont'd)

Flash Protection	Without hardware protection	With hardware protection						
P-Flash program and erase	Possible	Not possible	Not possible					
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D- Flash					
External access to D-Flash	Not possible	Not possible	Not possible					
D-Flash program	Possible	Possible	Not possible					
D-Flash erase	Possible	Possible, on condition that bit DFLASHEN in register MISC_CON is set to 1 prior to each erase operation	Not possible					

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. The Flash protection is then disabled upon the next reset.

For the ROM device, the ROM is protected at all times and BSL mode 6 is used only to block external access to the device. However, unlike the Flash device, it is not possible to disable the memory protection of the ROM device. Here, entering BSL mode 6 will result in a protection error.

Note: If ROM read-out protection is enabled, only read instructions in the ROM memory can target the ROM contents.

Although no protection scheme can be considered infallible, the XC886/888 memory protection strategy provides a very high level of protection for a general purpose microcontroller.

Field	Bits	Туре	Description
OP	[7:6]	W	 Operation 0X Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR.
0	3	r	Reserved Returns 0 if read; should be written with 0.

3.2.3 Bit Protection Scheme

The bit protection scheme prevents direct software writing of selected bits (i.e., protected bits) using the PASSWD register. When the bit field MODE is 11_B , writing 10011_B to the bit field PASS opens access to writing of all protected bits, and writing 10101_B to the bit field PASS closes access to writing of all protected bits. In both cases, the value of the bit field MODE is not changed even if PASSWD register is written with 98_H or $A8_H$. It can only be changed when bit field PASS is written with 11000_B , for example, writing $D0_H$ to PASSWD register disables the bit protection scheme.

Note that access is opened for maximum 32 CCLKs if the "close access" password is not written. If "open access" password is written again before the end of 32 CCLK cycles, there will be a recount of 32 CCLK cycles. The protected bits include the N- and K-Divider bits, NDIV and KDIV; the Watchdog Timer enable bit, WDTEN; and the power-down and slow-down enable bits, PD and SD.

Table 8 SCU Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
всн	NMISR Reset: 00 _H NMI Status Register	Bit Field	0	FNMI ECC	FNMI VDDP	FNMI VDD	FNMI OCDS	FNMI FLASH	FNMI PLL	FNMI WDT	
		Туре	r	rwh	rwh	rwh	rwh	rwh	rwh	rwh	
BDH	BCON Reset: 00 _H	Bit Field	BGSEL 0 BRDIS			BRPRE			R		
	Baud Rate Control Register	Туре	r	W	r	rw		rw		rw	
BE _H	BG Reset: 00 _H	Bit Field									
	Baud Rate Timer/Reload Register	Туре				rv	vh				
E9 _H	FDCON Reset: 00 _H Fractional Divider Control	Bit Field	BGS	SYNE N	ERRS YN	EOFS YN	BRK	NDOV	FDEN		
	Register	Туре	rw	rw	rwh	rwh	rwh	rwh	rw	rw	
EA _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP				
	Fractional Divider Reload Register	Туре				r	w				
EB _H	FDRES Reset: 00 _H	Bit Field				RES	SULT				
	Fractional Divider Result Register	Туре				r	h				
RMAP =	0, PAGE 1	I .									
вз _Н	ID Reset: UU _H	Bit Field	PRODID				VERID				
	Identity Register	Туре			r				r		
B4 _H	PMCON0 Reset: 00 _H Power Mode Control Register 0	Bit Field	0	WDT RST	WKRS	WK SEL	SD	PD WS		WS	
		Туре	r	rwh	rwh	rw	rw	rwh	rw		
В5 _Н	PMCON1 Reset: 00 _H Power Mode Control Register 1	Bit Field	0	CDC_ DIS	CAN_ DIS	MDU_ DIS	T2_ DIS	CCU_ DIS	SSC_ DIS	ADC_ DIS	
		Туре	r	rw	rw	rw	rw	rw	rw	rw	
B6 _H	OSC_CON Reset: 08 _H OSC Control Register	Bit Field		0		OSC PD	XPD	OSC SS	ORD RES	OSCR	
		Туре		r		rw	rw	rw	rwh	rh	
B7 _H	PLL_CON Reset: 90 _H PLL Control Register	Bit Field		NE	OIV		VCO BYP	OSC DISC	RESL D	LOCK	
		Туре		r	w		rw	rw	rwh	rh	
^{BA} H	CMCON Reset: 10 _H Clock Control Register	Bit Field	VCO SEL	KDIV	0	FCCF G		CLK	REL		
		Туре	rw	rw	r	rw		r	W		
BB _H	PASSWD Reset: 07 _H Password Register	Bit Field	d PASS PROT MO					DE			
		Туре	wh rh rw					w			
всн	FEAL Reset: 00 _H Flash Error Address Register	Bit Field	t Field ECCERRADDR								
	Low	Туре				r	h				
вDН	FEAH Reset: 00 _H	Bit Field				ECCER	RADDR				
	Flash Error Address Register High	Туре				r	h				

Table 9 WDT Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
BE _H	WDTL Reset: 00 _H	Bit Field		WDT								
	Watchdog Timer Register Low	Туре	rh									
BF _H	WDTH Reset: 00 _H	Bit Field	WDT									
	Watchdog Timer Register High	Туре				r	h					

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10 Port Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0			•	•		•			
B2 _H	PORT_PAGE Reset: 00H	Bit Field	C)P	STNR		0	PAGE		
	Page Register	Туре	\	N	V	V	r	rw		
RMAP =	= 0, PAGE 0									
80 _H	P0_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
86 _H	P0_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
90 _H	P1_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
91 _H	P1_DIR Reset: 00H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
92 _H	P5_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
93 _H	P5_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
A0 _H	P2_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
A1 _H	P2_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
во _Н	P3_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
В1 _Н	P3_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
C8H	P4_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
C9 _H	P4_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw

 Table 11
 ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
CDH	ADC_LCBR Reset: B7H	Bit Field		BOL	JND1			BOL	JND0	
	Limit Check Boundary Register	Туре		r	W			r	w	
CEH	ADC_INPCR0 Reset: 00H	Bit Field				S.	ТС			
	Input Class 0 Register	Туре				r	W			
CF _H	ADC_ETRCR Reset: 00 _H External Trigger Control	Bit Field	SYNE N1	SYNE N0		ETRSEL ²	l		ETRSELO	
	Register	Туре	rw	rw		rw			rw	
RMAP =	= 0, PAGE 1									
CA _H	ADC_CHCTR0 Reset: 00H	Bit Field	0		LCC		(0	RESI	RSEL
	Channel Control Register 0	Туре	r		rw			r	r	N
СВН	ADC_CHCTR1 Reset: 00H	Bit Field	0		LCC			0	RESI	RSEL
	Channel Control Register 1	Туре	r		rw			r	r	N
сс _Н	ADC_CHCTR2 Reset: 00H	Bit Field	0		LCC		(0	RESI	RSEL
	Channel Control Register 2	Туре	r		rw			r	r	N
CDH	ADC_CHCTR3 Reset: 00H	Bit Field	0		LCC		(0	RESI	RSEL
	Channel Control Register 3	Туре	r		rw			r	r	N
CEH	ADC_CHCTR4 Reset: 00H	Bit Field	0	0 LCC			0		RESRSEL	
	Channel Control Register 4	Туре	r rw			r	r	N		
CF _H	ADC_CHCTR5 Reset: 00H	Bit Field	0	0 LCC			0	RESI	RSEL	
	Channel Control Register 5	Туре	r	r rw			r	r	N	
D2 _H	ADC_CHCTR6 Reset: 00H	Bit Field	0	LCC		(0	RESI	RSEL	
	Channel Control Register 6	Туре	r		rw		r		rw	
D3 _H	ADC_CHCTR7 Reset: 00H	Bit Field	0		LCC		0		RESRSEL	
	Channel Control Register 7	Туре	r		rw			r	rw	
RMAP =	= 0, PAGE 2									
CA _H	ADC_RESR0L Reset: 00H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 0 Low	Туре	r	h	r	rh	rh		rh	
СВН	ADC_RESR0H Reset: 00H	Bit Field				RES	SULT			
	Result Register 0 High	Туре				r	h			
сс _Н	ADC_RESR1L Reset: 00H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 1 Low	Туре	r	h	r	rh	rh		rh	
CDH	ADC_RESR1H Reset: 00H	Bit Field				RES	SULT			
	Result Register 1 High	Туре				r	h .			
CEH	ADC_RESR2L Reset: 00H	Bit Field	RESULT 0 VF			VF	DRC		CHNR	
	Result Register 2 Low	Туре	r	h .	r	rh	rh		rh	
CF _H	ADC_RESR2H Reset: 00H	Bit Field				RES	SULT			
	Result Register 2 High	Туре				r	h			
D2 _H	ADC_RESR3L Reset: 00H	Bit Field	RES	SULT	0	VF	DRC		CHNR	
	Result Register 3 Low	Туре	r	h	r	rh	rh		rh	

3.2.4.8 Timer 2 Registers

The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 12 T2 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0				•						
C0H	T2_T2CON Reset: 00 _H Timer 2 Control Register	Bit Field	TF2	EXF2	(0		TR2	C/T2	CP/ RL2	
		Туре	rwh	rwh	1	r	rw	rw rwh rw		rw	
C1 _H	T2_T2MOD Reset: 00 _H Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN		T2PRE		DCEN	
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
C2 _H	T2_RC2L Reset: 00H	Bit Field				R	C2				
	Timer 2 Reload/Capture Register Low	Туре	rwh								
C3 _H	T2_RC2H Reset: 00H	Bit Field	RC2								
	Timer 2 Reload/Capture Register High	Туре	rwh								
C4 _H	T2_T2L Reset: 00H	Bit Field				TH	IL2				
	Timer 2 Register Low	Туре	rwh								
C5 _H	T2_T2H Reset: 00 _H	Bit Field				T⊦	IL2				
	Timer 2 Register High	Туре				rv	/h				

3.2.4.9 Timer 21 Registers

The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 13 T21 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 1										
C0H	T21_T2CON Reset: 00 _H Timer 2 Control Register	Bit Field	TF2	EXF2	(0		TR2	C/T2	CP/ RL2	
		Туре	rwh	rwh	ı	r	rw	rwh	rw	rw	
C1 _H	T21_T2MOD Reset: 00 _H Timer 2 Mode Register	Bit Field	T2RE GS	T2RH EN	EDGE SEL	PREN	T2PRE		DCEN		
		Туре	rw	rw	rw	rw	rw	rw	rw	rw	
C2 _H	T21_RC2L Reset: 00H	Bit Field	RC2								
	Timer 2 Reload/Capture Register Low	Туре	rwh								
C3 _H	T21_RC2H Reset: 00H	Bit Field				R	C2				
	Timer 2 Reload/Capture Register High	Туре	rwh								
C4 _H	T21_T2L Reset: 00 _H	Bit Field	THL2								
	Timer 2 Register Low	Туре				rv	vh				

Table 19 shows the Flash data retention and endurance targets.

Table 19 Flash Data Retention and Endurance (Operating Conditions apply)

Retention	Endurance ¹⁾	Size	Remarks
Program Flash			
20 years	1,000 cycles	up to 32 Kbytes ²⁾	for 32-Kbyte Variant
20 years	1,000 cycles	up to 24 Kbytes ²⁾	for 24-Kbyte Variant
Data Flash			
20 years	1,000 cycles	4 Kbytes	
5 years	10,000 cycles	1 Kbyte	
2 years	70,000 cycles	512 bytes	
2 years	100,000 cycles	128 bytes	

¹⁾ One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance data specified in **Table 19** is valid only if the following conditions are fulfilled:

- the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles.
- the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles.
- the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles.
- 2) If no Flash is used for data, the Program Flash size can be up to the maximum Flash size available in the device variant. Having more Data Flash will mean less Flash is available for Program Flash.

3.3.1 Flash Bank Sectorization

The XC886/888 product family offers Flash devices with either 24 Kbytes or 32 Kbytes of embedded Flash memory. Each Flash device consists of Program Flash (P-Flash) and Data Flash (D-Flash) bank(s) with different sectorization shown in **Figure 11**. Both types can be used for code and data storage. The label "Data" neither implies that the D-Flash is mapped to the data memory region, nor that it can only be used for data storage. It is used to distinguish the different Flash bank sectorizations.

The 32-Kbyte Flash device consists of 6 P-Flash and 2 D-Flash banks, while the 24-Kbyte Flash device consists of also of 6 P-Flash banks but with the upper 2 banks only 2 Kbytes each, and only 1 D-Flash bank. The XC886/888 ROM devices offer a single 4-Kbyte D-Flash bank.

The P-Flash banks are always grouped in pairs. As such, the P-Flash banks are also sometimes referred to as P-Flash bank pair. Each sector in a P-Flash bank is grouped with the corresponding sector from the other bank within a bank pair to form a P-Flash bank pair sector.

Data Sheet 53 V1.2, 2009-07

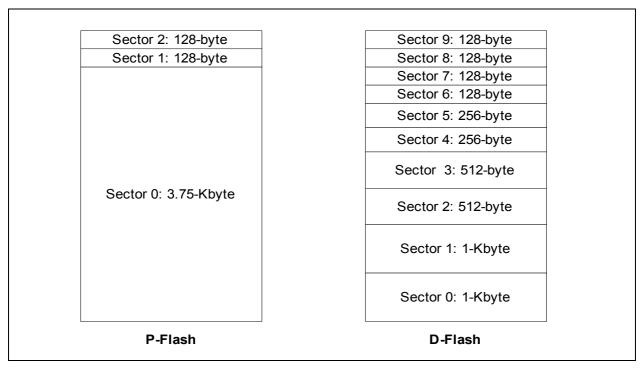


Figure 11 Flash Bank Sectorization

The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s.

The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements.

3.3.2 Parallel Read Access of P-Flash

To enhance system performance, the P-Flash banks are configured for parallel read to allow two bytes of linear code to be read in 4 x CCLK cycles, compared to 6 x CCLK cycles if serial read is performed. This is achieved by reading two bytes in parallel from a P-Flash bank pair within the 3 x CCLK cycles access time and storing them in a cache. Subsequent read from the cache by the CPU does not require a wait state and can be completed within 1 x CCLK cycle. The result is the average instruction fetch time from the P-Flash banks is reduced and thus, the MIPS (Mega Instruction Per Second) of the system is increased.

However, if the parallel read feature is not desired due to certain timing constraints, it can be disabled by calling the parallel read disable subroutine.

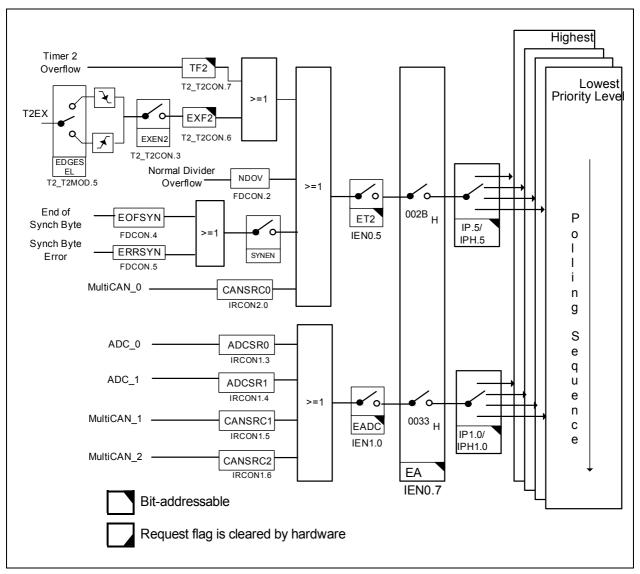


Figure 15 Interrupt Request Sources (Part 2)

Table 20 Interrupt Vector Addresses (cont'd)

Interrupt Source	Vector Address	Assignment for XC886/888	Enable Bit	SFR	
XINTR6	0033 _H	MultiCAN Nodes 1 and 2	EADC	IEN1	
		ADC[1:0]	1		
XINTR7	003B _H	SSC	ESSC		
XINTR8	0043 _H	External Interrupt 2	EX2		
		T21			
		CORDIC			
		UART1			
		UART1 Fractional Divider (Normal Divider Overflow)			
		MDU[1:0]	1		
XINTR9	004B _H	External Interrupt 3	EXM		
		External Interrupt 4			
		External Interrupt 5			
		External Interrupt 6			
		MultiCAN Node 3			
XINTR10	0053 _H	CCU6 INP0	ECCIP0		
		MultiCAN Node 4			
XINTR11	R11 005B _H CCU6 INP1 ECCIP1		ECCIP1		
		MultiCAN Node 5			
XINTR12	0063 _H	CCU6 INP2	ECCIP2		
		MultiCAN Node 6			
XINTR13	006B _H	CCU6 INP3	ECCIP3		
		MultiCAN Node 7			

3.4.3 Interrupt Priority

An interrupt that is currently being serviced can only be interrupted by a higher-priority interrupt, but not by another interrupt of the same or lower priority. Hence, an interrupt of the highest priority cannot be interrupted by any other interrupt request.

If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority are received simultaneously, then an internal polling sequence determines which request is serviced first. Thus, within each priority level, there is a second priority structure determined by the polling sequence shown in **Table 21**.

Table 21 Priority Structure within Interrupt Level

Source	Level
Non-Maskable Interrupt (NMI)	(highest)
External Interrupt 0	1
Timer 0 Interrupt	2
External Interrupt 1	3
Timer 1 Interrupt	4
UART Interrupt	5
Timer 2,UART Normal Divider Overflow, MultiCAN, LIN Interrupt	6
ADC, MultiCAN Interrupt	7
SSC Interrupt	8
External Interrupt 2, Timer 21, UART1, UART1 Normal Divider Overflow, MDU, CORDIC Interrupt	9
External Interrupt [6:3], MultiCAN Interrupt	10
CCU6 Interrupt Node Pointer 0, MultiCAN interrupt	11
CCU6 Interrupt Node Pointer 1, MultiCAN Interrupt	12
CCU6 Interrupt Node Pointer 2, MultiCAN Interrupt	13
CCU6 Interrupt Node Pointer 3, MultiCAN Interrupt	14

For power saving purposes, the clocks may be disabled or slowed down according to **Table 26**.

Table 26 System frequency ($f_{sys} = 96 \text{ MHz}$)

Power Saving Mode	Action
Idle	Clock to the CPU is disabled.
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.
Power-down	Oscillator and PLL are switched off.

Data Sheet 78 V1.2, 2009-07

3.22 On-Chip Debug Support

The On-Chip Debug Support (OCDS) provides the basic functionality required for the software development and debugging of XC800-based systems.

The OCDS design is based on these principles:

- Use the built-in debug functionality of the XC800 Core
- Add a minimum of hardware overhead
- Provide support for most of the operations by a Monitor Program
- Use standard interfaces to communicate with the Host (a Debugger)

Features

- Set breakpoints on instruction address and on address range within the Program Memory
- Set breakpoints on internal RAM address range
- Support unlimited software breakpoints in Flash/RAM code region
- Process external breaks via JTAG and upon activating a dedicated pin
- Step through the program code

The OCDS functional blocks are shown in **Figure 37**. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals.

After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work-data and Monitor-stack).

The OCDS system is accessed through the JTAG¹⁾, which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control.

Note: All the debug functionality described here can normally be used only after XC886/888 has been started in OCDS mode.

¹⁾ The pins of the JTAG port can be assigned to either the primary port (Port 0) or either of the secondary ports (Ports 1 and 2/Port 5).

User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system.

Electrical Parameters

Table 40 ADC Characteristics (Operating Conditions apply; V_{DDP} = 5V Range)

Parameter	Symbol		Limit Values			Unit	Test Conditions/
			min.	typ.	max.		Remarks
Overload current coupling factor for digital I/O pins	K_{OVD}	CC	_	_	5.0 x 10 ⁻³	_	$I_{\rm OV} > 0^{1)3)}$
			_	_	1.0 x 10 ⁻²	_	$I_{\rm OV} < 0^{1)3)}$
Switched capacitance at the reference voltage input	C_{AREFSW}	CC	_	10	20	pF	1)4)
Switched capacitance at the analog voltage inputs	C_{AINSW}	CC	_	5	7	pF	1)5)
Input resistance of the reference input	R_{AREF}	CC	_	1	2	kΩ	1)
Input resistance of the selected analog channel	R _{AIN}	CC	_	1	1.5	kΩ	1)

- 1) Not subjected to production test, verified by design/characterization
- 2) TUE is tested at $V_{\rm AREF}$ = 5.0 V, $V_{\rm AGND}$ = 0 V, $V_{\rm DDP}$ = 5.0 V.
- 3) An overload current (I_{OV}) through a pin injects a certain error current (I_{INJ}) into the adjacent pins. This error current adds to the respective pin's leakage current (I_{OZ}) . The amount of error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it. The total current through a pin is $|I_{\text{TOT}}| = |I_{\text{OZ1}}| + (|I_{\text{OV}}| \times K_{\text{OV}})$. The additional error current may distort the input voltage on analog inputs.
- 4) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage.
- 5) The sampling capacity of the conversion C-Network is pre-charged to $V_{\mathsf{AREF}}/2$ before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than $V_{\mathsf{AREF}}/2$.

Data Sheet 117 V1.2, 2009-07

Electrical Parameters

Table 43 Power Supply Current Parameters (Operating Conditions apply; $V_{\text{DDP}} = 3.3 \text{V range}$)

Parameter	Symbol	Limit	Values	Unit	Test Condition
		typ.1)	max. ²⁾		
V_{DDP} = 3.3V Range	<u> </u>				
Active Mode	I_{DDP}	25.6	31.0	mA	Flash Device ³⁾
		23.4	28.6	mA	ROM Device ³⁾
Idle Mode	I_{DDP}	19.9	24.7	mA	Flash Device ⁴⁾
		17.5	20.7	mA	ROM Device ⁴⁾
Active Mode with slow-down	I_{DDP}	13.3	16.2	mA	Flash Device ⁵⁾
enabled		11.5	13.7	mA	ROM Device ⁵⁾
Idle Mode with slow-down	I_{DDP}	11.1	14.4	mA	Flash Device ⁶⁾
enabled		9.3	11.4	mA	ROM Device ⁶⁾

- 1) The typical $I_{\rm DDP}$ values are periodically measured at $T_{\rm A}$ = + 25 °C and $V_{\rm DDP}$ = 3.3 V.
- 2) The maximum $I_{\rm DDP}$ values are measured under worst case conditions ($T_{\rm A}$ = + 125 °C and $V_{\rm DDP}$ = 3.6 V).
- 3) I_{DDP} (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001_B), $\overline{\text{RESET}} = V_{\text{DDP}}$, no load on ports.
- 4) I_{DDP} (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, $\overline{\text{RESET}} = V_{\text{DDP}}$, no load on ports.
- 5) I_{DDP} (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110_B, $\overline{\text{RESET}}$ = V_{DDP} , no load on ports.
- 6) $I_{\rm DDP}$ (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110_B,, RESET = $V_{\rm DDP}$, no load on ports.

Data Sheet 122 V1.2, 2009-07

Electrical Parameters

4.3.5 External Clock Drive XTAL1

Table 48 shows the parameters that define the external clock supply for XC886/888. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

Table 48 External Clock Drive Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit Values		Unit	Test Conditions
			Min.	Max.		
Oscillator period	$t_{\rm osc}$	SR	83.3	250	ns	1)2)
High time	t_1	SR	25	-	ns	2)3)
Low time	t_2	SR	25	-	ns	2)3)
Rise time	t_3	SR	-	20	ns	2)3)
Fall time	t_4	SR	-	20	ns	2)3)

- 1) The clock input signals with 45-55% duty cycle are used.
- 2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.
- 3) The clock input signal must reach the defined levels $V_{\rm ILX}$ and $V_{\rm IHX}$.

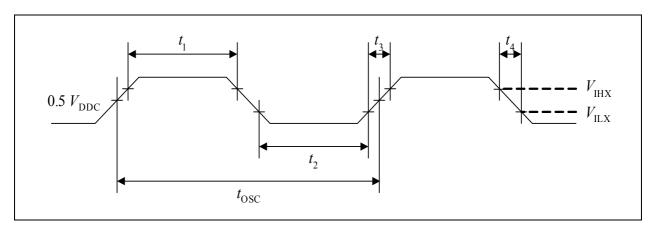


Figure 45 External Clock Drive XTAL1

Package and Quality Declaration

5.3 Quality Declaration

Table 2 shows the characteristics of the quality parameters in the XC886/888.

Table 2 Quality Parameters

Parameter	Symbol	Limit V	'alues	Unit	Notes
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V_{HBM}	-	2000	V	Conforming to EIA/JESD22- A114-B ¹⁾
ESD susceptibility according to Charged Device Model (CDM) pins	V_{CDM}	-	500	V	Conforming to JESD22-C101-C ¹⁾

¹⁾ Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

Data Sheet 136 V1.2, 2009-07