

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc888cm8ffi3v3acfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2009-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Summary of Features

XC886/888 Variant Devices

The XC886/888 product family features devices with different configurations, program memory sizes, package options, power supply voltage, temperature and quality profiles (Automotive or Industrial), to offer cost-effective solutions for different application requirements.

The list of XC886/888 device configurations are summarized in **Table 1**. For each configuration, 2 types of packages are available:

- PG-TQFP-48, which is denoted by XC886 and;
- PG-TQFP-64, which is denoted by XC888.

Device Name	CAN Module	LIN BSL Support	MDU Module
XC886/888	No	No	No
XC886/888C	Yes	No	No
XC886/888CM	Yes	No	Yes
XC886/888LM	No	Yes	Yes
XC886/888CLM	Yes	Yes	Yes

Table 1Device Configuration

Note: For variants with LIN BSL support, only LIN BSL is available regardless of the availability of the CAN module.

From these 10 different combinations of configuration and package type, each are further made available in many sales types, which are grouped according to device type, program memory sizes, power supply voltage, temperature and quality profile (Automotive or Industrial), as shown in Table 2.

Table 2Device Profile

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAK-XC886*/888*-8FFA 5V	Flash	32	5.0	-40 to 125	Automotive
SAK-XC886*/888*-6FFA 5V	Flash	24	5.0	-40 to 125	Automotive
SAF-XC886*/888*-8FFA 5V	Flash	32	5.0	-40 to 85	Automotive
SAF-XC886*/888*-6FFA 5V	Flash	24	5.0	-40 to 85	Automotive
SAF-XC886*/888*-8FFI 5V	Flash	32	5.0	-40 to 85	Industrial
SAF-XC886*/888*-6FFI 5V	Flash	24	5.0	-40 to 85	Industrial

General Device Information

2 General Device Information

Chapter 2 contains the block diagram, pin configurations, definitions and functions of the XC886/888.

2.1 Block Diagram

The block diagram of the XC886/888 is shown in Figure 2.

Figure 2 XC886/888 Block Diagram

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P1		I/O		Port 1 Port 1 is an 8 I/O port. It ca for the JTAG Timer 2, Tim	B-bit bidirectional general purpose in be used as alternate functions , CCU6, UART, Timer 0, Timer 1, er 21, MultiCAN and SSC.
P1.0	26/34		PU	RXD_0 T2EX RXDC0_0	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input
P1.1	27/35		PU	EXINT3 T0_1 TDO_1 TXD_0 TXDC0_0	External Interrupt Input 3 Timer 0 Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output
P1.2	28/36		PU	SCK_0	SSC Clock Input/Output
P1.3	29/37		PU	MTSR_0 TXDC1_3	SSC Master Transmit Output/Slave Receive Input MultiCAN Node 1 Transmitter Output
P1.4	30/38		PU	MRST_0 EXINT0_1 RXDC1_3	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input
P1.5	31/39		PU	CCPOS0_1 EXINT5 T1_1 EXF2_0 RXDO_0	CCU6 Hall Input 0 External Interrupt Input 5 Timer 1 Input Timer 2 External Flag Output UART Transmit Data Output

Table 3Pin Definitions and Functions (cont'd)

 Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE

(this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred)

Figure 10 Storage Elements for Paging

With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines.

The XC886/888 supports local address extension for:

- Parallel Ports
- Analog-to-Digital Converter (ADC)
- Capture/Compare Unit 6 (CCU6)
- System Control Registers

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
A8 _H	IEN0 Reset: 00 _H	Bit Field	EA	0	ET2	ES	ET1	EX1	ET0	EX0
	Interrupt Enable Register 0	Туре	rw	r	rw	rw	rw	rw	rw	rw
B8 _H	IP Reset: 00 _H	Bit Field	(0	PT2	PS	PT1	PX1	PT0	PX0
	Interrupt Priority Register	Туре		r	rw	rw	rw	rw	rw	rw
в9 _Н	IPH Reset: 00 _H	Bit Field	(0	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
	Interrupt Priority High Register	Туре		r	rw	rw	rw	rw	rw	rw
D0 _H	PSW Reset: 00 _H	Bit Field	CY	AC	F0	RS1	RS0	OV	F1	Р
	Program Status Word Register	Туре	rwh	rwh	rw	rw	rw	rwh	rw	rh
E0 _H	ACC Reset: 00 _H	Bit Field	ACC7	ACC6	ACC5	ACC4	ACC3	ACC2	ACC1	ACC0
	Accumulator Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
E8 _H	IEN1 Reset: 00 _H Interrupt Enable Register 1	Bit Field	ECCIP 3	ECCIP 2	ECCIP 1	ECCIP 0	EXM	EX2	ESSC	EADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F0 _H	B Reset: 00 _H	Bit Field	B7	B6	B5	B4	B3	B2	B1	B0
	B Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
F8 _H	IP1 Reset: 00 _H Interrupt Priority 1 Register	Bit Field	PCCIP 3	PCCIP 2	PCCIP 1	PCCIP 0	PXM	PX2	PSSC	PADC
		Туре	rw	rw	rw	rw	rw	rw	rw	rw
F9 _H	IPH1 Reset: 00 _H Interrupt Priority 1 High Register	Bit Field	PCCIP 3H	PCCIP 2H	PCCIP 1H	PCCIP 0H	PXMH	PX2H	PSSC H	PADC H
		Туре	rw	rw	rw	rw	rw	rw	rw	rw

Table 5CPU Register Overview (cont'd)

3.2.4.2 MDU Registers

The MDU SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 6MDU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 1									
в0 _Н	MDUSTAT Reset: 00 _H	Bit Field			0			BSY	IERR	IRDY
	MDU Status Register	Туре			r			rh	rwh	rwh
в1 _Н	MDUCON Reset: 00 _H MDU Control Register	Bit Field	IE	IR	RSEL	STAR T		OPCODE		
		Туре	rw	rw	rw	rwh		r	W	
B2 _H	MD0 Reset: 00 _H	Bit Field	DATA							
	MDU Operand Register 0	Туре	rw							
B2 _H	MR0 Reset: 00 _H	Bit Field				DA	TA			
	MDU Result Register 0	Туре	rh							
B3 _H MD1 Reset: 00 _H Bit Field DATA										
	MDU Operand Register 1	Туре				r	w			

XC886/888CLM

Functional Description

Table 10Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0, PAGE 1									
80 _H	P0_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Select Register	Туре	rw							
86 _H	P0_PUDEN Reset: C4 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Enable Register	Туре	rw							
90 _H	P1_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Select Register	Туре	rw							
91 _H	P1_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Enable Register	Туре	rw							
92 _H	P5_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Select Register	Туре	rw							
93 _H	P5_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Enable Register	Туре	rw							
A0 _H	P2_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Select Register	Туре	rw							
A1 _H	P2_PUDEN Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Enable Register	Туре	rw							
во _Н	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
B1 _H	P3_PUDEN Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8 _H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	= 0, PAGE 2			•				•		
⁸⁰ H	P0_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	PU Alternate Select 1 Register	Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	PT Alternate Select 0 Register	Туре	rw							
⁹¹ H	P1_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	I Allemale Select I Register	Туре	rw							
92 _H	P5_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
		Туре	rw							

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
D3 _H	ADC_RESR3H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 3 High	Туре				r	h			
RMAP =	0, PAGE 3									
CA _H	ADC_RESRA0L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 0, View A Low	Туре		rh		rh	rh		rh	
св _Н	ADC_RESRA0H Reset: 00 _H	Bit Field				RES	SULT	•		
	Result Register 0, View A High	Туре				r	h			
сс _Н	ADC_RESRA1L Reset: 00 _H	Bit Field	RESULT VF DRC				CHNR			
	Result Register 1, View A Low	Туре	rh rh rh							
CD _H	ADC_RESRA1H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 1, View A High	Туре				r	h			
CEH	ADC_RESRA2L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR	
	Result Register 2, View A Low	Туре		rh		rh	rh		rh	
CF _H	ADC_RESRA2H Reset: 00 _H	Bit Field				RES	SULT			
	Result Register 2, View A High	Туре				r	h			
D2 _H	ADC_RESRA3L Reset: 00 _H	Bit Field		RESULT		VF	DRC CHNR			
	Result Register 3, View A Low	Туре		rh		rh	rh rh rh			
D3 _H	ADC_RESRA3H Reset: 00 _H	Bit Field				RES	ULT			
	Result Register 3, View A High	Туре	rh							
RMAP =	= 0, PAGE 4									
са _Н	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
св _Н	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
сс ^н	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r		rw
CD _H	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R
		Туре	rw	rw	r	rw		r	-	rw
CEH	ADC_VFCR Reset: 00 _H	Bit Field		()		VFC3	VFC2	VFC1	VFC0
	Valid Flag Clear Register	Туре			r		w	w	w	w
RMAP =	= 0, PAGE 5		<u>·</u> ·							
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0
		Туре	rh	rh	rh	rh	rh	rh	rh	rh
св _Н	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0
		Туре	w	w	w	w	w	w	w	w

Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
Fe _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15 UART1 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	: 1										
C8 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh	
C9 _H	SBUF Reset: 00 _H	Bit Field				V	۹L				
	Serial Data Buffer Register	Туре		rwh							
CA _H	BCON Reset: 00 _H	Bit Field	0 BRPRE					R			
	Baud Rate Control Register	Туре		r				rw		rw	
св _Н	BG Reset: 00 _H	Bit Field				BR_V	ALUE				
	Baud Rate Timer/Reload Register	Туре	rwh								
сс _Н	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN	
	Fractional Divider Control Register	Туре			r			rwh	rw	rw	
CD _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP				
	Fractional Divider Reload Register	Туре	rw								
CeH	FDRES Reset: 00 _H	Bit Field				RES	ULT				
	Fractional Divider Result Register	Туре				r	h				

3.5 Parallel Ports

The XC886 has 34 port pins organized into five parallel ports, Port 0 (P0) to Port 4 (P4), while the XC888 has 48 port pins organized into six parallel ports, Port 0 (P0) to Port 5 (P5). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. Ports P0, P1, P3, P4 and P5 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected. Port P2 is an input-only port, providing general purpose input functions, alternate input functions for the on-chip peripherals. Converter (ADC).

Bidirectional Port Features

- Configurable pin direction
- Configurable pull-up/pull-down devices
- Configurable open drain mode
- Transfer of data through digital inputs and outputs (general purpose I/O)
- Alternate input/output for on-chip peripherals

Input Port Features

- Configurable input driver
- Configurable pull-up/pull-down devices
- Receive of data through digital input (general purpose input)
- Alternate input for on-chip peripherals
- Analog input for ADC module

Figure 23 V_{DDP} , V_{DDC} and V_{RESET} during Power-on Reset

The second type of reset in XC886/888 is the hardware reset. This reset function can be used during normal operation or when the chip is in power-down mode. A reset input pin RESET is provided for the hardware reset.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects a malfunction in the system.

Another type of reset that needs to be detected is a reset while the device is in power-down mode (wake-up reset). While the contents of the static RAM are undefined after a power-on reset, they are well defined after a wake-up reset from power-down mode.

Figure 24 CGU Block Diagram

PLL Base Mode

When the oscillator is disconnected from the PLL, the system clock is derived from the VCO base (free running) frequency clock (**Table 25**) divided by the K factor.

$$f_{SYS} = f_{VCObase} \times \frac{1}{K}$$

(3.1)

Prescaler Mode (VCO Bypass Operation)

In VCO bypass operation, the system clock is derived from the oscillator clock, divided by the P and K factors.

$$f_{SYS} = f_{OSC} \times \frac{1}{P \times K}$$

(3.2)

Figure 25 External Oscillator Circuitry

Note: For crystal operation, it is strongly recommended to measure the negative resistance in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the minimum and maximum values of the negative resistance specified by the crystal supplier.

3.11 Multiplication/Division Unit

The Multiplication/Division Unit (MDU) provides fast 16-bit multiplication, 16-bit and 32-bit division as well as shift and normalize features. It has been integrated to support the XC886/888 Core in real-time control applications, which require fast mathematical computations.

Features

- Fast signed/unsigned 16-bit multiplication
- Fast signed/unsigned 32-bit divide by 16-bit and 16-bit divide by 16-bit operations
- 32-bit unsigned normalize operation
- 32-bit arithmetic/logical shift operations

 Table 28 specifies the number of clock cycles used for calculation in various operations.

Operation	Result	Remainder	No. of Clock Cycles used for calculation
Signed 32-bit/16-bit	32-bit	16-bit	33
Signed 16-bit/16bit	16-bit	16-bit	17
Signed 16-bit x 16-bit	32-bit	-	16
Unsigned 32-bit/16-bit	32-bit	16-bit	32
Unsigned 16-bit/16-bit	16-bit	16-bit	16
Unsigned 16-bit x 16-bit	32-bit	-	16
32-bit normalize	-	-	No. of shifts + 1 (Max. 32)
32-bit shift L/R	-	-	No. of shifts + 1 (Max. 32)

 Table 28
 MDU Operation Characteristics

- CAN functionality according to CAN specification V2.0 B active.
- Dedicated control registers are provided for each CAN node.
- A data transfer rate up to 1 MBaud is supported.
- Flexible and powerful message transfer control and error handling capabilities are implemented.
- Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter.
- Full-CAN functionality: A set of 32 message objects can be individually
 - allocated (assigned) to any CAN node
 - configured as transmit or receive object
 - setup to handle frames with 11-bit or 29-bit identifier
 - counted or assigned a timestamp via a frame counter
 - configured to remote monitoring mode
- Advanced Acceptance Filtering:
 - Each message object provides an individual acceptance mask to filter incoming frames.
 - A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames.
 - Message objects can be grouped into 4 priority classes.
 - The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules.
- Advanced Message Object Functionality:
 - Message Objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects.
 - Message objects can be linked to form a gateway to automatically transfer frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined.
- Advanced Data Management:
 - The Message objects are organized in double chained lists.
 - List reorganizations may be performed any time, even during full operation of the CAN nodes.
 - A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list.
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation.
 - Static Allocation Commands offer compatibility with TwinCAN applications, which are not list based.
- Advanced Interrupt Handling:
 - Up to 8 interrupt output lines are available. Most interrupt requests can be individually routed to one of the 8 interrupt output lines.
 - Message postprocessing notifications can be flexibly aggregated into a dedicated register field of 64 notification bits.

However, it is important to note that the conversion error could increase due to loss of charges on the capacitors, if f_{ADC} becomes too low during slow-down mode.

3.21.2 ADC Conversion Sequence

The analog-to-digital conversion procedure consists of the following phases:

- Synchronization phase (*t*_{SYN})
- Sample phase (t_S)
- Conversion phase
- Write result phase (t_{WR})

Figure 36 ADC Conversion Timing

3.22.1 JTAG ID Register

This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04_H), and the same is also true immediately after reset.

The JTAG ID register contents for the XC886/888 Flash devices are given in Table 35.

Device Type	Device Name	JTAG ID	
Flash	XC886/888*-8FF	1012 0083 _H	
	XC886/888*-6FF	1012 5083 _H	
ROM	XC886/888*-8RF	1013 C083 _H	
	XC886/888*-6RF	1013 D083 _H	

Table 35JTAG ID Summary

Note: The asterisk (*) above denotes all possible device configurations.

103

Table 36Chip Identification Number (cont'd)

Product Variant	mber			
	AA-Step	AB-Step	AC-Step	
XC886LM-6RFA 3V3	22411522 _H	-	-	
XC888LM-6RFA 3V3	22411523 _H	-	-	
XC886CM-8RFA 3V3	22480502 _H	-	-	
XC888CM-8RFA 3V3	22480503 _H	-	-	
XC886C-8RFA 3V3	22480542 _H	-	-	
XC888C-8RFA 3V3	22480543 _H	-	-	
XC886-8RFA 3V3	22480562 _H	-	-	
XC888-8RFA 3V3	22480563 _H	-	-	
XC886CM-6RFA 3V3	22491502 _H	-	-	
XC888CM-6RFA 3V3	22491503 _H	-	-	
XC886C-6RFA 3V3	22491542 _H	-	-	
XC888C-6RFA 3V3	22491543 _H	-	-	
XC886-6RFA 3V3	22491562 _H	-	-	
XC888-6RFA 3V3	22491563 _H	-	-	
XC886CLM-8RFA 5V	22800502 _H	-	-	
XC888CLM-8RFA 5V	22800503 _H	-	-	
XC886LM-8RFA 5V	22800522 _H	-	-	
XC888LM-8RFA 5V	22800523 _H	-	-	
XC886CLM-6RFA 5V	22811502 _H	-	-	
XC888CLM-6RFA 5V	22811503 _H	-	-	
XC886LM-6RFA 5V	22811522 _H	-	-	
XC888LM-6RFA 5V	22811523 _H	-	-	
XC886CM-8RFA 5V	22880502 _H	-	-	
XC888CM-8RFA 5V	22880503 _H	-	-	
XC886C-8RFA 5V	22880542 _H	-	-	
XC888C-8RFA 5V	22880543 _H	-	-	
XC886-8RFA 5V	22880562 _H	-	-	
XC888-8RFA 5V	22880563 _H	-	-	
XC886CM-6RFA 5V	22891502 _H	-	-	

Electrical Parameters

Table 42 Power Dow	able 42 Power Down Current (Operating Conditions apply; $V_{DDP} = 5V$ range				
Parameter	Symbol	Limit Values		Unit	Test Condition
		typ. ¹⁾	max. ²⁾		
$V_{\rm DDP}$ = 5V Range		·			
Power-Down Mode	I _{PDP}	1	10	μA	$T_{A} = + 25 \ ^{\circ}C^{3)4)}$
		-	30	μA	$T_{A} = + 85 \ ^{\circ}C^{4)5)}$
1) The typical $I_{}$ values are me	asured at $V_{} = 5.0$	/			

Power Down Current (Operating Conditions apply: U able 10 - E (1 - C)

1) The typical I_{PDP} values are measured at V_{DDP} = 5.0 V.

2) The maximum I_{PDP} values are measured at V_{DDP} = 5.5 V.

3) I_{PDP} has a maximum value of 200 μ A at T_A = + 125 °C.

4) I_{PDP} is measured with: RESET = V_{DDP} , V_{AGND} = V_{SS} , RXD/INT0 = V_{DDP} ; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs.

5) Not subjected to production test, verified by design/characterization.

Electrical Parameters

4.3.7 SSC Master Mode Timing

Table 51 provides the characteristics of the SSC timing in the XC886/888.

Table 51	SSC Master Mode Timing	(Operating Conditions	apply; $CL = 50 pF$)
	U		

Parameter	Symbol		Limit Values		Unit	Test
			min.	max.		Conditions
SCLK clock period	t ₀	CC	2*T _{SSC}	_	ns	1)2)
MTSR delay from SCLK	t ₁	CC	0	8	ns	2)
MRST setup to SCLK 飞∟	<i>t</i> ₂	SR	24	-	ns	2)
MRST hold from SCLK	<i>t</i> ₃	SR	0	-	ns	2)

1) $T_{SSCmin} = T_{CPU} = 1/f_{CPU}$. When $f_{CPU} = 24$ MHz, $t_0 = 83.3$ ns. T_{CPU} is the CPU clock period.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

Figure 52 SSC Master Mode Timing