

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Last Time Buy
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc888cm8ffi5vacfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

XC886/888 Variant Devices

The XC886/888 product family features devices with different configurations, program memory sizes, package options, power supply voltage, temperature and quality profiles (Automotive or Industrial), to offer cost-effective solutions for different application requirements.

The list of XC886/888 device configurations are summarized in **Table 1**. For each configuration, 2 types of packages are available:

- PG-TQFP-48, which is denoted by XC886 and;
- PG-TQFP-64, which is denoted by XC888.

Device Name	CAN Module	LIN BSL Support	MDU Module
XC886/888	No	No	No
XC886/888C	Yes	No	No
XC886/888CM	Yes	No	Yes
XC886/888LM	No	Yes	Yes
XC886/888CLM	Yes	Yes	Yes

Table 1Device Configuration

Note: For variants with LIN BSL support, only LIN BSL is available regardless of the availability of the CAN module.

From these 10 different combinations of configuration and package type, each are further made available in many sales types, which are grouped according to device type, program memory sizes, power supply voltage, temperature and quality profile (Automotive or Industrial), as shown in Table 2.

Table 2Device Profile

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAK-XC886*/888*-8FFA 5V	Flash	32	5.0	-40 to 125	Automotive
SAK-XC886*/888*-6FFA 5V	Flash	24	5.0	-40 to 125	Automotive
SAF-XC886*/888*-8FFA 5V	Flash	32	5.0	-40 to 85	Automotive
SAF-XC886*/888*-6FFA 5V	Flash	24	5.0	-40 to 85	Automotive
SAF-XC886*/888*-8FFI 5V	Flash	32	5.0	-40 to 85	Industrial
SAF-XC886*/888*-6FFI 5V	Flash	24	5.0	-40 to 85	Industrial

General Device Information

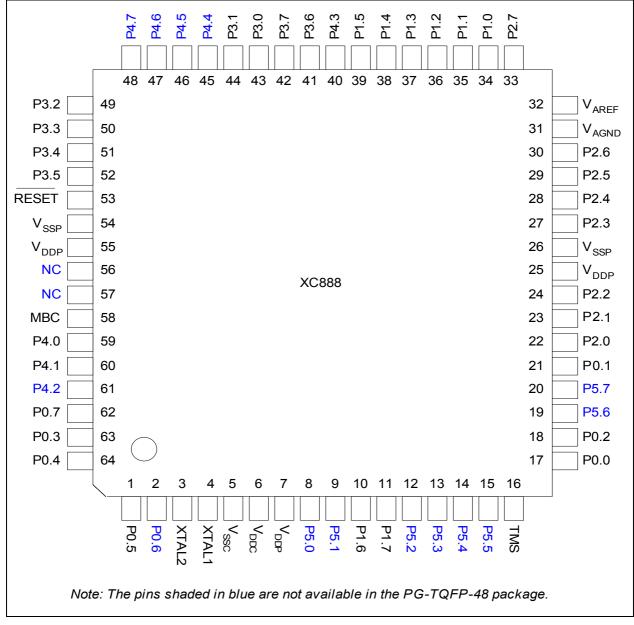


Figure 5 XC888 Pin Configuration, PG-TQFP-64 Package (top view)

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
P1		I/O		I/O port. It ca for the JTAG	B-bit bidirectional general purpose an be used as alternate functions 6, CCU6, UART, Timer 0, Timer 1, 1, er 21, MultiCAN and SSC.
P1.0	26/34		PU	RXD_0 T2EX RXDC0_0	UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input
P1.1	27/35		PU	EXINT3 T0_1 TDO_1 TXD_0 TXDC0_0	External Interrupt Input 3 Timer 0 Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output
P1.2	28/36		PU	SCK_0	SSC Clock Input/Output
P1.3	29/37		PU	MTSR_0 TXDC1_3	SSC Master Transmit Output/Slave Receive Input MultiCAN Node 1 Transmitter Output
P1.4	30/38		PU	MRST_0 EXINT0_1 RXDC1_3	SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input
P1.5	31/39		PU	CCPOS0_1 EXINT5 T1_1 EXF2_0 RXDO_0	CCU6 Hall Input 0 External Interrupt Input 5 Timer 1 Input Timer 2 External Flag Output UART Transmit Data Output

Table 3Pin Definitions and Functions (cont'd)

XC886/888CLM

General Device Information

Symbol	Pin Number (TQFP-48/64)	Туре	Reset State	Function	
Р3		I/O		I/O port. It ca	B-bit bidirectional general purpose an be used as alternate functions ART1, Timer 21 and MultiCAN.
P3.0	35/43		Hi-Z	CCPOS1_2 CC60_0 RXDO1_1	CCU6 Hall Input 1 Input/Output of Capture/Compare channel 0 UART1 Transmit Data Output
P3.1	36/44		Hi-Z	CCPOS0_2 CC61_2 COUT60_0 TXD1_1	CCU6 Hall Input 0 Input/Output of Capture/Compare channel 1 Output of Capture/Compare channel 0 UART1 Transmit Data Output/Clock Output
P3.2	37/49		Hi-Z	CCPOS2_2 RXDC1_1 RXD1_1 CC61_0	CCU6 Hall Input 2 MultiCAN Node 1 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1
P3.3	38/50		Hi-Z	COUT61_0 TXDC1_1	Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output
P3.4	39/51		Hi-Z	CC62_0 RXDC0_1 T2EX1_0	Input/Output of Capture/Compare channel 2 MultiCAN Node 0 Receiver Input Timer 21 External Trigger Input
P3.5	40/52		Hi-Z	COUT62_0 EXF21_0 TXDC0_1	Output of Capture/Compare channel 2 Timer 21 External Flag Output MultiCAN Node 0 Transmitter Output
P3.6	33/41		PD	CTRAP_0	CCU6 Trap Input

Table 3Pin Definitions and Functions (cont'd)

General Device Information

Table 3Pin Definitions and Functions (cont'd)

Symbol	Pin Number (TQFP-48/64)	Reset State	Function	
P3.7	34/42	Hi-Z	EXINT4 COUT63_0	External Interrupt Input 4 Output of Capture/Compare channel 3

The page register has the following definition:

MOD_PAGE Page Register for module MOD

Reset Value: 00_H

7	6	5	4	3	2	1	0
0	Ρ	ST	NR	0		PAGE	
v	V	V	V	r		rw	I

Field	Bits	Туре	Description
PAGE	[2:0]	rw	Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page.
STNR	[5:4]	W	Storage NumberThis number indicates which storage bit field is the target of the operation defined by bit field OP.If $OP = 10_B$, the contents of PAGE are saved in STx before being overwritten with the new value.If $OP = 11_B$, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored.00ST0 is selected. 0101ST1 is selected. 1010ST2 is selected. 1111ST3 is selected.

3.2.4 XC886/888 Register Overview

The SFRs of the XC886/888 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in **Chapter 3.2.4.1** to **Chapter 3.2.4.14**.

Note: The addresses of the bitaddressable SFRs appear in bold typeface.

3.2.4.1 CPU Registers

The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1).

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 0 or 1	I.									
81 _H	SP Reset: 07 _H	Bit Field				S	P				
	Stack Pointer Register	Туре				r	W				
82 _H	DPL Reset: 00 _H	Bit Field	DPL7	DPL6	DPL5	DPL4	DPL3	DPL2	DPL1	DPL0	
	Data Pointer Register Low	Туре	rw	rw	rw	rw	rw	rw	rw	rw	
83 _H	DPH Reset: 00 _H	Bit Field	DPH7	DPH6	DPH5	DPH4	DPH3	DPH2	DPH1	DPH0	
	Data Pointer Register High	Туре	rw	rw	rw	rw	rw	rw	rw	rw	
87 _H	PCON Reset: 00 _H	Bit Field	SMOD		0		GF1	GF0	0	IDLE	
	Power Control Register	Туре	rw		r		rw	rw	r	rw	
⁸⁸ H	TCON Reset: 00 _H	Bit Field	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
	Timer Control Register	Туре	rwh	rw	rwh	rw	rwh	rw	rwh	rw	
89 _H	TMOD Reset: 00 _H Timer Mode Register	Bit Field	GATE 1	T1S	T1M		GATE 0	TOS	ТОМ		
 		Туре	rw	rw	r	rw		rw	r	w	
8A _H	TL0 Reset: 00 _H	Bit Field		•		V	AL	•			
	Timer 0 Register Low	Туре				rv	vh				
8B _H	TL1 Reset: 00 _H	Bit Field	VAL								
	Timer 1 Register Low	Туре			rwh						
8C _H	THO Reset: 00 _H	Bit Field				V	AL				
	Timer 0 Register High	Туре				rv	vh				
8D _H	TH1 Reset: 00 _H	Bit Field				V	AL				
	Timer 1 Register High	Туре				rv	vh				
98 _H	SCON Reset: 00 _H	Bit Field	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh	
99 _H	SBUF Reset: 00 _H	Bit Field				V	AL				
	Serial Data Buffer Register	Туре				rv	vh				
A2 _H	EO Reset: 00 _H Extended Operation Register	Bit Field		0		TRAP_ EN		0		DPSE L0	
		Туре		r		rw		r		rw	

Table 5 CPU Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
B3 _H	MR1 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 1	Туре	rh								
B4 _H	MD2 Reset: 00 _H	Bit Field				DA	TA				
	MDU Operand Register 2	Туре	rw								
B4 _H	MR2 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 2	Туре				r	h				
в5 _Н	MD3 Reset: 00 _H	Bit Field	DATA								
	MDU Operand Register 3	Туре	rw								
в5 _Н	MR3 Reset: 00 _H	Bit Field	DATA								
	MDU Result Register 3	Туре	rh								
B6 _H	MD4 Reset: 00 _H	Bit Field				DA	TA				
	MDU Operand Register 4	Туре				r	w				
B6 _H	MR4 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 4	Туре				r	h				
в7 _Н	MD5 Reset: 00 _H	Bit Field	DATA								
	MDU Operand Register 5	Туре	rw								
в7 _Н	MR5 Reset: 00 _H	Bit Field				DA	TA				
	MDU Result Register 5	Туре				r	'n				

Table 6MDU Register Overview (cont'd)

3.2.4.3 CORDIC Registers

The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 7 CORDIC Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 1							1			
9A _H	CD_CORDXL Reset: 00 _H	Bit Field				DA	TAL				
	CORDIC X Data Low Byte	Туре	rw								
9B _H	CD_CORDXH Reset: 00 _H	Bit Field				DA	TAH				
	CORDIC X Data High Byte	Туре	rw								
9CH	CD_CORDYL Reset: 00 _H	Bit Field	DATAL								
	CORDIC Y Data Low Byte	Туре	rw								
9D _H	CD_CORDYH Reset: 00 _H	Bit Field				DA	TAH				
	CORDIC Y Data High Byte	Туре				r	W				
9E _H	CD_CORDZL Reset: 00 _H	Bit Field				DA	TAL				
	CORDIC Z Data Low Byte	Туре	rw								
9F _H	CD_CORDZH Reset: 00 _H	Bit Field				DA	ТАН				
C	CORDIC Z Data High Byte	Туре				r	W				

Table 9WDT Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
ве _Н	WDTL Reset: 00 _H	Bit Field	WDT								
	Watchdog Timer Register Low	Туре	rh								
bf _h	F _H WDTH Reset: 00 _H	Bit Field	ld WDT								
	Watchdog Timer Register High	Туре	rh								

3.2.4.6 Port Registers

The Port SFRs can be accessed in the standard memory area (RMAP = 0).

Table 10Port Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0									<u>.</u>
B2 _H			Field OP		ST	NR	0		PAGE	
	Page Register	Туре	١	N	١	N	r		rw	
RMAP =	= 0, PAGE 0				•		•			
80 _H	P0_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
86 _H	P0_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
90 _H	P1_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
91 _H	P1_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
92 _H	P5_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
93 _H	P5_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
A0 _H	P2_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
A1 _H	P2_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
во _Н	P3_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
в1 _Н	P3_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
C8 _H	P4_DATA Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Data Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw
C9 _H	P4_DIR Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Direction Register	Туре	rw	rw	rw	rw	rw	rw	rw	rw

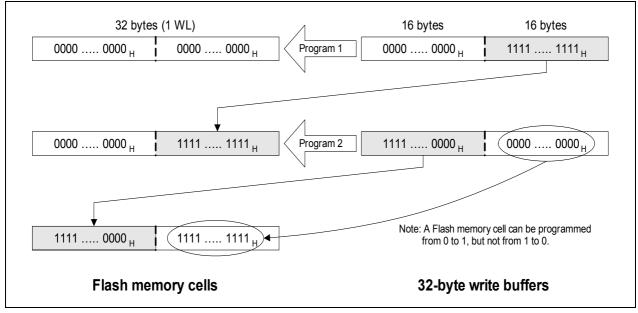
Table 14CCU6 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
Fe _H	CCU6_CMPSTATL Reset: 00 _H Compare State Register Low	Bit Field	0	CC63 ST	CC POS2	CC POS1	CC POS0	CC62 ST	CC61 ST	CC60 ST
		Туре	r	rh	rh	rh	rh	rh	rh	rh
FF _H	CCU6_CMPSTATH Reset: 00 _H Compare State Register High	Bit Field	T13IM	COUT 63PS	COUT 62PS	CC62 PS	COUT 61PS	CC61 PS	COUT 60PS	CC60 PS
		Туре	rwh	rwh	rwh	rwh	rwh	rwh	rwh	rwh

3.2.4.11 UART1 Registers

The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1).

Table 15 UART1 Register Overview


Addr	Register Name	Bit	7	6	5	4	3	2	1	0	
RMAP =	= 1	1								1	
C8 _H	SCON Reset: 00 _H		SM0	SM1	SM2	REN	TB8	RB8	TI	RI	
	Serial Channel Control Register	Туре	rw	rw	rw	rw	rw	rwh	rwh	rwh	
C9 _H	SBUF Reset: 00 _H	Bit Field				V	AL				
	Serial Data Buffer Register	Туре				rv	vh				
са _Н	BCON Reset: 00 _H	Bit Field		()			BRPRE		R	
	Baud Rate Control Register	Туре			r			rw		rw	
св _Н	BG Reset: 00 _H	Bit Field	BR_VALUE								
	Baud Rate Timer/Reload Register	Туре				rv	vh				
сс _Н	FDCON Reset: 00 _H	Bit Field			0			NDOV	FDM	FDEN	
	Fractional Divider Control Register	Туре			r			rwh	rw	rw	
CD _H	FDSTEP Reset: 00 _H	Bit Field				ST	ΈP				
	Fractional Divider Reload Register	Туре	rw								
Ceh	CE _H FDRES Reset: 00 _H					RES	SULT				
	Fractional Divider Result Register	Туре				r	h				

3.3.3 Flash Programming Width

For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL.

For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see **Figure 12**)

Figure 12 D-Flash Programming

Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent "over-programming".

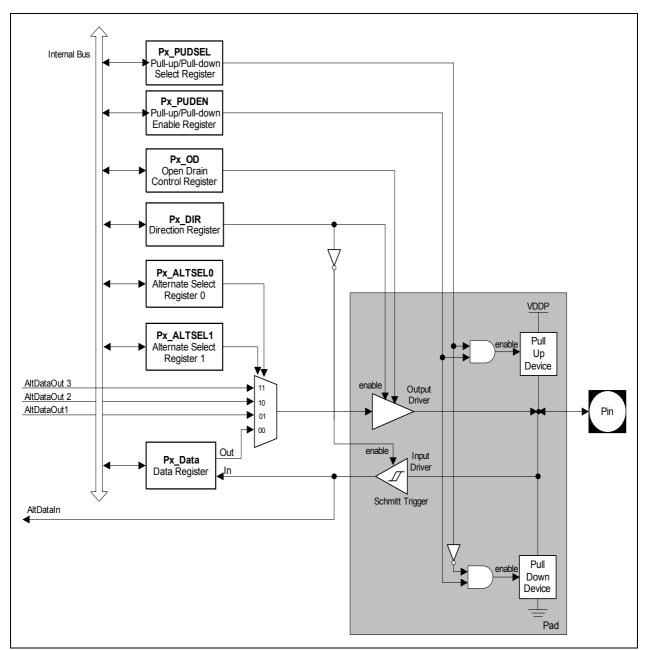


Figure 19 General Structure of Bidirectional Port

For power saving purposes, the clocks may be disabled or slowed down according to **Table 26**.

Table 26System frequency (f_{sys} = 96 MHz)

Power Saving Mode	Action
Idle	Clock to the CPU is disabled.
Slow-down	Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL.
Power-down	Oscillator and PLL are switched off.

needed for the handshaking between the master and slave tasks is provided by the master task through the header portion of the frame.

The header consists of a break and synch pattern followed by an identifier. Among these three fields, only the break pattern cannot be transmitted as a normal 8-bit UART data. The break must contain a dominant value of 13 bits or more to ensure proper synchronization of slave nodes.

In the LIN communication, a slave task is required to be synchronized at the beginning of the protected identifier field of frame. For this purpose, every frame starts with a sequence consisting of a break field followed by a synch byte field. This sequence is unique and provides enough information for any slave task to detect the beginning of a new frame and be synchronized at the start of the identifier field.

Upon entering LIN communication, a connection is established and the transfer speed (baud rate) of the serial communication partner (host) is automatically synchronized in the following steps:

STEP 1: Initialize interface for reception and timer for baud rate measurement

STEP 2: Wait for an incoming LIN frame from host

STEP 3: Synchronize the baud rate to the host

- STEP 4: Enter for Master Request Frame or for Slave Response Frame
- Note: Re-synchronization and setup of baud rate are always done for **every** Master Request Header or Slave Response Header LIN frame.

3.23 Chip Identification Number

The XC886/888 identity (ID) register is located at Page 1 of address $B3_{H}$. The value of ID register is 09_{H} for Flash devices and 22_{H} for ROM devices. However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product, variant type and device step information.

Two methods are provided to read a device's chip identification number:

- In-application subroutine, GET_CHIP_INFO
- Bootstrap loader (BSL) mode A

Table 36 lists the chip identification numbers of available XC886/888 Flash and ROM device variants.

Product Variant	Chip Identification Number								
	AA-Step	AB-Step	AC-Step						
Flash Devices									
XC886CLM-8FFA 3V3	-	09500102 _H	0B500102 _H						
XC888CLM-8FFA 3V3	-	09500103 _H	0B500103 _H						
XC886LM-8FFA 3V3	-	09500122 _H	0B500122 _H						
XC888LM-8FFA 3V3	-	09500123 _H	0B500123 _H						
XC886CLM-6FFA 3V3	-	09551502 _H	0B551502 _H						
XC888CLM-6FFA 3V3	-	09551503 _H	0B551503 _H						
XC886LM-6FFA 3V3	-	09551522 _H	0B551522 _H						
XC888LM-6FFA 3V3	-	09551523 _н	0B551523 _H						
XC886CM-8FFA 3V3	-	09580102 _H	0B580102 _H						
XC888CM-8FFA 3V3	-	09580103 _H	0B580103 _H						
XC886C-8FFA 3V3	-	09580142 _H	0B580142 _H						
XC888C-8FFA 3V3	-	09580143 _H	0B580143 _H						
XC886-8FFA 3V3	-	09580162 _H	0B580162 _H						
XC888-8FFA 3V3	-	09580163 _H	0B580163 _H						
XC886CM-6FFA 3V3	-	095D1502 _H	0B5D1502 _H						
XC888CM-6FFA 3V3	-	095D1503 _H	0B5D1503 _H						
XC886C-6FFA 3V3	-	095D1542 _H	0B5D1542 _H						
XC888C-6FFA 3V3	-	095D1543 _H	0B5D1543 _H						

Table 36 Chip Identification Number

Table 36Chip Identification Number (cont'd)

Product Variant	Chip Identification Number								
	AA-Step	AB-Step	AC-Step						
XC886-6FFA 3V3	-	095D1562 _H	0B5D1562 _H						
XC888-6FFA 3V3	-	095D1563 _H	0B5D1563 _H						
XC886CLM-8FFA 5V	-	09900102 _H	0B900102 _H						
XC888CLM-8FFA 5V	-	09900103 _H	0B900103 _H						
XC886LM-8FFA 5V	-	09900122 _H	0B900122 _H						
XC888LM-8FFA 5V	-	09900123 _H	0B900123 _H						
XC886CLM-6FFA 5V	-	09951502 _H	0B951502 _H						
XC888CLM-6FFA 5V	-	09951503 _H	0B951503 _H						
XC886LM-6FFA 5V	-	09951522 _Н	0B951522 _H						
XC888LM-6FFA 5V	-	09951523 _H	0B951523 _H						
XC886CM-8FFA 5V	-	09980102 _H	0B980102 _H						
XC888CM-8FFA 5V	-	09980103 _H	0B980103 _H						
XC886C-8FFA 5V	-	09980142 _H	0B980142 _H						
XC888C-8FFA 5V	-	09980143 _H	0B980143 _H						
XC886-8FFA 5V	-	09980162 _H	0B980162 _H						
XC888-8FFA 5V	-	09980163 _H	0B980163 _H						
XC886CM-6FFA 5V	-	099D1502 _H	0B9D1502 _H						
XC888CM-6FFA 5V	-	099D1503 _H	0B9D1503 _H						
XC886C-6FFA 5V	-	099D1542 _H	0B9D1542 _H						
XC888C-6FFA 5V	-	099D1543 _H	0B9D1543 _H						
XC886-6FFA 5V	-	099D1562 _H	0B9D1562 _H						
XC888-6FFA 5V	-	099D1563 _H	0B9D1563 _H						
ROM Devices									
XC886CLM-8RFA 3V3	22400502 _H	-	-						
XC888CLM-8RFA 3V3	22400503 _H	-	-						
XC886LM-8RFA 3V3	22400522 _H	-	-						
XC888LM-8RFA 3V3	22400523 _H	-	-						
XC886CLM-6RFA 3V3	22411502 _H	-	-						
XC888CLM-6RFA 3V3	22411503 _H	-	-						

Table 38 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit	Values	Unit	Test Conditions
			min.	max.	1	
Input high voltage at XTAL1	V _{IHX}	SR	$0.7 \times V_{ m DDC}$	V _{DDC} + 0.5	V	
Pull-up current	I _{PU}	SR	_	-5	μA	$V_{\mathrm{IHP,min}}$
			-50	_	μA	$V_{ILP,max}$
Pull-down current	$I_{\rm PD}$	SR	-	5	μA	$V_{ILP,max}$
			50	-	μA	V _{IHP,min}
Input leakage current	I _{OZ1}	СС	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 125^{\circ}C^{2)}$
Input current at XTAL1	I_{ILX}	CC	- 10	10	μA	
Overload current on any pin	I _{OV}	SR	-5	5	mA	
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	SR	-	25	mA	3)
Voltage on any pin during $V_{\rm DDP}$ power off	V _{PO}	SR	-	0.3	V	4)
Maximum current per pin (excluding V_{DDP} and V_{SS})	I _M SR	SR	-	15	mA	
Maximum current for all pins (excluding $V_{\rm DDP}$ and $V_{\rm SS}$)	$\Sigma I_{M} $	SR	-	90	mA	
Maximum current into V_{DDP}	I _{mvddp}	SR	-	120	mA	3)
Maximum current out of V_{SS}	I _{MVSS}	SR	-	120	mA	3)

 Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

2) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin. TMS pin and RESET pin have internal pull devices and are not included in the input leakage current characteristic.

3) Not subjected to production test, verified by design/characterization.

4) Not subjected to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

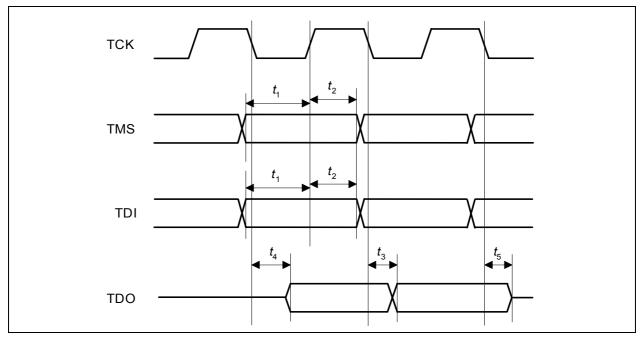
4.3.3 Power-on Reset and PLL Timing

Table 49 provides the characteristics of the power-on reset and PLL timing in the XC886/888.

Table 46	Power-On Reset and PLL Timing (Operating Conditions apply)

Parameter	Symbol		Lir	Limit Values			Test Conditions
			min.	typ.	max.		
Pad operating voltage	V_{PAD}	CC	2.3	-	-	V	1)
On-Chip Oscillator start-up time	t _{OSCST}	CC	-	-	500	ns	1)
Flash initialization time	t _{FINIT}	CC	_	160	-	μS	1)
RESET hold time	t _{RST}	SR	-	500	_	μS	$V_{\rm DDP}$ rise time (10% – 90%) \leq 500 μ s ¹⁾²⁾
PLL lock-in in time	t _{LOCK}	CC	-	-	200	μS	1)
PLL accumulated jitter	D _P		_	_	0.7	ns	1)3)

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.


2) RESET signal has to be active (low) until V_{DDC} has reached 90% of its maximum value (typ. 2.5 V).

3) PLL lock at 96 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 48 and P = 1.

Table 50JTAG Timing (Operating Conditions apply; CL = 50 pF) (cont'd)								
Parameter	Symbol		Lir	nits	Unit	Test		
			min	max		Conditions		
TDO high impedance to valid	<i>t</i> ₄	CC	-	27	ns	5V Device ¹⁾		
output from TCK			-	36	ns	3.3V Device ¹⁾		
TDO valid output to high	<i>t</i> ₅	CC	-	22	ns	5V Device ¹⁾		
impedance from TCK			-	28	ns	3.3V Device ¹⁾		

1) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

4.3.7 SSC Master Mode Timing

Table 51 provides the characteristics of the SSC timing in the XC886/888.

Table 51	SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)
----------	---

Parameter	Syn	nbol	Limi	t Values	Unit	Test	
			min.	max.		Conditions	
SCLK clock period	t ₀	CC	2*T _{SSC}	-	ns	1)2)	
MTSR delay from SCLK	t ₁	CC	0	8	ns	2)	
MRST setup to SCLK	<i>t</i> ₂	SR	24	-	ns	2)	
MRST hold from SCLK	t ₃	SR	0	-	ns	2)	

1) $T_{SSCmin} = T_{CPU} = 1/f_{CPU}$. When $f_{CPU} = 24$ MHz, $t_0 = 83.3$ ns. T_{CPU} is the CPU clock period.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

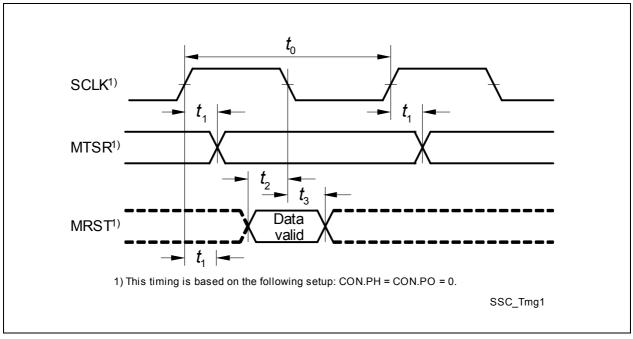


Figure 52 SSC Master Mode Timing