

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	XC800
Core Size	8-Bit
Speed	24MHz
Connectivity	LINbus, SSI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	48
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.75K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-TQFP-64
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc888lm6ffi3v3acfxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC886/888 Data Sheet

Revision History: V1.2 2009-07

Previous \	/ersions: V1.0, V1.1							
Page	Subjects (major changes since last revision)							
Changes f	from V1.1 2009-01 to V1.2 2009-07							
8 9	Note on LIN baud rate detection is added.							
92	RXD slave line in SSC block diagram is updated.							
108	Electrical parameters are now valid for all variants, previous note on exclusion of ROM variants is removed.							
116	Symbol for ADC error parameters are updated.							
120	Power supply current parameters for ROM variants are updated.							
128	Test condition for the on-chip oscillator short term deviation is updated.							

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

Summary of Features

Table 2 Device Frome (cont d)	Table 2	Device Profile (cont'd)
--------------------------------------	---------	-------------------------

Sales Type	Device Type	Program Memory (Kbytes)	Power Supply (V)	Temp- erature (°C)	Quality Profile
SAK-XC886*/888*-8FFA 3V3	Flash	32	3.3	-40 to 125	Automotive
SAK-XC886*/888*-6FFA 3V3	Flash	24	3.3	-40 to 125	Automotive
SAF-XC886*/888*-8FFA 3V3	Flash	32	3.3	-40 to 85	Automotive
SAF-XC886*/888*-6FFA 3V3	Flash	24	3.3	-40 to 85	Automotive
SAF-XC886*/888*-8FFI 3V3	Flash	32	3.3	-40 to 85	Industrial
SAF-XC886*/888*-6FFI 3V3	Flash	24	3.3	-40 to 85	Industrial

- Note: The asterisk (*) above denotes the device configuration letters from **Table 1**. Corresponding ROM derivatives will be available on request.
- Note: For variants with LIN BSL support, only LIN BSL is available regardless of the availability of the CAN module.

As this document refers to all the derivatives, some description may not apply to a specific product. For simplicity, all versions are referred to by the term XC886/888 throughout this document.

Ordering Information

The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- The package and the type of delivery

For the available ordering codes for the XC886/888, please refer to your responsible sales representative or your local distributor.

Note: The ordering codes for the Mask-ROM versions are defined for each product after verification of the respective ROM code.

Table 3

General Device Information

Pin Definitions and Functions (cont'd) Type Reset Function Pin Number Symbol (TQFP-48/64) State **P2** I Port 2 Port 2 is an 8-bit general purpose input-only port. It can be used as alternate functions for

			also used as the analog inputs for the ADC.					
P2.0	14/22	Hi-Z	CCPOS0_0 EXINT1_0 T12HR_2	CCU6 Hall Input 0 External Interrupt Input 1 CCU6 Timer 12 Hardware Run Input				
			TCK_1 CC61_3	JTAG Clock Input Input of Capture/Compare channel 1				
			AN0	Analog Input 0				
P2.1	15/23	Hi-Z	CCPOS1_0 EXINT2_0 T13HR_2	CCU6 Hall Input 1 External Interrupt Input 2 CCU6 Timer 13 Hardware Run Input				
			TDI_1 CC62_3	JTAG Serial Data Input Input of Capture/Compare channel 2				
		· ·· -	ANT					
P2.2	16/24	Hi-Z	<u>CCPOS2_</u> 0 CTRAP_1 CC60_3	CCU6 Hall Input 2 CCU6 Trap Input Input of Capture/Compare				
				channel 0 Apalog Input 2				
D2 3	10/27	Ці 7						
F 2.3	19/27		ANJ					
P2.4	20/28	HI-Z	AN4	Analog Input 4				
P2.5	21/29	Hi-Z	AN5	Analog Input 5				
P2.6	22/30	Hi-Z	AN6	Analog Input 6				
P2.7	25/33	Hi-Z	AN7	Analog Input 7				

3 Functional Description

Chapter 3 provides an overview of the XC886/888 functional description.

3.1 **Processor Architecture**

The XC886/888 is based on a high-performance 8-bit Central Processing Unit (CPU) that is compatible with the standard 8051 processor. While the standard 8051 processor is designed around a 12-clock machine cycle, the XC886/888 CPU uses a 2-clock machine cycle. This allows fast access to ROM or RAM memories without wait state. Access to the Flash memory, however, requires an additional wait state (one machine cycle). The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte instructions.

The XC886/888 CPU provides a range of debugging features, including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and Special Function Registers (SFRs).

Figure 6 shows the CPU functional blocks.

Figure 6 CPU Block Diagram

Flash Protection	Without hardware protection	With hardware protection					
P-Flash program and erase	Possible	Not possible	Not possible				
D-Flash contents can be read by	Read instructions in any program memory	Read instructions in any program memory	Read instructions in the P-Flash or D- Flash				
External access to D-Flash	Not possible	Not possible	Not possible				
D-Flash program	Possible	Possible	Not possible				
D-Flash erase	Possible	Possible, on condition that bit DFLASHEN in register MISC_CON is set to 1 prior to each erase operation	Not possible				

Table 4Flash Protection Modes (cont'd)

BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. The Flash protection is then disabled upon the next reset.

For the ROM device, the ROM is protected at all times and BSL mode 6 is used only to block external access to the device. However, unlike the Flash device, it is not possible to disable the memory protection of the ROM device. Here, entering BSL mode 6 will result in a protection error.

Note: If ROM read-out protection is enabled, only read instructions in the ROM memory can target the ROM contents.

Although no protection scheme can be considered infallible, the XC886/888 memory protection strategy provides a very high level of protection for a general purpose microcontroller.

XC886/888CLM

Functional Description

Table 10Port Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0, PAGE 1									
80 _H	P0_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Select Register	Туре	rw							
86 _H	P0_PUDEN Reset: C4 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Pull-Up/Pull-Down Enable Register	Туре	rw							
90 _H	P1_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Select Register	Туре	rw							
91 _H	P1_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P1 Pull-Up/Pull-Down Enable Register	Туре	rw							
92 _H	P5_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Select Register	Туре	rw							
93 _H	P5_PUDEN Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P5 Pull-Up/Pull-Down Enable Register	Туре	rw							
A0 _H	P2_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Select Register	Туре	rw							
A1 _H	P2_PUDEN Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P2 Pull-Up/Pull-Down Enable Register	Туре	rw							
во _Н	P3_PUDSEL Reset: BF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Select Register	Туре	rw							
B1 _H	P3_PUDEN Reset: 40 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P3 Pull-Up/Pull-Down Enable Register	Туре	rw							
C8 _H	P4_PUDSEL Reset: FF _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Select Register	Туре	rw							
C9 _H	P4_PUDEN Reset: 04 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P4 Pull-Up/Pull-Down Enable Register	Туре	rw							
RMAP =	= 0, PAGE 2			•				•		
⁸⁰ H	P0_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	P0 Alternate Select 0 Register	Туре	rw							
86 _H	P0_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	PU Alternate Select 1 Register	Туре	rw							
90 _H	P1_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	PT Alternate Select 0 Register	Туре	rw							
⁹¹ H	P1_ALTSEL1 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
	I Allemale Select I Register	Туре	rw							
92 _H	P5_ALTSEL0 Reset: 00 _H	Bit Field	P7	P6	P5	P4	P3	P2	P1	P0
F	P5 Alternate Select U Register	Туре	rw							

Table 11ADC Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0		
D3 _H	ADC_RESR3H Reset: 00 _H	Bit Field	RESULT									
	Result Register 3 High	Туре		rh								
RMAP =	0, PAGE 3											
CA _H	ADC_RESRA0L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR			
	Result Register 0, View A Low	Туре		rh		rh	rh		rh			
св _Н	ADC_RESRA0H Reset: 00 _H	Bit Field				RES	SULT	•				
	Result Register 0, View A High	Туре				r	h					
сс _Н	ADC_RESRA1L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR			
	Result Register 1, View A Low	Туре		rh		rh	rh		rh			
CD _H	ADC_RESRA1H Reset: 00 _H	Bit Field				RES	SULT					
	Result Register 1, View A High	Туре				r	h					
CEH	ADC_RESRA2L Reset: 00 _H	Bit Field		RESULT		VF	DRC		CHNR			
	Result Register 2, View A Low	Туре		rh		rh	rh		rh			
CF _H	ADC_RESRA2H Reset: 00 _H	Bit Field				RES	SULT					
	Result Register 2, View A High	Туре				r	h					
D2 _H	ADC_RESRA3L Reset: 00 _H	Bit Field	RESULT VF				DRC CHNR					
	Result Register 3, View A Low	Туре		rh		rh	rh		rh			
D3 _H	ADC_RESRA3H Reset: 00 _H	Bit Field				RES	SULT					
	Result Register 3, View A High	Туре				r	h					
RMAP =	= 0, PAGE 4											
са _Н	ADC_RCR0 Reset: 00 _H Result Control Register 0	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R		
		Туре	rw	rw	r	rw	r		rw			
св _Н	ADC_RCR1 Reset: 00 _H Result Control Register 1	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R		
		Туре	rw	rw	r	rw		r		rw		
сс ^н	ADC_RCR2 Reset: 00 _H Result Control Register 2	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R		
		Туре	rw	rw	r	rw		r		rw		
CD _H	ADC_RCR3 Reset: 00 _H Result Control Register 3	Bit Field	VFCT R	WFR	0	IEN		0		DRCT R		
		Туре	rw	rw	r	rw		r	-	rw		
CEH	ADC_VFCR Reset: 00 _H	Bit Field		()		VFC3	VFC2	VFC1	VFC0		
	Valid Flag Clear Register	Туре			r		w	w	w	w		
RMAP =	= 0, PAGE 5											
CA _H	ADC_CHINFR Reset: 00 _H Channel Interrupt Flag Register	Bit Field	CHINF 7	CHINF 6	CHINF 5	CHINF 4	CHINF 3	CHINF 2	CHINF 1	CHINF 0		
		Туре	rh									
св _Н	ADC_CHINCR Reset: 00 _H Channel Interrupt Clear Register	Bit Field	CHINC 7	CHINC 6	CHINC 5	CHINC 4	CHINC 3	CHINC 2	CHINC 1	CHINC 0		
		Туре	w	w	w	w	w	w	w	w		

Table 13T21 Register Overview (cont'd)

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
C5 _H	T21_T2H Reset: 00 _H	Bit Field	Id THL2							
Timer 2 Register High		Туре	rwh							

3.2.4.10 CCU6 Registers

The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0).

Table 14 CCU6 Register Overview

Addr	Register Name	Bit	7	6	5	4	3	2	1	0
RMAP =	= 0		I	I		I	I	I	l	
A3 _H	CCU6_PAGE Reset: 00 _H	Bit Field	C	OP STNR 0					PAGE	
	Page Register	Туре	١	N	١	N	r		rw	
RMAP =	0, PAGE 0									
9A _H	CCU6_CC63SRL Reset: 00 _H	Bit Field				CC6	3SL			
	for Channel CC63 Low	Туре				r	w			
9B _H	CCU6_CC63SRH Reset: 00 _H	Bit Field				CC6	3SH			
	for Channel CC63 High	Туре				r	w			
9CH	CCU6_TCTR4L Reset: 00 _H Timer Control Register 4 Low	Bit Field	T12 STD	T12 STR	(0	DT RES	T12 RES	T12R S	T12R R
		Туре	w	w		r	w	w	w	w
9D _H	9D _H CCU6_TCTR4H Reset: 00 _H Timer Control Register 4 High		T13 STD	T13 STR	0			T13 RES	T13R S	T13R R
		Туре	w	w	r			w	w	w
9E _H	E _H CCU6_MCMOUTSL Reset: 00 _H Multi-Channel Mode Output Shadow		STRM CM	0	MCMPS					
	Register Low	Туре	w	r	rw					
9F _H	CCU6_MCMOUTSH Reset: 00 _H Multi-Channel Mode Output Shadow	Bit Field	STRH P	0	CURHS EXPHS					
		Туре	w	r		rw		rw		
A4 _H	CCU6_ISRL Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RT12 PM	RT12 OM	RCC6 2F	RCC6 2R	RCC6 1F	RCC6 1R	RCC6 0F	RCC6 0R
		Туре	w	w	w	w	w	w	w	w
A5 _H	CCU6_ISRH Reset: 00 _H Capture/Compare Interrupt Status	Bit Field	RSTR	RIDLE	RWH E	RCHE	0	RTRP F	RT13 PM	RT13 CM
	Reset Register High	Туре	w	w	w	w	r	w	w	w
A6 _H	CCU6_CMPMODIFL Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3S		0		MCC6 2S	MCC6 1S	MCC6 0S
		Туре	r	w		r		w	w	w
а7 _Н	CCU6_CMPMODIFH Reset: 00 _H Compare State Modification Register	Bit Field	0	MCC6 3R		0		MCC6 2R	MCC6 1R	MCC6 0R
		Туре	r	w		r		w	w	w

Figure 17 Interrupt Request Sources (Part 4)

Figure 20 General Structure of Input Port

Figure 23 V_{DDP} , V_{DDC} and V_{RESET} during Power-on Reset

The second type of reset in XC886/888 is the hardware reset. This reset function can be used during normal operation or when the chip is in power-down mode. A reset input pin RESET is provided for the hardware reset.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects a malfunction in the system.

Another type of reset that needs to be detected is a reset while the device is in power-down mode (wake-up reset). While the contents of the static RAM are undefined after a power-on reset, they are well defined after a wake-up reset from power-down mode.

Figure 29 WDT Timing Diagram

Table 27 lists the possible watchdog time ranges that can be achieved using a certain module clock. Some numbers are rounded to 3 significant digits.

Table 27Watchdog Time Ranges

Reload value In WDTREL	Prescaler for f_{PCLK}	Prescaler for <i>f</i> _{PCLK}								
	2 (WDTIN = 0)	128 (WDTIN = 1)								
	24 MHz	24 MHz								
FF _H	21.3 μs	1.37 ms								
7F _H	2.75 ms	176 ms								
00 _H	5.46 ms	350 ms								

3.12 CORDIC Coprocessor

The CORDIC Coprocessor provides CPU with hardware support for the solving of circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions.

Features

- Modes of operation
 - Supports all CORDIC operating modes for solving circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions
 - Integrated look-up tables (LUTs) for all operating modes
- Circular vectoring mode: Extended support for values of initial X and Y data up to full range of [-2¹⁵,(2¹⁵-1)] for solving angle and magnitude
- Circular rotation mode: Extended support for values of initial Z data up to full range of $[-2^{15},(2^{15}-1)]$, representing angles in the range $[-\pi,((2^{15}-1)/2^{15})\pi]$ for solving trigonometry
- Implementation-dependent operational frequency of up to 80 MHz
- Gated clock input to support disabling of module
- 16-bit accessible data width
 - 24-bit kernel data width plus 2 overflow bits for X and Y each
 - 20-bit kernel data width plus 1 overflow bit for Z
 - With KEEP bit to retain the last value in the kernel register for a new calculation
- 16 iterations per calculation: Approximately 41 clock-cycles or less, from set of start (ST) bit to set of end-of-calculation flag, excluding time taken for write and read access of data bytes.
- Twos complement data processing
- Only exception: X result data with user selectable option for unsigned result
- X and Y data generally accepted as integer or rational number; X and Y must be of the same data form
- Entries of LUTs are 20-bit signed integers
 - Entries of atan and atanh LUTs are integer representations (S19) of angles with the scaling such that $[-2^{15},(2^{15}-1)]$ represents the range $[-\pi,((2^{15}-1)/2^{15})\pi]$
 - Accessible Z result data for circular and hyperbolic functions is integer in data form of S15
- Emulated LUT for linear function
 - Data form is 1 integer bit and 15-bit fractional part (1.15)
 - Accessible Z result data for linear function is rational number with fixed data form of S4.11 (signed 4Q16)
- Truncation Error
 - The result of a CORDIC calculation may return an approximation due to truncation of LSBs
 - Good accuracy of the CORDIC calculated result data, especially in circular mode
- Interrupt
 - On completion of a calculation

fractional divider) for generating a wide range of baud rates based on its input clock f_{PCLK} , see **Figure 30**.

Figure 30 Baud-rate Generator Circuitry

The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (f_{MOD}) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (f_{DIV}) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel.

Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See **Section 3.14**.

The baud rate (f_{BR}) value is dependent on the following parameters:

- Input clock f_{PCLK}
- Prescaling factor (2^{BRPRE}) defined by bit field BRPRE in register BCON
- Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode)
- 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG

3.18 Timer 2 and Timer 21

Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode, see **Table 33**. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled).

Table 33	Timer 2 Modes							
Mode	Description							
Auto-reload	 Up/Down Count Disabled Count up only Start counting from 16-bit reload value, overflow at FFFF_H Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well Programmble reload value in register RC2 Interrupt is generated with reload event Up/Down Count Enabled Count up or down, direction determined by level at input pin T2EX No interrupt is generated Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count up Start counting from 16-bit reload value, overflow at FFFF_H Reload event triggered by overflow condition Programmble reload value in register RC2 Count down Start counting from FFFF_H, underflow at value defined in register RC2 Reload event triggered by underflow condition Reload event triggered by underflow condition Reload event triggered by underflow condition 							
Channel capture	 Count up only Start counting from 0000_H, overflow at FFFF_H Reload event triggered by overflow condition Reload value fixed at 0000_H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event 							

- CAN functionality according to CAN specification V2.0 B active.
- Dedicated control registers are provided for each CAN node.
- A data transfer rate up to 1 MBaud is supported.
- Flexible and powerful message transfer control and error handling capabilities are implemented.
- Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter.
- Full-CAN functionality: A set of 32 message objects can be individually
 - allocated (assigned) to any CAN node
 - configured as transmit or receive object
 - setup to handle frames with 11-bit or 29-bit identifier
 - counted or assigned a timestamp via a frame counter
 - configured to remote monitoring mode
- Advanced Acceptance Filtering:
 - Each message object provides an individual acceptance mask to filter incoming frames.
 - A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames.
 - Message objects can be grouped into 4 priority classes.
 - The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules.
- Advanced Message Object Functionality:
 - Message Objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects.
 - Message objects can be linked to form a gateway to automatically transfer frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined.
- Advanced Data Management:
 - The Message objects are organized in double chained lists.
 - List reorganizations may be performed any time, even during full operation of the CAN nodes.
 - A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list.
 - Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation.
 - Static Allocation Commands offer compatibility with TwinCAN applications, which are not list based.
- Advanced Interrupt Handling:
 - Up to 8 interrupt output lines are available. Most interrupt requests can be individually routed to one of the 8 interrupt output lines.
 - Message postprocessing notifications can be flexibly aggregated into a dedicated register field of 64 notification bits.

Electrical Parameters

4 Electrical Parameters

Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the XC886/888.

4.1 General Parameters

The general parameters are described here to aid the users in interpreting the parameters mainly in **Section 4.2** and **Section 4.3**.

4.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XC886/888 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

These parameters indicate **C**ontroller **C**haracteristics, which are distinctive features of the XC886/888 and must be regarded for a system design.

• SR

These parameters indicate **S**ystem **R**equirements, which must be provided by the microcontroller system in which the XC886/888 is designed in.

Table 37

Electrical Parameters

Operating Conditions 4.1.3

The following operating conditions must not be exceeded in order to ensure correct operation of the XC886/888. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted.

Parameter			Symbol	Limi	t Values	Unit	Notes/		
				min.	max.		Condit		
B: II I			17	4 -					

Operating Condition Parameters

		min.	max.		Conditions	
Digital power supply voltage	V _{DDP}	4.5	5.5	V	5V Device	
Digital power supply voltage	V _{DDP}	3.0	3.6	V	3.3V Device	
Digital ground voltage	V _{SS}	0		V		
Digital core supply voltage	V _{DDC}	2.3	2.7	V		
System Clock Frequency ¹⁾	f _{sys}	88.8	103.2	MHz		
Ambient temperature	T _A	-40	85	°C	SAF- XC886/888	
		-40	125	°C	SAK- XC886/888	

1) f_{SYS} is the PLL output clock. During normal operating mode, CPU clock is f_{SYS} / 4. Please refer to Figure 26 for detailed description.

Electrical Parameters

4.2 DC Parameters

The electrical characteristics of the DC Parameters are detailed in this section.

4.2.1 Input/Output Characteristics

Table 38 provides the characteristics of the input/output pins of the XC886/888.

Table 38	Input/Output Characteristics	(Operating	Conditions	apply)
----------	------------------------------	------------	------------	--------

Parameter	Symbol		Limit Values		Unit	Test Conditions	
			min.	max.			
V _{DDP} = 5 V Range							
Output low voltage	V _{OL}	CC	-	1.0	V	I _{OL} = 15 mA	
			-	1.0	V	I_{OL} = 5 mA, current into all pins > 60 mA	
			-	0.4	V	$I_{\rm OL}$ = 5 mA, current into all pins \leq 60 mA	
Output high voltage	V _{OH}	CC	V _{DDP} - 1.0	-	V	I _{ОН} = -15 mA	
			V _{DDP} - 1.0	-	V	$I_{\rm OH}$ = -5 mA, current from all pins > 60 mA	
			V _{DDP} - 0.4	-	V	$I_{\rm OH}$ = -5 mA, current from all pins ≤ 60 mA	
Input low voltage on port pins (all except P0.0 & P0.1)	V _{ILP}	SR	-	$0.3 \times V_{ m DDP}$	V	CMOS Mode	
Input low voltage on P0.0 & P0.1	V _{ILP0}	SR	-0.2	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
Input low voltage on RESET pin	V _{ILR}	SR	-	$0.3 \times V_{\text{DDP}}$	V	CMOS Mode	
Input low voltage on TMS pin	V _{ILT}	SR	-	$0.3 \times V_{ m DDP}$	V	CMOS Mode	
Input high voltage on port pins (all except P0.0 & P0.1)	V _{IHP}	SR	$0.7 \times V_{\text{DDP}}$	_	V	CMOS Mode	
Input high voltage on P0.0 & P0.1	V _{IHP0}	SR	$0.7 \times V_{\text{DDP}}$	V _{DDP}	V	CMOS Mode	

Electrical Parameters

4.3.5 External Clock Drive XTAL1

Table 48 shows the parameters that define the external clock supply for XC886/888. These timing parameters are based on the direct XTAL1 drive of clock input signals. They are not applicable if an external crystal or ceramic resonator is considered.

Symbol		Limit Values		Unit	Test Conditions
		Min.	/lin. Max.		
t _{osc}	SR	83.3	250	ns	1)2)
<i>t</i> ₁	SR	25	-	ns	2)3)
<i>t</i> ₂	SR	25	-	ns	2)3)
t ₃	SR	-	20	ns	2)3)
<i>t</i> ₄	SR	-	20	ns	2)3)
	Symbol t_{osc} t_1 t_2 t_3 t_4	Symbol t_{osc} SR t_1 SR t_2 SR t_3 SR t_4 SR	Symbol Limit t_{osc} SR 83.3 t_1 SR 25 t_2 SR 25 t_3 SR - t_4 SR -	Symbol Limit $>$ lues Min. Max. t_{osc} SR 83.3 250 t_1 SR 25 - t_2 SR 25 - t_3 SR - 20 t_4 SR - 20	Symbol Limit $>$ lues Unit $Min.$ Max. t_{osc} SR 83.3 250 ns t_1 SR 25 - ns t_2 SR 25 - ns t_3 SR - 20 ns t_4 SR - ns

 Table 48
 External Clock Drive Characteristics (Operating Conditions apply)

1) The clock input signals with 45-55% duty cycle are used.

2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation.

3) The clock input signal must reach the defined levels $V_{\rm ILX}$ and $V_{\rm IHX}$.

Figure 45 External Clock Drive XTAL1