

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                     |
|----------------------------|------------------------------------------------------------|
| Core Processor             | -                                                          |
| Core Size                  | -                                                          |
| Speed                      | -                                                          |
| Connectivity               | -                                                          |
| Peripherals                | -                                                          |
| Number of I/O              | -                                                          |
| Program Memory Size        | -                                                          |
| Program Memory Type        | -                                                          |
| EEPROM Size                | -                                                          |
| RAM Size                   | -                                                          |
| Voltage - Supply (Vcc/Vdd) | -                                                          |
| Data Converters            | -                                                          |
| Oscillator Type            | -                                                          |
| Operating Temperature      | -                                                          |
| Mounting Type              | -                                                          |
| Package / Case             | -                                                          |
| Supplier Device Package    | -                                                          |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mk51dx128clk7 |
|                            |                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# **Table of Contents**

| 1 | Ord  | ering pa | urts4                                        |
|---|------|----------|----------------------------------------------|
|   | 1.1  | Determ   | nining valid orderable parts4                |
| 2 | Part | identifi | cation4                                      |
|   | 2.1  | Descri   | otion4                                       |
|   | 2.2  | Format   | t4                                           |
|   | 2.3  | Fields.  | 4                                            |
|   | 2.4  | Examp    | le5                                          |
| 3 | Terr | minolog  | y and guidelines5                            |
|   | 3.1  | Definiti | on: Operating requirement5                   |
|   | 3.2  | Definiti | on: Operating behavior6                      |
|   | 3.3  | Definiti | on: Attribute6                               |
|   | 3.4  | Definiti | on: Rating7                                  |
|   | 3.5  | Result   | of exceeding a rating7                       |
|   | 3.6  | Relatio  | nship between ratings and operating          |
|   |      | require  | ments7                                       |
|   | 3.7  | Guideli  | ines for ratings and operating requirements8 |
|   | 3.8  | Definiti | on: Typical value8                           |
|   | 3.9  | Typica   | I value conditions9                          |
| 4 | Rati | ngs      |                                              |
|   | 4.1  | Therma   | al handling ratings10                        |
|   | 4.2  | Moistu   | re handling ratings10                        |
|   | 4.3  | ESD h    | andling ratings10                            |
|   | 4.4  | Voltage  | e and current operating ratings10            |
| 5 | Gen  | eral     |                                              |
|   | 5.1  | AC ele   | ctrical characteristics11                    |
|   | 5.2  | Nonsw    | itching electrical specifications11          |
|   |      | 5.2.1    | Voltage and current operating requirements12 |
|   |      | 5.2.2    | LVD and POR operating requirements12         |
|   |      | 5.2.3    | Voltage and current operating behaviors13    |
|   |      | 5.2.4    | Power mode transition operating behaviors14  |
|   |      | 5.2.5    | Power consumption operating behaviors15      |
|   |      | 5.2.6    | Designing with radiated emissions in mind19  |
|   |      | 5.2.7    | Capacitance attributes19                     |
|   | 5.3  | Switch   | ing specifications20                         |
|   |      | 5.3.1    | Device clock specifications                  |
|   |      | 5.3.2    | General switching specifications20           |
|   | 5.4  | Therma   | al specifications21                          |
|   |      | 5.4.1    | Thermal operating requirements21             |
|   |      | 5.4.2    | Thermal attributes22                         |
| 6 | Peri | pheral o | operating requirements and behaviors22       |

|   | 6.1  | Core n  | nodules23                                             |
|---|------|---------|-------------------------------------------------------|
|   |      | 6.1.1   | Debug trace timing specifications23                   |
|   |      | 6.1.2   | JTAG electricals23                                    |
|   | 6.2  | Systen  | n modules26                                           |
|   | 6.3  | Clock I | modules26                                             |
|   |      | 6.3.1   | MCG specifications26                                  |
|   |      | 6.3.2   | Oscillator electrical specifications28                |
|   |      | 6.3.3   | 32 kHz Oscillator Electrical Characteristics31        |
|   | 6.4  | Memor   | ries and memory interfaces31                          |
|   |      | 6.4.1   | Flash electrical specifications31                     |
|   |      | 6.4.2   | EzPort Switching Specifications                       |
|   | 6.5  | Securit | ty and integrity modules                              |
|   | 6.6  | Analog  | J                                                     |
|   |      | 6.6.1   | ADC electrical specifications                         |
|   |      | 6.6.2   | CMP and 6-bit DAC electrical specifications44         |
|   |      | 6.6.3   | 12-bit DAC electrical characteristics47               |
|   |      | 6.6.4   | Op-amp electrical specifications50                    |
|   |      | 6.6.5   | Transimpedance amplifier electrical                   |
|   |      |         | specifications — full range51                         |
|   |      | 6.6.6   | Transimpedance amplifier electrical                   |
|   |      |         | specifications — limited range52                      |
|   |      | 6.6.7   | Voltage reference electrical specifications53         |
|   | 6.7  | Timers  |                                                       |
|   | 6.8  | Comm    | unication interfaces54                                |
|   |      | 6.8.1   | USB electrical specifications54                       |
|   |      | 6.8.2   | USB DCD electrical specifications55                   |
|   |      | 6.8.3   | USB VREG electrical specifications55                  |
|   |      | 6.8.4   | DSPI switching specifications (limited voltage        |
|   |      |         | range)55                                              |
|   |      | 6.8.5   | DSPI switching specifications (full voltage range).57 |
|   |      | 6.8.6   | I2C switching specifications59                        |
|   |      | 6.8.7   | UART switching specifications59                       |
|   |      | 6.8.8   | I2S/SAI Switching Specifications                      |
|   | 6.9  | Humar   | n-machine interfaces (HMI)63                          |
|   |      | 6.9.1   | TSI electrical specifications63                       |
|   |      | 6.9.2   | LCD electrical characteristics64                      |
| 7 | Dim  | ensions |                                                       |
|   | 7.1  | Obtain  | ing package dimensions65                              |
| 8 | Pinc |         |                                                       |
|   | 8.1  | K51 Si  | gnal Multiplexing and Pin Assignments66               |



# 1 Ordering parts

# 1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PK51 and MK51.

# 2 Part identification

# 2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

# 2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

# 2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

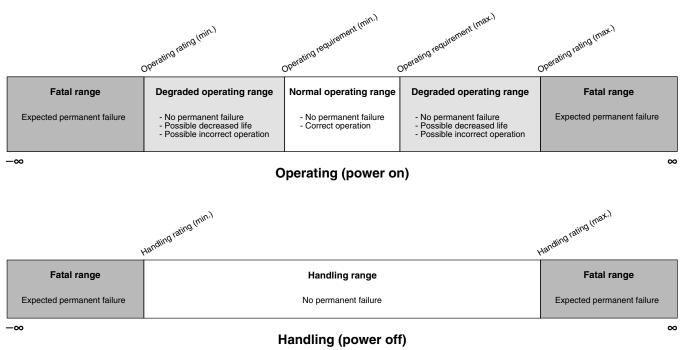

| Field | Description          | Values                                                                                     |
|-------|----------------------|--------------------------------------------------------------------------------------------|
| Q     | Qualification status | <ul> <li>M = Fully qualified, general market flow</li> <li>P = Prequalification</li> </ul> |
| K##   | Kinetis family       | • K51                                                                                      |
| A     | Key attribute        | <ul> <li>D = Cortex-M4 w/ DSP</li> <li>F = Cortex-M4 w/ DSP and FPU</li> </ul>             |
| М     | Flash memory type    | <ul> <li>N = Program flash only</li> <li>X = Program flash and FlexMemory</li> </ul>       |

Table continues on the next page...



reminology and guidelines

# 3.6 Relationship between ratings and operating requirements



# 3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

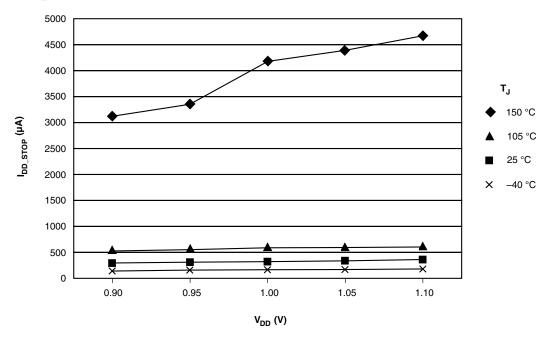
# 3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.




## 3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

| Symbol          | Description                                    | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------------------------|------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak<br>pullup/pulldown<br>current | 10   | 70   | 130  | μΑ   |

## 3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:



# 3.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

| Symbol          | Description          | Value | Unit |
|-----------------|----------------------|-------|------|
| T <sub>A</sub>  | Ambient temperature  | 25    | C°   |
| V <sub>DD</sub> | 3.3 V supply voltage | 3.3   | V    |



General

| Symbol                | Description                                                                | Min. | Тур.  | Max.  | Unit                                         | Notes |
|-----------------------|----------------------------------------------------------------------------|------|-------|-------|----------------------------------------------|-------|
| I <sub>DD_VLPW</sub>  | Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled | —    | 0.61  | _     | mA                                           | 8     |
| I <sub>DD_STOP</sub>  | Stop mode current at 3.0 V                                                 |      |       |       |                                              |       |
|                       | <ul> <li>@ -40 to 25°C</li> </ul>                                          | —    | 0.35  | 0.567 | mA                                           |       |
|                       | • @ 70°C                                                                   | _    | 0.384 | 0.793 | mA                                           |       |
|                       | • @ 105°C                                                                  | —    | 0.628 | 1.2   | mA                                           |       |
| I <sub>DD_VLPS</sub>  | Very-low-power stop mode current at 3.0 V                                  |      |       |       |                                              |       |
|                       | <ul> <li>@ -40 to 25°C</li> </ul>                                          | _    | 5.9   | 32.7  | μA                                           |       |
|                       | • @ 70°C                                                                   | _    | 26.1  | 59.8  | μA                                           |       |
|                       | • @ 105°C                                                                  | _    | 98.1  | 188   | μA                                           |       |
| I <sub>DD_LLS</sub>   | Low leakage stop mode current at 3.0 V                                     |      |       |       |                                              | 9     |
|                       | • @ -40 to 25°C                                                            |      | 2.6   | 8.6   | μA                                           |       |
|                       | • @ 70°C                                                                   |      | 10.3  | 29.1  | μA                                           |       |
|                       | • @ 105°C                                                                  | —    | 42.5  | 92.5  | μA                                           |       |
| I <sub>DD_VLLS3</sub> | Very low-leakage stop mode 3 current at 3.0 V                              |      |       |       |                                              | 9     |
|                       | <ul> <li>@ -40 to 25°C</li> </ul>                                          | _    | 1.9   | 5.8   | μA                                           |       |
|                       | • @ 70°C                                                                   | _    | 6.9   | 12.1  | μA                                           |       |
|                       | • @ 105°C                                                                  | _    | 28.1  | 41.9  | μA                                           |       |
| I <sub>DD_VLLS2</sub> | Very low-leakage stop mode 2 current at 3.0 V                              |      |       |       |                                              |       |
|                       | <ul> <li>@ -40 to 25°C</li> </ul>                                          | _    | 1.59  | 5.5   | μA                                           |       |
|                       | • @ 70°C                                                                   | _    | 4.3   | 9.5   | μA                                           |       |
|                       | • @ 105°C                                                                  | _    | 17.5  | 34    | μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ |       |
| I <sub>DD_VLLS1</sub> | Very low-leakage stop mode 1 current at 3.0 V                              |      |       |       |                                              |       |
|                       | <ul> <li>@ -40 to 25°C</li> </ul>                                          | _    | 1.47  | 5.4   | μA                                           |       |
|                       | • @ 70°C                                                                   | _    | 2.97  | 8.1   | μA                                           |       |
|                       | • @ 105°C                                                                  | _    | 12.41 | 32    | μA                                           |       |
| I <sub>DD_VBAT</sub>  | Average current with RTC and 32kHz disabled at 3.0 V                       |      |       |       |                                              |       |
|                       | • @ -40 to 25°C                                                            | _    | 0.19  | 0.22  | μA                                           |       |
|                       | • @ 70°C                                                                   | _    | 0.19  | 0.64  | μΑ                                           |       |
|                       | • @ 105°C                                                                  |      | 2.2   | 3.2   | μΑ                                           |       |

## Table 6. Power consumption operating behaviors (continued)

Table continues on the next page ...



| Symbol               | Description                                             | Min. | Тур. | Max. | Unit | Notes |
|----------------------|---------------------------------------------------------|------|------|------|------|-------|
| I <sub>DD_VBAT</sub> | Average current when CPU is not accessing RTC registers |      |      |      |      | 10    |
|                      | • @ 1.8V                                                |      |      |      |      |       |
|                      | • @ -40 to 25°C                                         | _    | 0.57 | 0.67 | μA   |       |
|                      | • @ 70°C                                                | _    | 0.90 | 1.2  | μA   |       |
|                      | • @ 105°C                                               |      | 2.4  | 3.5  | μΑ   |       |
|                      | • @ 3.0V                                                |      |      |      |      |       |
|                      | <ul> <li>@ -40 to 25°C</li> </ul>                       | _    | 0.67 | 0.94 | μA   |       |
|                      | • @ 70°C                                                |      | 1.0  | 1.4  | μΑ   |       |
|                      | • @ 105°C                                               | _    | 2.7  | 3.9  | μA   |       |

#### Table 6. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 72MHz core and system clock, 36MHz bus clock, and 24MHz flash clock. MCG configured for FEE mode. All peripheral clocks disabled.
- 3. 72MHz core and system clock, 36MHz bus clock, and 24MHz flash clock. MCG configured for FEE mode. All peripheral clocks enabled.
- 4. Max values are measured with CPU executing DSP instructions.
- 5. 25MHz core, system, bus and flash clock. MCG configured for FEI mode.
- 6. 4 MHz core and system clock, 4 MHz and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 7. 4 MHz core and system clock, 4 MHz and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 8. 4 MHz core and system clock, 4 MHz and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 9. Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 µA.
- 10. Includes 32kHz oscillator current and RTC operation.

## 5.2.5.1 Diagram: Typical IDD\_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies.
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL



# 5.3 Switching specifications

# 5.3.1 Device clock specifications

### Table 8. Device clock specifications

| Symbol                     | Description                                            | Min. | Max. | Unit | Notes |
|----------------------------|--------------------------------------------------------|------|------|------|-------|
|                            | Normal run mod                                         | e    | •    | •    | •     |
| f <sub>SYS</sub>           | System and core clock                                  | _    | 72   | MHz  |       |
| f <sub>SYS_USB</sub>       | System and core clock when Full Speed USB in operation | 20   | _    | MHz  |       |
| f <sub>BUS</sub>           | Bus clock                                              | _    | 50   | MHz  |       |
| f <sub>FLASH</sub>         | Flash clock                                            | —    | 25   | MHz  |       |
| f <sub>LPTMR</sub>         | LPTMR clock                                            | _    | 25   | MHz  |       |
|                            | VLPR mode <sup>1</sup>                                 |      |      | 1    |       |
| f <sub>SYS</sub>           | System and core clock                                  | —    | 4    | MHz  |       |
| f <sub>BUS</sub>           | Bus clock                                              | —    | 4    | MHz  |       |
| f <sub>FLASH</sub>         | Flash clock                                            | _    | 0.5  | MHz  |       |
| f <sub>ERCLK</sub>         | External reference clock                               | —    | 16   | MHz  |       |
| f <sub>LPTMR_pin</sub>     | LPTMR clock                                            | _    | 25   | MHz  |       |
| f <sub>LPTMR_ERCLK</sub>   | LPTMR external reference clock                         | —    | 16   | MHz  |       |
| f <sub>FlexCAN_ERCLK</sub> | FlexCAN external reference clock                       | —    | 8    | MHz  |       |
| f <sub>I2S_MCLK</sub>      | I2S master clock                                       | —    | 12.5 | MHz  |       |
| f <sub>I2S_BCLK</sub>      | I2S bit clock                                          | —    | 4    | MHz  |       |

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

# 5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CMT, and I<sup>2</sup>C signals.

| Symbol | Description                                                                                                | Min. | Max. | Unit                | Notes |
|--------|------------------------------------------------------------------------------------------------------------|------|------|---------------------|-------|
|        | GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path                         | 1.5  | _    | Bus clock<br>cycles | 1, 2  |
|        | GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path | 100  | _    | ns                  | 3     |

Table 9. General switching specifications

Table continues on the next page ...



# 5.4.2 Thermal attributes

| Board type        | Symbol            | Description                                                                                                       | 80 LQFP | Unit | Notes |
|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------|---------|------|-------|
| Single-layer (1s) | R <sub>0JA</sub>  | Thermal<br>resistance, junction<br>to ambient (natural<br>convection)                                             | 51      | °C/W | 1, 2  |
| Four-layer (2s2p) | R <sub>0JA</sub>  | Thermal<br>resistance, junction<br>to ambient (natural<br>convection)                                             | 36      | °C/W | 1, 3  |
| Single-layer (1s) | R <sub>0JMA</sub> | Thermal<br>resistance, junction<br>to ambient (200 ft./<br>min. air speed)                                        | 41      | °C/W | 1,3   |
| Four-layer (2s2p) | R <sub>0JMA</sub> | Thermal<br>resistance, junction<br>to ambient (200 ft./<br>min. air speed)                                        | 30      | °C/W | 1,3   |
| _                 | R <sub>θJB</sub>  | Thermal<br>resistance, junction<br>to board                                                                       | 20      | °C/W | 4     |
| —                 | R <sub>θJC</sub>  | Thermal<br>resistance, junction<br>to case                                                                        | 10      | °C/W | 5     |
| _                 | Ψ <sub>JT</sub>   | Thermal<br>characterization<br>parameter, junction<br>to package top<br>outside center<br>(natural<br>convection) | 2       | °C/W | 6     |

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)* with the single layer board horizontal. For the LQFP, the board meets the JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.
- 3. Determined according to JEDEC Standard JESD51-6, *Integrated Circuits Thermal Test Method Environmental Conditions—Forced Convection (Moving Air)* with the board horizontal. For the LQFP, the board meets the JESD51-7 specification.
- 4. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*. Board temperature is measured on the top surface of the board near the package.
- 5. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air).

# 6 Peripheral operating requirements and behaviors

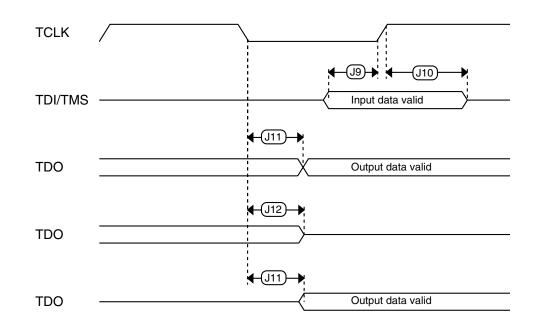
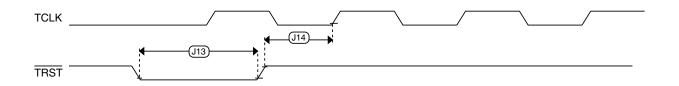




Figure 8. Test Access Port timing





# 6.2 System modules

There are no specifications necessary for the device's system modules.

# 6.3 Clock modules



| Symbol                       | Description                                                                                            | Min. | Тур.            | Max. | Unit | Notes |
|------------------------------|--------------------------------------------------------------------------------------------------------|------|-----------------|------|------|-------|
| V <sub>pp</sub> <sup>5</sup> | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, low-power mode<br>(HGO=0)  |      | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, high-gain mode<br>(HGO=1)  |      | V <sub>DD</sub> | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, low-power mode<br>(HGO=0) | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, high-gain mode<br>(HGO=1) |      | V <sub>DD</sub> |      | V    |       |

#### Table 15. Oscillator DC electrical specifications (continued)

- 1. V<sub>DD</sub>=3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C<sub>x</sub>,C<sub>y</sub> can be provided by using either the integrated capacitors or by using external components.
- 4. When low power mode is selected, R<sub>F</sub> is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

# 6.3.2.2 Oscillator frequency specifications

## Table 16. Oscillator frequency specifications

| Symbol                | Description                                                                                           | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|-------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| f <sub>osc_lo</sub>   | Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)                     | 32   | _    | 40   | kHz  |       |
| f <sub>osc_hi_1</sub> | Oscillator crystal or resonator frequency — high<br>frequency mode (low range)<br>(MCG_C2[RANGE]=01)  | 3    | _    | 8    | MHz  |       |
| f <sub>osc_hi_2</sub> | Oscillator crystal or resonator frequency — high<br>frequency mode (high range)<br>(MCG_C2[RANGE]=1x) | 8    | _    | 32   | MHz  |       |
| f <sub>ec_extal</sub> | Input clock frequency (external clock mode)                                                           | _    |      | 50   | MHz  | 1, 2  |
| t <sub>dc_extal</sub> | Input clock duty cycle (external clock mode)                                                          | 40   | 50   | 60   | %    |       |
| t <sub>cst</sub>      | Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)                                   | _    | 750  | _    | ms   | 3, 4  |
|                       | Crystal startup time — 32 kHz low-frequency,<br>high-gain mode (HGO=1)                                | _    | 250  | _    | ms   |       |
|                       | Crystal startup time — 8 MHz high-frequency<br>(MCG_C2[RANGE]=01), low-power mode<br>(HGO=0)          | _    | 0.6  | _    | ms   |       |
|                       | Crystal startup time — 8 MHz high-frequency<br>(MCG_C2[RANGE]=01), high-gain mode<br>(HGO=1)          | —    | 1    | —    | ms   |       |

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.



## 6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

| Symbol                    | Description                              | Min. | Тур. | Max. | Unit | Notes |
|---------------------------|------------------------------------------|------|------|------|------|-------|
| t <sub>hvpgm4</sub>       | Longword Program high-voltage time       | —    | 7.5  | 18   | μs   |       |
| t <sub>hversscr</sub>     | Sector Erase high-voltage time           | _    | 13   | 113  | ms   | 1     |
| t <sub>hversblk32k</sub>  | Erase Block high-voltage time for 32 KB  | _    | 52   | 452  | ms   | 1     |
| t <sub>hversblk256k</sub> | Erase Block high-voltage time for 256 KB | —    | 104  | 904  | ms   | 1     |

#### Table 19. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

## 6.4.1.2 Flash timing specifications — commands Table 20. Flash command timing specifications

| Symbol                  | Description                                           | Min. | Тур. | Max. | Unit | Notes |
|-------------------------|-------------------------------------------------------|------|------|------|------|-------|
|                         | Read 1s Block execution time                          |      |      |      |      |       |
| t <sub>rd1blk32k</sub>  | • 32 KB data flash                                    | _    | _    | 0.5  | ms   |       |
| t <sub>rd1blk256k</sub> | 256 KB program flash                                  | -    | _    | 1.7  | ms   |       |
| t <sub>rd1sec1k</sub>   | Read 1s Section execution time (data flash sector)    | _    |      | 60   | μs   | 1     |
| t <sub>rd1sec2k</sub>   | Read 1s Section execution time (program flash sector) | _    | _    | 60   | μs   | 1     |
| t <sub>pgmchk</sub>     | Program Check execution time                          | —    | _    | 45   | μs   | 1     |
| t <sub>rdrsrc</sub>     | Read Resource execution time                          | —    | _    | 30   | μs   | 1     |
| t <sub>pgm4</sub>       | Program Longword execution time                       | —    | 65   | 145  | μs   |       |
|                         | Erase Flash Block execution time                      |      |      |      |      | 2     |
| t <sub>ersblk32k</sub>  | 32 KB data flash                                      | _    | 55   | 465  | ms   |       |
| t <sub>ersblk256k</sub> | 256 KB program flash                                  | _    | 122  | 985  | ms   |       |
| t <sub>ersscr</sub>     | Erase Flash Sector execution time                     | —    | 14   | 114  | ms   | 2     |
|                         | Program Section execution time                        |      |      |      |      |       |
| t <sub>pgmsec512p</sub> | 512 B program flash                                   | _    | 2.4  | _    | ms   |       |
| t <sub>pgmsec512d</sub> | • 512 B data flash                                    | _    | 4.7  | _    | ms   |       |
| t <sub>pgmsec1kp</sub>  | <ul> <li>1 KB program flash</li> </ul>                | _    | 4.7  | _    | ms   |       |
| t <sub>pgmsec1kd</sub>  | 1 KB data flash                                       | _    | 9.3  | _    | ms   |       |
| t <sub>rd1all</sub>     | Read 1s All Blocks execution time                     | -    |      | 1.8  | ms   |       |
| t <sub>rdonce</sub>     | Read Once execution time                              | —    | —    | 25   | μs   | 1     |
| t <sub>pgmonce</sub>    | Program Once execution time                           | —    | 65   | —    | μs   |       |
| t <sub>ersall</sub>     | Erase All Blocks execution time                       | _    | 175  | 1500 | ms   | 2     |

Table continues on the next page...



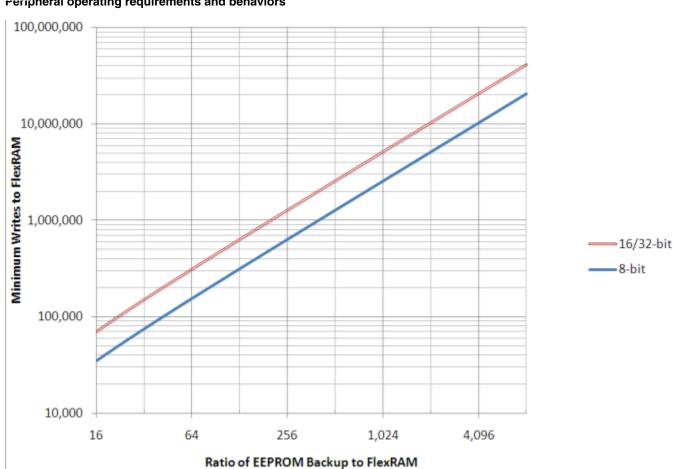
## 6.4.1.3 Flash high voltage current behaviors Table 21. Flash high voltage current behaviors

| Symbol              | Description                                                           | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------------------------------------------|------|------|------|------|
| I <sub>DD_PGM</sub> | Average current adder during high voltage flash programming operation | —    | 2.5  | 6.0  | mA   |
| I <sub>DD_ERS</sub> | Average current adder during high voltage flash erase operation       |      | 1.5  | 4.0  | mA   |

## 6.4.1.4 Reliability specifications Table 22. NVM reliability specifications

| Symbol                   | Description                                              | Min.     | Typ. <sup>1</sup> | Max. | Unit     | Notes |
|--------------------------|----------------------------------------------------------|----------|-------------------|------|----------|-------|
|                          | Program                                                  | n Flash  |                   |      | <u>.</u> |       |
| t <sub>nvmretp10k</sub>  | Data retention after up to 10 K cycles                   | 5        | 50                | _    | years    |       |
| t <sub>nvmretp1k</sub>   | Data retention after up to 1 K cycles                    | 20       | 100               | _    | years    |       |
| n <sub>nvmcycp</sub>     | Cycling endurance                                        | 10 K     | 50 K              | —    | cycles   | 2     |
|                          | Data                                                     | Flash    |                   |      |          |       |
| t <sub>nvmretd10k</sub>  | Data retention after up to 10 K cycles                   | 5        | 50                | _    | years    |       |
| t <sub>nvmretd1k</sub>   | Data retention after up to 1 K cycles                    | 20       | 100               | _    | years    |       |
| n <sub>nvmcycd</sub>     | Cycling endurance                                        | 10 K     | 50 K              |      | cycles   | 2     |
|                          | FlexRAM as                                               | s EEPROM |                   | -    |          |       |
| t <sub>nvmretee100</sub> | Data retention up to 100% of write endurance             | 5        | 50                | —    | years    |       |
| t <sub>nvmretee10</sub>  | Data retention up to 10% of write endurance              | 20       | 100               |      | years    |       |
|                          | Write endurance                                          |          |                   |      |          | 3     |
| n <sub>nvmwree16</sub>   | <ul> <li>EEPROM backup to FlexRAM ratio = 16</li> </ul>  | 35 K     | 175 K             | —    | writes   |       |
| n <sub>nvmwree128</sub>  | <ul> <li>EEPROM backup to FlexRAM ratio = 128</li> </ul> | 315 K    | 1.6 M             | _    | writes   |       |
| n <sub>nvmwree512</sub>  | EEPROM backup to FlexRAM ratio = 512                     | 1.27 M   | 6.4 M             | _    | writes   |       |
| n <sub>nvmwree4k</sub>   | EEPROM backup to FlexRAM ratio = 4096                    | 10 M     | 50 M              | _    | writes   |       |
| n <sub>nvmwree8k</sub>   | EEPROM backup to FlexRAM ratio = 8192                    | 20 M     | 100 M             | _    | writes   |       |

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.


2. Cycling endurance represents number of program/erase cycles at -40°C  $\leq$  T<sub>i</sub>  $\leq$  125°C.

3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.

## 6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.







## 6.4.2 EzPort Switching Specifications Table 23. EzPort switching specifications

| Num  | Description                                              | Min.                    | Max.                | Unit |
|------|----------------------------------------------------------|-------------------------|---------------------|------|
|      | Operating voltage                                        | 1.71                    | 3.6                 | V    |
| EP1  | EZP_CK frequency of operation (all commands except READ) | -                       | f <sub>SYS</sub> /2 | MHz  |
| EP1a | EZP_CK frequency of operation (READ command)             | —                       | f <sub>SYS</sub> /8 | MHz  |
| EP2  | EZP_CS negation to next EZP_CS assertion                 | 2 x t <sub>EZP_CK</sub> | —                   | ns   |
| EP3  | EZP_CS input valid to EZP_CK high (setup)                | 5                       | —                   | ns   |
| EP4  | EZP_CK high to EZP_CS input invalid (hold)               | 5                       | —                   | ns   |
| EP5  | EZP_D input valid to EZP_CK high (setup)                 | 2                       | —                   | ns   |
| EP6  | EZP_CK high to EZP_D input invalid (hold)                | 5                       | —                   | ns   |
| EP7  | EZP_CK low to EZP_Q output valid                         | —                       | 16                  | ns   |
| EP8  | EZP_CK low to EZP_Q output invalid (hold)                | 0                       | —                   | ns   |
| EP9  | EZP_CS negation to EZP_Q tri-state                       | —                       | 12                  | ns   |

## 6.6.1.3 16-bit ADC with PGA operating conditions Table 26. 16-bit ADC with PGA operating conditions

| Symbol              | Description                | Conditions                                                                                                                                                   | Min.             | Typ. <sup>1</sup> | Max.             | Unit | Notes                   |
|---------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|------------------|------|-------------------------|
| V <sub>DDA</sub>    | Supply voltage             | Absolute                                                                                                                                                     | 1.71             | —                 | 3.6              | V    |                         |
| V <sub>REFPGA</sub> | PGA ref voltage            |                                                                                                                                                              | VREF_OU<br>T     | VREF_OU<br>T      | VREF_OU<br>T     | V    | 2, 3                    |
| V <sub>ADIN</sub>   | Input voltage              |                                                                                                                                                              | V <sub>SSA</sub> | _                 | V <sub>DDA</sub> | V    |                         |
| V <sub>CM</sub>     | Input Common<br>Mode range |                                                                                                                                                              | V <sub>SSA</sub> | _                 | V <sub>DDA</sub> | V    |                         |
| R <sub>PGAD</sub>   | Differential input         | Gain = 1, 2, 4, 8                                                                                                                                            | —                | 128               | _                | kΩ   | IN+ to IN- <sup>4</sup> |
|                     | impedance                  | Gain = 16, 32                                                                                                                                                | _                | 64                | —                |      |                         |
|                     |                            | Gain = 64                                                                                                                                                    | _                | 32                | _                |      |                         |
| R <sub>AS</sub>     | Analog source resistance   |                                                                                                                                                              | _                | 100               | —                | Ω    | 5                       |
| Τ <sub>S</sub>      | ADC sampling time          |                                                                                                                                                              | 1.25             | _                 | —                | μs   | 6                       |
| C <sub>rate</sub>   | ADC conversion<br>rate     | <ul> <li>≤ 13 bit modes</li> <li>No ADC hardware<br/>averaging</li> <li>Continuous conversions<br/>enabled</li> <li>Peripheral clock = 50<br/>MHz</li> </ul> | 18.484           | _                 | 450              | Ksps | 7                       |
|                     |                            | 16 bit modes<br>No ADC hardware<br>averaging<br>Continuous conversions<br>enabled<br>Peripheral clock = 50<br>MHz                                            | 37.037           | _                 | 250              | Ksps | 8                       |

- 1. Typical values assume V<sub>DDA</sub> = 3.0 V, Temp = 25°C, f<sub>ADCK</sub> = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. ADC must be configured to use the internal voltage reference (VREF\_OUT)
- 3. PGA reference is internally connected to the VREF\_OUT pin. If the user wishes to drive VREF\_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled.
- 4. For single ended configurations the input impedance of the driven input is  $R_{\text{PGAD}}/2$
- 5. The analog source resistance (R<sub>AS</sub>), external to MCU, should be kept as minimum as possible. Increased R<sub>AS</sub> causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
- The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for F<sub>in</sub>=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
- 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
- 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1

## 6.6.3.2 12-bit DAC operating behaviors Table 30. 12-bit DAC operating behaviors

| Symbol                     | Description                                                                         | Min.                      | Тур.     | Max.              | Unit   | Notes |
|----------------------------|-------------------------------------------------------------------------------------|---------------------------|----------|-------------------|--------|-------|
| I <sub>DDA_DACL</sub><br>P | Supply current — low-power mode                                                     |                           | —        | 150               | μΑ     |       |
| I <sub>DDA_DACH</sub><br>P | Supply current — high-speed mode                                                    | —                         | —        | 700               | μΑ     |       |
| t <sub>DACLP</sub>         | Full-scale settling time (0x080 to 0xF7F) —<br>low-power mode                       | _                         | 100      | 200               | μs     | 1     |
| t <sub>DACHP</sub>         | Full-scale settling time (0x080 to 0xF7F) — high-power mode                         | _                         | 15       | 30                | μs     | 1     |
| t <sub>CCDACLP</sub>       | Code-to-code settling time (0xBF8 to 0xC08)<br>— low-power mode and high-speed mode | —                         | 0.7      | 1                 | μs     | 1     |
| V <sub>dacoutl</sub>       | DAC output voltage range low — high-speed mode, no load, DAC set to 0x000           | _                         | —        | 100               | mV     |       |
| V <sub>dacouth</sub>       | DAC output voltage range high — high-<br>speed mode, no load, DAC set to 0xFFF      | V <sub>DACR</sub><br>-100 | —        | V <sub>DACR</sub> | mV     |       |
| INL                        | Integral non-linearity error — high speed mode                                      | —                         | —        | ±8                | LSB    | 2     |
| DNL                        | Differential non-linearity error — V <sub>DACR</sub> > 2<br>V                       | _                         | —        | ±1                | LSB    | 3     |
| DNL                        | Differential non-linearity error — V <sub>DACR</sub> = VREF_OUT                     | _                         | —        | ±1                | LSB    | 4     |
| V <sub>OFFSET</sub>        | Offset error                                                                        | _                         | ±0.4     | ±0.8              | %FSR   | 5     |
| E <sub>G</sub>             | Gain error                                                                          | _                         | ±0.1     | ±0.6              | %FSR   | 5     |
| PSRR                       | Power supply rejection ratio, $V_{DDA} \ge 2.4 \text{ V}$                           | 60                        | —        | 90                | dB     |       |
| T <sub>CO</sub>            | Temperature coefficient offset voltage                                              | —                         | 3.7      | _                 | μV/C   | 6     |
| $T_{GE}$                   | Temperature coefficient gain error                                                  | _                         | 0.000421 | _                 | %FSR/C |       |
| Rop                        | Output resistance load = $3 \text{ k}\Omega$                                        | —                         | —        | 250               | Ω      |       |
| SR                         | Slew rate -80h $\rightarrow$ F7Fh $\rightarrow$ 80h                                 |                           |          |                   | V/µs   |       |
|                            | <ul> <li>High power (SP<sub>HP</sub>)</li> </ul>                                    | 1.2                       | 1.7      | —                 |        |       |
|                            | <ul> <li>Low power (SP<sub>LP</sub>)</li> </ul>                                     | 0.05                      | 0.12     | —                 |        |       |
| СТ                         | Channel to channel cross talk                                                       | _                         |          | -80               | dB     |       |
| BW                         | 3dB bandwidth                                                                       |                           |          |                   | kHz    |       |
|                            | <ul> <li>High power (SP<sub>HP</sub>)</li> </ul>                                    | 550                       | _        | —                 |        |       |
|                            | • Low power (SP <sub>LP</sub> )                                                     | 40                        | _        | —                 |        |       |

1. Settling within ±1 LSB

- 2. The INL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV
- 3. The DNL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV
- 4. The DNL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV with  $V_{DDA}$  > 2.4 V
- 5. Calculated by a best fit curve from V\_{SS} + 100 mV to V\_{DACR} 100 mV
- V<sub>DDA</sub> = 3.0 V, reference select set for V<sub>DDA</sub> (DACx\_CO:DACRFS = 1), high power mode (DACx\_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device



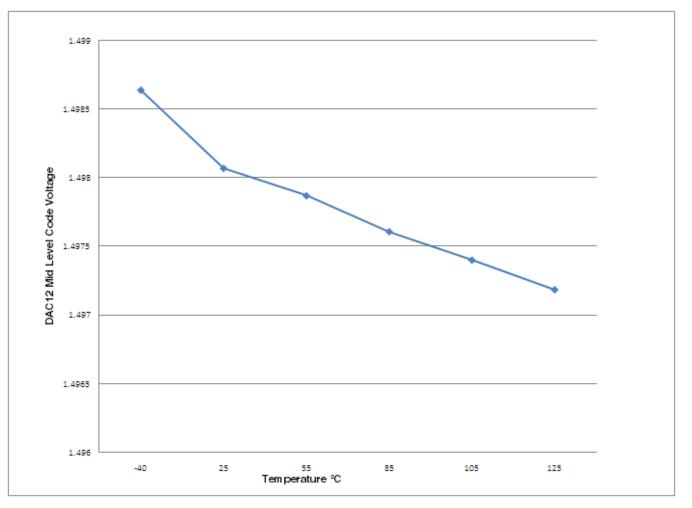



Figure 18. Offset at half scale vs. temperature

## 6.6.4 Op-amp electrical specifications

| Table 31. Op-amp electrical specifications |
|--------------------------------------------|
|--------------------------------------------|

| Symbol              | Description                                                              | Min. | Тур. | Max. | Unit |
|---------------------|--------------------------------------------------------------------------|------|------|------|------|
| V <sub>DD</sub>     | Operating voltage                                                        | 1.71 | —    | 3.6  | V    |
| I <sub>SUPPLY</sub> | Supply current (I <sub>OUT</sub> =0mA, CL=0), low-power mode             | _    | 106  | 125  | μA   |
| I <sub>SUPPLY</sub> | Supply current (I <sub>OUT</sub> =0mA, CL=0), high-speed mode            | _    | 545  | 630  | μA   |
| V <sub>OS</sub>     | Input offset voltage                                                     | _    | ±3   | ±10  | mV   |
| α <sub>VOS</sub>    | Input offset voltage temperature coefficient                             | _    | 10   | —    | μV/C |
| I <sub>OS</sub>     | Typical input offset current across the following temp range (0–50°C)    | _    | ±500 | _    | рА   |
| I <sub>OS</sub>     | Typical input offset current across the following temp range (-40–105°C) | —    | 4    | _    | nA   |

Table continues on the next page ...



| Symbol              | Description                                                      | Min. | Тур. | Max. | Unit | Notes |
|---------------------|------------------------------------------------------------------|------|------|------|------|-------|
| V <sub>tdrift</sub> | Temperature drift (Vmax -Vmin across the full temperature range) | _    | _    | 80   | mV   |       |
| I <sub>bg</sub>     | Bandgap only current                                             | —    | —    | 80   | μA   | 1     |
| I <sub>lp</sub>     | Low-power buffer current                                         | —    | —    | 360  | uA   | 1     |
| I <sub>hp</sub>     | High-power buffer current                                        | _    | —    | 1    | mA   | 1     |
| $\Delta V_{LOAD}$   | Load regulation                                                  |      |      |      | μV   | 1, 2  |
|                     | • current = ± 1.0 mA                                             | _    | 200  | _    |      |       |
| T <sub>stup</sub>   | Buffer startup time                                              |      |      | 100  | μs   |       |
| V <sub>vdrift</sub> | Voltage drift (Vmax -Vmin across the full voltage range)         | _    | 2    | _    | mV   | 1     |

#### Table 37. VREF full-range operating behaviors (continued)

- 1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
- 2. Load regulation voltage is the difference between the VREF\_OUT voltage with no load vs. voltage with defined load

#### Table 38. VREF limited-range operating requirements

| Symbol         | Description | Min. | Max. | Unit | Notes |
|----------------|-------------|------|------|------|-------|
| T <sub>A</sub> | Temperature | 0    | 50   | °C   |       |

#### Table 39. VREF limited-range operating behaviors

| Symbol           | Description                                | Min.  | Max.  | Unit | Notes |
|------------------|--------------------------------------------|-------|-------|------|-------|
| V <sub>out</sub> | Voltage reference output with factory trim | 1.173 | 1.225 | V    |       |

## 6.7 Timers

See General switching specifications.

## 6.8 Communication interfaces

## 6.8.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.



# Table 46. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range)

| Num. | Characteristic                                                    | Min. | Max. | Unit        |
|------|-------------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                                 | 1.71 | 3.6  | V           |
| S1   | I2S_MCLK cycle time                                               | 40   | —    | ns          |
| S2   | I2S_MCLK pulse width high/low                                     | 45%  | 55%  | MCLK period |
| S3   | I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)                       | 80   | —    | ns          |
| S4   | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low                      | 45%  | 55%  | BCLK period |
| S5   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output valid   | —    | 15   | ns          |
| S6   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output invalid | -1.0 | _    | ns          |
| S7   | I2S_TX_BCLK to I2S_TXD valid                                      | —    | 15   | ns          |
| S8   | I2S_TX_BCLK to I2S_TXD invalid                                    | 0    | —    | ns          |
| S9   | I2S_RXD/I2S_RX_FS input setup before<br>I2S_RX_BCLK               | 20.5 | -    | ns          |
| S10  | I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK                    | 0    | —    | ns          |

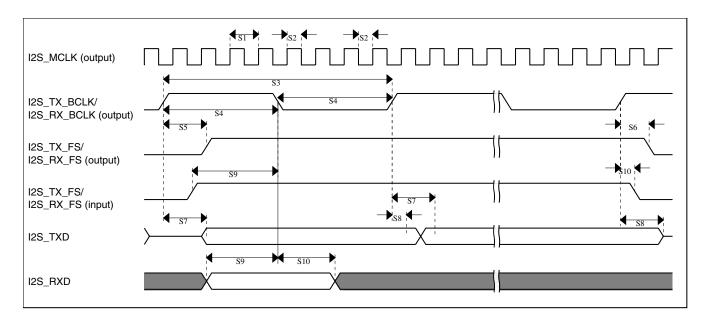



Figure 23. I2S/SAI timing — master modes

# Table 47.I2S/SAI slave mode timing in Normal Run, Wait and Stop modes<br/>(full voltage range)

| Num. | Characteristic                                       | Min. | Max. | Unit        |
|------|------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                    | 1.71 | 3.6  | V           |
| S11  | I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)           | 80   | —    | ns          |
| S12  | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) | 45%  | 55%  | MCLK period |

Table continues on the next page...



# 8 Pinout

# 8.1 K51 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

| 80<br>LQFP | Pin Name                                          | Default                                           | ALT0                                              | ALT1 | ALT2 | ALT3 | ALT4 | ALT5 | ALT6 | ALT7 | EzPort |
|------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------|------|------|------|------|------|------|--------|
| 1          | VDD                                               | VDD                                               | VDD                                               |      |      |      |      |      |      |      |        |
| 2          | VSS                                               | VSS                                               | VSS                                               |      |      |      |      |      |      |      |        |
| 3          | USB0_DP                                           | USB0_DP                                           | USB0_DP                                           |      |      |      |      |      |      |      |        |
| 4          | USB0_DM                                           | USB0_DM                                           | USB0_DM                                           |      |      |      |      |      |      |      |        |
| 5          | VOUT33                                            | VOUT33                                            | VOUT33                                            |      |      |      |      |      |      |      |        |
| 6          | VREGIN                                            | VREGIN                                            | VREGIN                                            |      |      |      |      |      |      |      |        |
| 7          | ADC0_DP1/<br>OP0_DP0                              | ADC0_DP1/<br>OP0_DP0                              | ADC0_DP1/<br>OP0_DP0                              |      |      |      |      |      |      |      |        |
| 8          | ADC0_DM1/<br>OP0_DM0                              | ADC0_DM1/<br>OP0_DM0                              | ADC0_DM1/<br>OP0_DM0                              |      |      |      |      |      |      |      |        |
| 9          | ADC1_DP1/<br>OP1_DP0/<br>OP1_DM1                  | ADC1_DP1/<br>OP1_DP0/<br>OP1_DM1                  | ADC1_DP1/<br>OP1_DP0/<br>OP1_DM1                  |      |      |      |      |      |      |      |        |
| 10         | ADC1_DM1/<br>OP1_DM0                              | ADC1_DM1/<br>OP1_DM0                              | ADC1_DM1/<br>OP1_DM0                              |      |      |      |      |      |      |      |        |
| 11         | PGA0_DP/<br>ADC0_DP0/<br>ADC1_DP3                 | PGA0_DP/<br>ADC0_DP0/<br>ADC1_DP3                 | PGA0_DP/<br>ADC0_DP0/<br>ADC1_DP3                 |      |      |      |      |      |      |      |        |
| 12         | PGA0_DM/<br>ADC0_DM0/<br>ADC1_DM3                 | PGA0_DM/<br>ADC0_DM0/<br>ADC1_DM3                 | PGA0_DM/<br>ADC0_DM0/<br>ADC1_DM3                 |      |      |      |      |      |      |      |        |
| 13         | PGA1_DP/<br>ADC1_DP0/<br>ADC0_DP3                 | PGA1_DP/<br>ADC1_DP0/<br>ADC0_DP3                 | PGA1_DP/<br>ADC1_DP0/<br>ADC0_DP3                 |      |      |      |      |      |      |      |        |
| 14         | PGA1_DM/<br>ADC1_DM0/<br>ADC0_DM3                 | PGA1_DM/<br>ADC1_DM0/<br>ADC0_DM3                 | PGA1_DM/<br>ADC1_DM0/<br>ADC0_DM3                 |      |      |      |      |      |      |      |        |
| 15         | VDDA                                              | VDDA                                              | VDDA                                              |      |      |      |      |      |      |      |        |
| 16         | VREFH                                             | VREFH                                             | VREFH                                             |      |      |      |      |      |      |      |        |
| 17         | VREFL                                             | VREFL                                             | VREFL                                             |      |      |      |      |      |      |      |        |
| 18         | VSSA                                              | VSSA                                              | VSSA                                              |      |      |      |      |      |      |      |        |
| 19         | ADC1_SE16/<br>OP1_OUT/<br>CMP2_IN2/<br>ADC0_SE22/ | ADC1_SE16/<br>OP1_OUT/<br>CMP2_IN2/<br>ADC0_SE22/ | ADC1_SE16/<br>OP1_OUT/<br>CMP2_IN2/<br>ADC0_SE22/ |      |      |      |      |      |      |      |        |



#### How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

#### **USA/Europe or Locations Not Listed:**

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:FreescaleTM} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$ 

© 2012 Freescale Semiconductor, Inc.





Document Number: K51P81M72SF1 Rev. 3, 11/2012