

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f098cct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

USART modes/features ⁽¹⁾	USART1 USART2 USART3	USART4	USART5 USART6 USART7 USART8
Single-wire half-duplex communication	Х	Х	Х
IrDA SIR ENDEC block	Х	-	-
LIN mode	Х	-	-
Dual clock domain and wakeup from Stop mode	Х	-	-
Receiver timeout interrupt	Х	-	-
Modbus communication	Х	-	-
Auto baud rate detection	Х	-	-
Driver Enable	Х	Х	Х

Table 9.	STM32F098CC/RC/VC	USART	implementation	(continued)	
			imprementation	(continued)	

1. X = supported.

3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I²S)

Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Two standard I²S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four different audio standards can operate as master or slave at half-duplex communication mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, they can output a clock for an external audio component at 256 times the sampling frequency.

SPI features ⁽¹⁾	SPI1 and SPI2
Hardware CRC calculation	Х
Rx/Tx FIFO	Х
NSS pulse mode	Х
I ² S mode	Х
TI mode	Х

Table 10. STM32F098CC/RC/VC SPI/I²S implementation

1. X = supported.

Г

Na	me	Abbreviation	Definition					
Pin functions	Alternate functions	Functions selected through GPIOx_AFR registers						
	Additional functions	Functions directly	selected/enabled through peripheral registers					

Table 11. Legend/abbreviations used in the pinout table (continued)

	Ρ	in nu	mber	S						Pin functions		
UFBGA100	LQFP100	UFBGA64	LQFP64	WLCSP64	LQFP48/UFQFPN48	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
B2	1	-	-	-	-	PE2	I/O	FT		TSC_G7_IO1, TIM3_ETR	-	
A1	2	-	-	-	-	PE3	I/O	FT		TSC_G7_IO2, TIM3_CH1	-	
B1	3	-	-	-	-	PE4	I/O	FT		TSC_G7_IO3, TIM3_CH2	-	
C2	4	-	-	-	-	PE5	I/O	FT		TSC_G7_IO4, TIM3_CH3	-	
D2	5	-	-	-	-	PE6	I/O	FT		TIM3_CH4	WKUP3, RTC_TAMP3	
E2	6	B2	1	B8	1	VBAT	S	-	-	Backup power s	upply	
C1	7	A2	2	B7	2	PC13	I/O	тс	(1) (2)	-	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT	
D1	8	A1	3	C8	3	PC14- OSC32_IN (PC14)	I/O	тс	(1) (2)	-	OSC32_IN	
E1	9	B1	4	C7	4	PC15- OSC32_OUT (PC15)	I/O	тс	(1) (2)	-	OSC32_OUT	
F2	10	-	-	-	-	PF9	I/O	FT		TIM15_CH1, USART6_TX	-	
G2	11	-	-	-	-	PF10	I/O	FT		TIM15_CH2, USART6_RX	-	
F1	12	C1	5	D8	5	PF0-OSC_IN (PF0)	I/O	FTf		CRS_SYNC, I2C1_SDA	OSC_IN	
G1	13	D1	6	E8	6	PF1-OSC_OUT (PF1)	I/O	FTf		I2C1_SCL	OSC_OUT	
H2	14	E1	7	D7	7	NRST	I/O	RST		Device reset input / internal reset ou (active low)		

Table 12. STM32F098CC/RC/VC pin definitions

	Pi	n nu	mber	s						Pin functions		
UFBGA100	LQFP100	UFBGA64	LQFP64	WLCSP64	LQFP48/UFQFPN48	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
B7	85	-	-	-	-	PD4	I/O	FT		SPI2_MOSI, I2S2_SD, USART2_RTS	-	
A6	86	-	-	-	-	PD5	I/O	FT		USART2_TX	-	
B6	87	-	-	-	-	PD6	I/O	FT		USART2_RX	-	
A5	88	-	-	-	-	PD7	I/O	FT		USART2_CK	-	
A8	89	A5	55	D4	39	PB3	I/O	FT		SPI1_SCK, I2S1_CK, TIM2_CH2, TSC_G5_IO1, EVENTOUT, USART5_TX	-	
A7	90	A4	56	D5	40	PB4	I/O	FT		SPI1_MISO, I2S1_MCK, TIM17_BKIN, TIM3_CH1, TSC_G5_IO2, EVENTOUT, USART5_RX	-	
C5	91	C4	57	C5	41	PB5	I/O	FT		SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2, USART5_CK_RTS	WKUP6	
B5	92	D3	58	A5	42	PB6	I/O	FTf		I2C1_SCL, USART1_TX, TIM16_CH1N, TSC_G5_I03	-	
B4	93	C3	59	B5	43	PB7	I/O	FTf		I2C1_SDA, USART1_RX, USART4_CTS, TIM17_CH1N, TSC_G5_IO4	-	
A4	94	B4	60	C6	44	PF11-BOOT0	I/O	FT		-	Boot memory selection	
A3	95	В3	61	A6	45	PB8	I/O	FTf		I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC, CAN_RX	-	
В3	96	A3	62	B6	46	PB9	I/O	FTf		SPI2_NSS, I2S2_WS, I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT, CAN_TX	-	
C3	97	-	-	-	-	PE0	I/O	FT		EVENTOUT, TIM16_CH1	-	
A2	98	-	-	-	-	PE1	I/O	FT		EVENTOUT, TIM17_CH1	-	

Table 12. STM32F098CC/RC/VC pin definitions (continued)

1. Data based on characterization results, not tested in production unless otherwise specified.

5		s	Typ @ V _{DDA} (V _{DD} = 1.8 V)							Мах			
Symbol	Paramete	Condition	= 1.8 V	= 2.0 V	= 2.4 V	= 2.7 V	= 3.0 V	= 3.3 V	= 3.6 V	T _A = 25 ℃	T _A = 85 ℃	T _A = 105 °C	Unit
I _{DD}	Supply current					0.6				2.4	33	78	
I _{DDA}	in Stop mode	Stop mode		0.9	1.0	1.0	1.0	1.1	1.2	2.5	3.0	3.7	μA

Table 27. Typical and maximum current consumption in Stop mode

Table 28. Typical and maximum current consumption from the $V_{\mbox{\scriptsize DDA}}$ supply

	er				V _{DDA}	(= 2.4 V	1	V _{DDA} = 3.6 V					
Symbol	a-met	Conditions	f _{HCLK}		м	ax @ T _A	(2)		Μ	Unit			
	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C		
		HSI48	48 MHz	311	332	337	346	315	333	340	349		
		HSF	48 MHz	146	167	177	180	159	180	191	196		
	Supply current in Run or Sleep mode	oly bypass, it in PLL on or	32 MHz	100	118	124	126	108	126	134	137		
			24 MHz	79	95	98	99	85	100	105	108		
		HSE	8 MHz	2	3	3	4	3	3	4	4		
I _{DDA}	code executing	code PLL off	1 MHz	2	2	3	3	2	3	3	4	μA	
	from	from Flash HSI clock, lemory PLL on r RAM	48 MHz	212	242	253	257	234	261	274	280		
	Flash memory		32 MHz	165	193	202	203	183	206	215	219		
	or RAM		24 MHz	143	170	176	177	160	179	186	189		
				HSI clock, PLL off	8 MHz	64	82	84	85	76	88	91	92

 Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I_{DDA} is independent from the frequency.

2. Data based on characterization results, not tested in production unless otherwise specified.

	Peripheral	Typical consumption at 25 °C	Unit				
	APB-Bridge ⁽²⁾	3.6					
	ADC ⁽³⁾	4.3					
	CAN	12.4					
	CEC	0.4					
	CRS	0.0					
	DAC ⁽³⁾	4.2					
	DBG (MCU Debug Support)	0.2					
	I2C1	2.9					
	I2C2	2.4					
	PWR	0.6					
	SPI1	8.8					
	SPI2	7.8					
	SYSCFG and COMP	1.9					
	TIM1	15.2					
	TIM14	2.6					
	TIM15	8.7					
APB	TIM16	5.8					
	TIM17	7.0					
	TIM2	16.2					
	TIM3	11.9					
	TIM6	11.8					
	TIM7	2.5					
	USART1	17.6					
	USART2	16.3					
	USART3	16.2					
	USART4	4.7					
	USART5	4.4					
	USART6	5.5					
	USART7	5.2					
	USART8	5.1					
	WWDG	1.1 erals 207.2					
	All APB peripherals						

 Table 32. Peripheral current consumption (continued)

1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).

2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus.

 The power consumption of the analog part (I_{DDA}) of peripherals such as ADC, DAC, comparators, is not included. Refer to the tables of characteristics in the subsequent sections.

Figure 17. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 37*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
		low drive capability	-	0.5	0.9	
	ISE current consumption	medium-low drive capability	-	-	1	
DD		medium-high drive capability	pability 1.3		1.3	μA
		high drive capability	apability			
		low drive capability	5	-	-	
~	Oscillator transconductance	Oscillator medium-low drive capability		8	-	
9 _m		ce medium-high drive capability		-	-	μΑνν
		high drive capability	25	-	-	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DDIOx} is stabilized	-	2	-	S

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit	
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycle	
		1 kcycle ⁽²⁾ at T _A = 85 °C	30		
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Year	
		10 kcycle ⁽²⁾ at T _A = 55 °C	20		

Table 44. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 45*. They are based on the EMS levels and classes defined in application note AN1709.

Table 45. EMS	characteristics
---------------	-----------------

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 1.8 V, LQFP100, T _A = +25 °C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 1.8 V, LQFP100, T _A = +25°C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Symbol	Description	Func suscer	Unit	
Gymbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0	-0	NA	
I _{INJ}	Injected current on PF1 pin (FTf pin)	-0	NA	
	Injected current on PC0 pin (TTA pin)	-0	+5	
	Injected current on PA4, PA5 pins with induced leakage current on adjacent pins less than -20 μA	-5	NA	mA
	Injected current on other FT and FTf pins, and on NPOR pin	-5	NA	
	Injected current on all other TC, TTa and RST pins	-5	+5	

Table 49. I/	/O current	injection	susce	ptibility
--------------	-------------------	-----------	-------	-----------

6.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 50* are derived from tests performed under the conditions summarized in *Table 23: General operating conditions*. All I/Os are designed as CMOS- and TTL-compliant.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		TC and TTa I/O	-	-	0.3 V _{DDIOx} +0.07 ⁽¹⁾	
V_{IL}	Low level input	FT and FTf I/O	-	-	0.475 V _{DDIOx} -0.2 ⁽¹⁾	V
		All I/Os	-	-	0.3 V _{DDIOx}	
		TC and TTa I/O	0.445 V _{DDIOx} +0.398 ⁽¹⁾	-	-	
V _{IH}	High level input voltage	FT and FTf I/O	0.5 V _{DDIOx} +0.2 ⁽¹⁾	-	-	V
	Voltago	All I/Os	0.7 V _{DDIOx}	-	-	
Schmitt trigger		TC and TTa I/O	-	200 ⁽¹⁾	-	m\/
v hys	hysteresis	FT and FTf I/O	-	100 ⁽¹⁾	-	IIIV
		TC, FT and FTf I/O TTa in digital mode V _{SS} ≤ V _{IN} ≤ V _{DDIOx}	-	-	± 0.1	
l _{lkg}	Input leakage current ⁽²⁾	TTa in digital mode V _{DDIOx} ≤ V _{IN} ≤ V _{DDA}	-	-	1	μA
		TTa in analog mode V _{SS} ≤ V _{IN} ≤ V _{DDA}	-	-	± 0.2	
		FT and FTf I/O V _{DDIOx} ≤ V _{IN} ≤ 5 V	-	-	10	

Table 50. I/O static characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 20: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 20: Voltage characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4		
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -0.4	-	V	
V _{OL}	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4		
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	2.4	-	V	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥2.7 V	V _{DDIOx} -1.3	-	v	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 6 mA	-	0.4	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2 V	V _{DDIOx} -0.4	-	v	
V _{OL} ⁽⁴⁾	Output low level voltage for an I/O pin	II I = 4 mA	-	0.4	V	
V _{OH} ⁽⁴⁾	Output high level voltage for an I/O pin	1 ₀ – 4 mA	V _{DDIOx} -0.4	-	V	
V _{OLFm+} ⁽³⁾	Output low level voltage for an FTf I/O pin in	I _{IO} = 20 mA V _{DDIOx} ≥ 2.7 V	-	0.4	V	
		I _{IO} = 10 mA	-	0.4	V	

Table 51. Output voltage characteristics⁽¹⁾

 The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 20: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Data based on characterization results. Not tested in production.

4. Data based on characterization results. Not tested in production.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽³⁾			2	MHz
Fm+ configuration (4)	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	12	n 0
	t _{r(IO)out}	Output rise time]		34	115
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	0.5	MHz
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} < 2 V	-	16	200
	t _{r(IO)out}	Output rise time			44	IIS
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns

Table 52. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

 The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design, not tested in production.

- 3. The maximum frequency is defined in *Figure 24*.
- 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.

Figure 24. I/O AC characteristics definition

6.3.14 NRST and NPOR pin characteristics

NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*.

Figure 26. ADC accuracy characteristics

Refer to Table 55: ADC characteristics for the values of $\mathsf{R}_{AIN},\,\mathsf{R}_{ADC}$ and $\mathsf{C}_{ADC}.$ 1.

 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 13: Power supply* scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.17 Comparator characteristics

Symbol	Parameter	Conditio	ons	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-			-	3.6	V
V _{IN}	Comparator input voltage range	-		0	-	V _{DDA}	-
V _{SC}	V _{REFINT} scaler offset voltage	-		-	±5	±10	mV
ts_sc	V _{REFINT} scaler startup time from power down	-		-	-	0.2	ms
t _{START}	Comparator startup time	Startup time to reach pro specification	pagation delay	-	-	60	μs
		Ultra-low power mode		-	2	4.5	
	Propagation delay for	Low power mode		-	0.7	1.5	μs
	200 mV step with 100 mV overdrive	Medium power mode			0.3	0.6	
		High apood modo	V _{DDA} ≥ 2.7 V	-	50	100	
		nigh speed mode	V _{DDA} < 2.7 V	-	100	240	ns
۲D		Ultra-low power mode		-	2	7	μs
	Propagation delay for full range step with 100 mV overdrive	Low power mode		-	0.7	2.1	
		Medium power mode			0.3	1.2	
		High apood modo	V _{DDA} ≥ 2.7 V	-	90	180	
		nigh speed mode	V _{DDA} < 2.7 V	-	110	300	115
V _{offset}	Comparator offset error	-		-	±4	±10	mV
dV _{offset} /dT	Offset error temperature coefficient	-		-	18	-	µV/°C
		Ultra-low power mode		-	1.2	1.5	
	COMP current	Low power mode		-	3	5	μA
'DD(COMP)	consumption	Medium power mode		-	10	15	
		High speed mode		-	75	100	

Table 59. Comparator characteristics

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 38. LQFP100 package marking example

7.3 UFBGA64 package information

UFBGA64 is a 64-ball, 5 x 5 mm, 0.5 mm pitch ultra-fine-profile ball grid array package.

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
А	0.460	0.530	0.600	0.0181	0.0209	0.0236	
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043	
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197	
A3	0.080	0.130	0.180	0.0031	0.0051	0.0071	
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146	
b	0.170	0.280	0.330	0.0067	0.0110	0.0130	
D	4.850	5.000	5.150	0.1909	0.1969	0.2028	
D1	3.450	3.500	3.550	0.1358	0.1378	0.1398	
E	4.850	5.000	5.150	0.1909	0.1969	0.2028	
E1	3.450	3.500	3.550	0.1358	0.1378	0.1398	
е	-	0.500	-	-	0.0197	-	
F	0.700	0.750	0.800	0.0276	0.0295	0.0315	

Table 71. UFBGA64 package mechanical data

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 44. WLCSP64 package marking example

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.500	-	-	0.2165	-	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.500	-	-	0.2165	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.080	-	-	0.0031	

Table 70. Let 1 to package mechanical da	Table 76. L	QFP48	package	mechanical	data
--	-------------	-------	---------	------------	------

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

DocID026967 Rev 4

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F098CC/RC/VC at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V

 $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax} = 175 + 272 = 447 mW

Using the values obtained in *Table 78* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W

T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Section 8: Ordering information*).

Note: With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 105\text{-}20.115 = 84.885^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 125\text{-}20.115 = 104.885^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum temperature $T_{Amax} = 100 \degree C$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}$, $V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}$, $V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

DocID026967 Rev 4

Date	Revision	Changes
		Section 6: Electrical characteristics:
		 footnote for V_{IN} max value in <i>Table 20: Voltage</i> characteristics
		 footnote for V_{IN} max value in <i>Table 23: General</i> operating conditions
		 Table 25: Embedded internal reference voltage: added t_{START} parameter and removal of -40°-to-85° condition for V_{REFINT} and associated note
		 Figure 18: Typical application with a 32.768 kHz crystal - correction of OSC_IN and OSC_OUT to OSC32_IN and OSC32_OUT and f_{HSE} to f_{LSE}
		- Table 47: ESD absolute maximum ratings updated
		 V_{DDIOx} replaced V_{DD} in Figure 22: TC and TTa I/O input characteristics and Figure 23: Five volt tolerant (FT and FTf) I/O input characteristics
		- Table 50: I/O static characteristics- note removed
17-Dec-2015	3 (continued)	 Table 55: ADC characteristics - updated some parameter values, test conditions and added footnotes ⁽³⁾ and ⁽⁴⁾
		 I_{DDA} max value (DAC DC current consumption) in Table 58: DAC characteristics
		 Table 59: Comparator characteristics - min value added for V_{DDA}
		 Table 60: TS characteristics: removed the minimum value for t_{START} symbol and updated parameter name
		 R parameter typical. value in <i>Table 61:</i> V_{BAT} monitoring characteristics
		 Table 62: TIMx characteristics: removed Res_{TM} parameter line and all values put in new Typ column, t_{COUNTER} substituted with t_{MAX_COUNT}, values defined as powers of two
		- Table 67: I ² S characteristics reorganized and max
		 Figure 32: I²S master timing diagram (Philips protocol) added definition of edge level references
		Section 7: Package information:
		 Figure 33: UFBGA100 package outline and associated Table 68 updated
		- Figure 34 and associated Table 69 updated
		 Figure 35: UFBGA100 package marking example and associated text updated
		 Figure 38: LQFP100 package marking example and associated text updated
		 Table 72: UFBGA64 recommended PCB design rules added
		 Figure 41: UFBGA64 package marking example added
		Section 8: Part numbering:
		 added tray packing to options

Table 80.	Document	revision	history	(continued)
-----------	----------	----------	---------	-------------

