

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, I ² C, IrDA, Microwire, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 6x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1756fbd80y

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M3 microcontroller

- WatchDog Timer (WDT). The WDT can be clocked from the internal RC oscillator, the RTC oscillator, or the APB clock.
- ◆ ARM Cortex-M3 system tick timer, including an external clock input option.
- Repetitive Interrupt Timer (RIT) provides programmable and repeating timed interrupts.
- Each peripheral has its own clock divider for further power savings.
- Standard JTAG debug interface for compatibility with existing tools. Serial Wire Debug and Serial Wire Trace Port options. Boundary scan Description Language (BSDL) is not available for this device.
- Emulation trace module enables non-intrusive, high-speed real-time tracing of instruction execution.
- Integrated PMU (Power Management Unit) automatically adjusts internal regulators to minimize power consumption during Sleep, Deep sleep, Power-down, and Deep power-down modes.
- Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down.
- Single 3.3 V power supply (2.4 V to 3.6 V).
- One external interrupt input configurable as edge/level sensitive. All pins on Port 0 and Port 2 can be used as edge sensitive interrupt sources.
- Non-maskable Interrupt (NMI) input.
- The Wakeup Interrupt Controller (WIC) allows the CPU to automatically wake up from any priority interrupt that can occur while the clocks are stopped in Deep sleep, Power-down, and Deep power-down modes.
- Processor wake-up from Power-down mode via any interrupt able to operate during Power-down mode (includes external interrupts, RTC interrupt, USB activity, Ethernet wake-up interrupt (LPC1758 only), CAN bus activity, Port 0/2 pin interrupt, and NMI).
- Brownout detect with separate threshold for interrupt and forced reset.
- Power-On Reset (POR).
- Crystal oscillator with an operating range of 1 MHz to 25 MHz.
- 4 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used as a system clock.
- PLL allows CPU operation up to the maximum CPU rate without the need for a high-frequency crystal. May be run from the main oscillator, the internal RC oscillator, or the RTC oscillator.
- USB PLL for added flexibility.
- Code Read Protection (CRP) with different security levels.
- Unique device serial number for identification purposes.
- Available as 80-pin LQFP package (12 mm × 12 mm × 1.4 mm).

3. Applications

- eMetering
- Lighting
- Industrial networking
- Alarm systems
- White goods
- Motor control

32-bit ARM Cortex-M3 microcontroller

4. Ordering information

Table 1. Ordering information

Type number	Package							
	Name	Description	Version					
LPC1759FBD80	LQFP80	plastic low-profile quad package; 80 leads; body $12 \times 12 \times 1.4$ mm	SOT315-1					
LPC1758FBD80	LQFP80	plastic low-profile quad package; 80 leads; body $12 \times 12 \times 1.4$ mm	SOT315-1					
LPC1756FBD80	LQFP80	plastic low-profile quad package; 80 leads; body $12 \times 12 \times 1.4$ mm	SOT315-1					
LPC1754FBD80	LQFP80	plastic low-profile quad package; 80 leads; body $12 \times 12 \times 1.4$ mm	SOT315-1					
LPC1752FBD80	LQFP80	plastic low-profile quad package; 80 leads; body $12 \times 12 \times 1.4$ mm	SOT315-1					
LPC1751FBD80	LQFP80	plastic low-profile quad package; 80 leads; body $12 \times 12 \times 1.4$ mm	SOT315-1					

4.1 Ordering options

Table 2.Ordering options

					SRAM in kB								Icy
Type number	Device order part number	Flash (kB)	CPU	AHB SRAM0	AHB SRAM1	Total	Ethernet	USB	CAN	l²S-bus	DAC	GPIO	Maximum CPU operating frequen (MHz)
LPC1759FBD80	LPC1759FBD80,551	512	32	16	16	64	no	Device/Host/OTG	2	yes	yes	52	120
LPC1758FBD80	LPC1758FBD80Y	512	32	16	16	64	yes	Device/Host/OTG	2	yes	yes	52	100
LPC1756FBD80	LPC1756FBD80/CP327	256	16	16	-	32	no	Device/Host/OTG	2	yes	yes	52	100
LPC1754FBD80	LPC1754FBD80,551	128	16	16	-	32	no	Device/Host/OTG	1	no	yes	52	100
LPC1752FBD80	LPC1752FBD80,551	64	16	-	-	16	no	Device only	1	no	no	52	100
LPC1751FBD80	LPC1751FBD80,551	32	8	-	-	8	no	Device only	1	no	no	52	100

32-bit ARM Cortex-M3 microcontroller

6. Block diagram

PC1759_58_56_54_52_51 Product data sheet

32-bit ARM Cortex-M3 microcontroller

Symbol	Pin	Туре	Description			
XTAL1	19 <u>[9][10]</u>	I	Input to the oscillator circuit and internal clock generator circuits.			
XTAL2	20 ^{[9][10]}	0	Dutput from the oscillator amplifier.			
RTCX1	13 ^{[9][11]}	I	Input to the RTC oscillator circuit.			
RTCX2	15 <u>^[9]</u>	0	Output from the RTC oscillator circuit.			
V _{SS}	24, 33, 43, 57, 66, 78	I	ground: 0 V reference.			
V _{SSA}	9	I	analog ground: 0 V reference. This should nominally be the same voltage as V_{SS} , but should be isolated to minimize noise and error.			
V _{DD(3V3)}	21, 42, 56, 77	I	3.3 V supply voltage: This is the power supply voltage for the I/O ports.			
V _{DD(REG)(3V3)}	34, 67	I	3.3 V voltage regulator supply voltage: This is the supply voltage for the on-chip voltage regulator only.			
V _{DDA}	8	I	analog 3.3 V pad supply voltage: This should be nominally the same voltage as $V_{DD(3V3)}$ but should be isolated to minimize noise and error. This voltage is used to power the ADC and DAC. This pin should be tied to 3.3 V if the ADC and DAC are not used.			
VREFP	10	I	ADC positive reference voltage: This should be nominally the same voltage as V_{DDA} but should be isolated to minimize noise and error. Level on this pin is used as a reference for ADC and DAC. This pin should be tied to 3.3 V if the ADC and DAC are not used.			
VREFN	12	1	ADC negative reference voltage: This should be nominally the same voltage as V_{SS} but should be isolated to minimize noise and error. Level on this pin is used as a reference for ADC and DAC.			
VBAT	16 <u>[11]</u>	I	RTC pin power supply: 3.3 V on this pin supplies the power to the RTC peripheral.			

Table 4. Pin description ... continued

[1] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis. This pin is pulled up to a voltage level of 2.3 V to 2.6 V.

[2] 5 V tolerant pad providing digital I/O functions (with TTL levels and hysteresis) and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant. This pin is pulled up to a voltage level of 2.3 V to 2.6 V.

- [3] 5 V tolerant pad providing digital I/O with TTL levels and hysteresis and analog output function. When configured as the DAC output, digital section of the pad is disabled. This pin is pulled up to a voltage level of 2.3 V to 2.6 V.
- [4] Pad provides digital I/O and USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode only). This pad is not 5 V tolerant.
- [5] 5 V tolerant pad with 10 ns glitch filter providing digital I/O functions with TTL levels and hysteresis. This pin is pulled up to a voltage level of 2.3 V to 2.6 V.
- [6] 5 V tolerant pad with TTL levels and hysteresis. Internal pull-up and pull-down resistors disabled.
- [7] 5 V tolerant pad with TTL levels and hysteresis and internal pull-up resistor.
- [8] 5 V tolerant pad with 20 ns glitch filter providing digital I/O function with TTL levels and hysteresis.
- [9] Pad provides special analog functionality. 32 kHz crystal oscillator must be used with the RTC.
- [10] When the system oscillator is not used, connect XTAL1 and XTAL2 as follows: XTAL1 can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTAL2 should be left floating.
- [11] When the RTC is not used, connect VBAT to $V_{DD(REG)(3V3)}$ and leave RTCX1 floating.

32-bit ARM Cortex-M3 microcontroller

8.5 Memory Protection Unit (MPU)

The LPC1759/58/56/54/52/51 have a Memory Protection Unit (MPU) which can be used to improve the reliability of an embedded system by protecting critical data within the user application.

The MPU allows separating processing tasks by disallowing access to each other's data, disabling access to memory regions, allowing memory regions to be defined as read-only and detecting unexpected memory accesses that could potentially break the system.

The MPU separates the memory into distinct regions and implements protection by preventing disallowed accesses. The MPU supports up to 8 regions each of which can be divided into 8 subregions. Accesses to memory locations that are not defined in the MPU regions, or not permitted by the region setting, will cause the Memory Management Fault exception to take place.

8.6 Memory map

The LPC1759/58/56/54/52/51 incorporate several distinct memory regions, shown in the following figures. Figure 3 shows the overall map of the entire address space from the user program viewpoint following reset. The interrupt vector area supports address remapping.

The AHB peripheral area is 2 MB in size, and is divided to allow for up to 128 peripherals. The APB peripheral area is 1 MB in size and is divided to allow for up to 64 peripherals. Each peripheral of either type is allocated 16 kB of space. This allows simplifying the address decoding for each peripheral.

LPC1759_58_56_54_52_51

15 of 80

All information provided in this document is subject to legal disclaimers.

Τ

32-bit ARM Cortex-M3 microcontroller

Product data sheet

rformation provided in this document is subject to lega Rev. 8.6 — 18 August 2015

16 of 80

32-bit ARM Cortex-M3 microcontroller

- Receive filtering.
- Multicast and broadcast frame support for both transmit and receive.
- Optional automatic Frame Check Sequence (FCS) insertion with Cyclic Redundancy Check (CRC) for transmit.
- Selectable automatic transmit frame padding.
- Over-length frame support for both transmit and receive allows any length frames.
- Promiscuous receive mode.
- Automatic collision back-off and frame retransmission.
- Includes power management by clock switching.
- Wake-on-LAN power management support allows system wake-up: using the receive filters or a magic frame detection filter.
- Physical interface:
 - Attachment of external PHY chip through standard RMII interface.
 - PHY register access is available via the MIIM interface.

8.12 USB interface

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a host and one or more (up to 127) peripherals. The host controller allocates the USB bandwidth to attached devices through a token-based protocol. The bus supports hot plugging and dynamic configuration of the devices. All transactions are initiated by the host controller.

The LPC1759/58/56/54 USB interface includes a device, Host, and OTG controller with on-chip PHY for device and Host functions. The OTG switching protocol is supported through the use of an external controller. Details on typical USB interfacing solutions can be found in <u>Section 15.1</u>. The LPC1752/51 include a USB device controller only.

8.12.1 USB device controller

The device controller enables 12 Mbit/s data exchange with a USB Host controller. It consists of a register interface, serial interface engine, endpoint buffer memory, and a DMA controller. The serial interface engine decodes the USB data stream and writes data to the appropriate endpoint buffer. The status of a completed USB transfer or error condition is indicated via status registers. An interrupt is also generated if enabled. When enabled, the DMA controller transfers data between the endpoint buffer and the on-chip SRAM.

8.12.1.1 Features

- Fully compliant with USB 2.0 specification (full speed).
- Supports 32 physical (16 logical) endpoints with a 4 kB endpoint buffer RAM.
- Supports Control, Bulk, Interrupt and Isochronous endpoints.
- Scalable realization of endpoints at run time.
- Endpoint Maximum packet size selection (up to USB maximum specification) by software at run time.
- Supports SoftConnect and GoodLink features.

32-bit ARM Cortex-M3 microcontroller

8.29.2 Main PLL (PLL0)

The PLL0 accepts an input clock frequency in the range of 32 kHz to 25 MHz. The input frequency is multiplied up to a high frequency, then divided down to provide the actual clock used by the CPU and/or the USB block.

The PLL0 input, in the range of 32 kHz to 25 MHz, may initially be divided down by a value 'N', which may be in the range of 1 to 256. This input division provides a wide range of output frequencies from the same input frequency.

Following the PLL0 input divider is the PLL0 multiplier. This can multiply the input divider output through the use of a Current Controlled Oscillator (CCO) by a value 'M', in the range of 1 through 32768. The resulting frequency must be in the range of 275 MHz to 550 MHz. The multiplier works by dividing the CCO output by the value of M, then using a phase-frequency detector to compare the divided CCO output to the multiplier input. The error value is used to adjust the CCO frequency.

The PLL0 is turned off and bypassed following a chip Reset and by entering Power-down mode. PLL0 is enabled by software only. The program must configure and activate the PLL0, wait for the PLL0 to lock, and then connect to the PLL0 as a clock source.

8.29.3 USB PLL (PLL1)

The LPC1759/58/56/54/52/51 contain a second, dedicated USB PLL1 to provide clocking for the USB interface.

The PLL1 receives its clock input from the main oscillator only and provides a fixed 48 MHz clock to the USB block only. The PLL1 is disabled and powered off on reset. If the PLL1 is left disabled, the USB clock will be supplied by the 48 MHz clock from the main PLL0.

The PLL1 accepts an input clock frequency in the range of 10 MHz to 25 MHz only. The input frequency is multiplied up the range of 48 MHz for the USB clock using a Current Controlled Oscillators (CCO). It is insured that the PLL1 output has a 50 % duty cycle.

8.29.4 Wake-up timer

The LPC1759/58/56/54/52/51 begin operation at power-up and when awakened from Power-down mode by using the 4 MHz IRC oscillator as the clock source. This allows chip operation to resume quickly. If the main oscillator or the PLL is needed by the application, software will need to enable these features and wait for them to stabilize before they are used as a clock source.

When the main oscillator is initially activated, the wake-up timer allows software to ensure that the main oscillator is fully functional before the processor uses it as a clock source and starts to execute instructions. This is important at power on, all types of Reset, and whenever any of the aforementioned functions are turned off for any reason. Since the oscillator and other functions are turned off during Power-down mode, any wake-up of the processor from Power-down mode makes use of the wake-up Timer.

The Wake-up Timer monitors the crystal oscillator to check whether it is safe to begin code execution. When power is applied to the chip, or when some event caused the chip to exit Power-down mode, some time is required for the oscillator to produce a signal of sufficient amplitude to drive the clock logic. The amount of time depends on many factors, including the rate of $V_{DD(3V3)}$ ramp (in the case of power on), the type of crystal and its

© NXP Semiconductors N.V. 2015. All rights reserved.

32-bit ARM Cortex-M3 microcontroller

On the LPC1759/58/56/54/52/51, I/O pads are powered by the 3.3 V ($V_{DD(3V3)}$) pins, while the $V_{DD(REG)(3V3)}$ pin powers the on-chip voltage regulator which in turn provides power to the CPU and most of the peripherals.

Depending on the LPC1759/58/56/54/52/51 application, a design can use two power options to manage power consumption.

The first option assumes that power consumption is not a concern and the design ties the $V_{DD(3V3)}$ and $V_{DD(REG)(3V3)}$ pins together. This approach requires only one 3.3 V power supply for both pads, the CPU, and peripherals. While this solution is simple, it does not support powering down the I/O pad ring "on the fly" while keeping the CPU and peripherals alive.

The second option uses two power supplies; a 3.3 V supply for the I/O pads ($V_{DD(3V3)}$) and a dedicated 3.3 V supply for the CPU ($V_{DD(REG)(3V3)}$). Having the on-chip voltage regulator powered independently from the I/O pad ring enables shutting down of the I/O pad power supply "on the fly", while the CPU and peripherals stay active.

The VBAT pin supplies power only to the RTC domain. The RTC requires a minimum of power to operate, which can be supplied by an external battery. The device core power $(V_{DD(REG)(3V3)})$ is used to operate the RTC whenever $V_{DD(REG)(3V3)}$ is present. Therefore, there is no power drain from the RTC battery when $V_{DD(REG)(3V3)}$ is available.

LPC1759_58_56_54_52_51

34 of 80

32-bit ARM Cortex-M3 microcontroller

8.30.5 AHB multilayer matrix

The LPC1759/58/56/54/52/51 use an AHB multilayer matrix. This matrix connects the instruction (I-code) and data (D-code) CPU buses of the ARM Cortex-M3 to the flash memory, the main (32 kB) static RAM, and the Boot ROM. The GPDMA can also access all of these memories. The peripheral DMA controllers, Ethernet (LPC1758 only) and USB, can access all SRAM blocks. Additionally, the matrix connects the CPU system bus and all of the DMA controllers to the various peripheral functions.

8.30.6 External interrupt inputs

The LPC1759/58/56/54/52/51 include up to 30 edge sensitive interrupt inputs combined with one level sensitive external interrupt input as selectable pin function. The external interrupt input can optionally be used to wake up the processor from Power-down mode.

8.30.7 Memory mapping control

The Cortex-M3 incorporates a mechanism that allows remapping the interrupt vector table to alternate locations in the memory map. This is controlled via the Vector Table Offset Register contained in the NVIC.

The vector table may be located anywhere within the bottom 1 GB of Cortex-M3 address space. The vector table must be located on a 128 word (512 byte) boundary because the NVIC on the LPC1759/58/56/54/52/51 is configured for 128 total interrupts.

8.31 Emulation and debugging

Debug and trace functions are integrated into the ARM Cortex-M3. Serial wire debug and trace functions are supported in addition to a standard JTAG debug and parallel trace functions. The ARM Cortex-M3 is configured to support up to eight breakpoints and four watch points.

32-bit ARM Cortex-M3 microcontroller

10. Thermal characteristics

10.1 Thermal characteristics

The average chip junction temperature, T_J (°C), can be calculated using the following equation:

$$T_J = T_{amb} + (P_D \times R_{th(j-a)}) \tag{1}$$

- T_{amb} = ambient temperature (°C),
- R_{th(j-a)} = the package junction-to-ambient thermal resistance (°C/W)
- P_D = sum of internal and I/O power dissipation

The internal power dissipation is the product of I_{DD} and V_{DD} . The I/O power dissipation of the I/O pins is often small and many times can be negligible. However it can be significant in some applications.

Table 6.Thermal resistance (±15 %)

Symbol	Parameter	Conditions	Max/Min	Unit
LQFP80				
R _{th(j-a)}	thermal resistance from	JEDEC (4.5 in \times 4 in); still air	39.46	°C/W
	junction to ambient	Single-layer (4.5 in \times 3 in); still air	59.39	°C/W
R _{th(j-c)}	thermal resistance from junction to case		6.769	°C/W

32-bit ARM Cortex-M3 microcontroller

11. Static characteristics

Table 7. Static characteristics

 $T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
Supply pins							
V _{DD(3V3)}	supply voltage (3.3 V)	external rail	[2]	2.4	3.3	3.6	V
V _{DD(REG)(3V3)}	regulator supply voltage (3.3 V)			2.4	3.3	3.6	V
V _{DDA}	analog 3.3 V pad supply voltage		[3][4]	2.5	3.3	3.6	V
V _{i(VBAT)}	input voltage on pin VBAT		[5]	2.1	3.3	3.6	V
V _{i(VREFP)}	input voltage on pin VREFP		[3]	2.5	3.3	V _{DDA}	V
I _{DD(REG)(3V3)}	regulator supply current	active mode; code					
	(3.3 V)	while(1){}					
		executed from flash; all peripherals disabled; PCLK = $^{CCLK}_{8}$					
		CCLK = 12 MHz; PLL disabled	<u>[6][7]</u>	-	7	-	mA
		CCLK = 100 MHz; PLL enabled	[6][7]	-	42	-	mA
		CCLK = 100 MHz; PLL enabled (LPC1759)	<u>[6][8]</u>		50		
		CCLK = 120 MHz; PLL enabled (LPC1759)	<u>[6][8]</u>	-	67	-	mA
		sleep mode	[6][9]	-	2	-	mA
		deep sleep mode	<u>[6][10]</u>	-	240	-	μΑ
		power-down mode	[6][10]	-	31	-	μΑ
		deep power-down mode; RTC running	[11]	-	630	-	nA
I _{BAT}	battery supply current	Deep power-down mode; RTC running					
		V _{DD(REG)(3V3)} present	[12]	-	530	-	nA
		V _{DD(REG)(3V3)} not present	[13]	-	1.1	-	μA
I _{DD(IO)}	I/O supply current	deep sleep mode	[14][15]	-	40	-	nA
		power-down mode	[14][15]	-	40	-	nA
		deep power-down mode	[14]	-	10	-	nA

32-bit ARM Cortex-M3 microcontroller

- [15] TCK/SWDCLK pin needs to be externally pulled LOW.
- [16] $V_{DDA} = 3.3 \text{ V}; T_{amb} = 25 \text{ °C}.$
- [17] The ADC is powered if the PDN bit in the AD0CR register is set to 1. See LPC17xx user manual UM10360.
- [18] The ADC is in Power-down mode if the PDN bit in the AD0CR register is set to 0. See LPC17xx user manual UM10360.
- [19] $V_{i(VREFP)} = 3.3 \text{ V}; T_{amb} = 25 \text{ °C}.$
- [20] Including voltage on outputs in 3-state mode.
- [21] $V_{DD(3V3)}$ supply voltage ≥ 2.4 V.
- [22] 3-state outputs go into 3-state mode in Deep power-down mode.
- [23] Allowed as long as the current limit does not exceed the maximum current allowed by the device.
- [24] Includes external resistors of 33 $\Omega\pm$ 1 % on D+ and D–.

11.1 Power consumption

32-bit ARM Cortex-M3 microcontroller

11.3 Electrical pin characteristics

32-bit ARM Cortex-M3 microcontroller

12.6 I²S-bus interface (LPC1759/58/56 only)

Table 14. Dynamic characteristics: I²S-bus interface pins

 $T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C.$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
common	to input and output					<u>.</u>	
t _r	rise time		<u>[1]</u>	-	-	35	ns
t _f	fall time		<u>[1]</u>	-	-	35	ns
t _{WH}	pulse width HIGH	on pins I2STX_CLK and I2SRX_CLK	[1]	$0.495 \times T_{cy(clk)}$	-	-	-
t _{WL}	pulse width LOW	on pins I2STX_CLK and I2SRX_CLK	<u>[1]</u>	-	-	$0.505 imes T_{cy(clk)}$	ns
output							
t _{v(Q)}	data output valid time	on pin I2STX_SDA;	<u>[1]</u>	-	-	30	ns
		on pin I2STX_WS	<u>[1]</u>	-	-	30	ns
input							
t _{su(D)}	data input set-up time	on pin I2SRX_SDA	<u>[1]</u>	3.5	-	-	ns
t _{h(D)}	data input hold time	on pin I2SRX_SDA	<u>[1]</u>	4.0	-	-	ns

[1] CCLK = 20 MHz; peripheral clock to the I²S-bus interface PCLK = ^{CCLK}/₄; T_{cy(clk)} = 1600 ns, corresponds to the SCK signal in the I²S-bus specification.

32-bit ARM Cortex-M3 microcontroller

12.9 SPI

Table 17. Dynamic characteristics of SPI pins

 $T_{amb} = -40 \ ^{\circ}C \ to +85 \ ^{\circ}C.$

Symbol	Parameter		Min	Тур	Max	Unit
T _{cy(PCLK)}	PCLK cycle time		10	-	-	ns
T _{SPICYC}	SPI cycle time	[1]	79.6	-	-	ns
t _{SPICLKH}	SPICLK HIGH time		$0.485 \times T_{SPICYC}$	-	-	ns
t _{SPICLKL}	SPICLK LOW time			-	$0.515 imes T_{SPICYC}$	ns
SPI master						
t _{SPIDSU}	SPI data set-up time	[2]	0	-	-	ns
t _{SPIDH}	SPI data hold time	[2]	$2 \times T_{cy(PCLK)} - 5$	-	-	ns
t _{SPIQV}	SPI data output valid time	[2]	$2 \times T_{cy(PCLK)}$ + 30	-	-	ns
t _{SPIOH}	SPI output data hold time	[2]	$2 \times T_{cy(PCLK)}$ + 5	-	-	ns
SPI slave						
t _{SPIDSU}	SPI data set-up time	[2]	0	-	-	ns
t _{SPIDH}	SPI data hold time	[2]	$2 \times T_{cy(PCLK)}$ + 5	-	-	ns
t _{SPIQV}	SPI data output valid time	[2]	$2 \times T_{cy(PCLK)}$ + 35	-	-	ns
t _{SPIOH}	SPI output data hold time	[2]	$2 \times T_{cy(PCLK)}$ + 15	-	-	ns

[1] $T_{SPICYC} = (T_{cy(PCLK)} \times n) \pm 0.5$ %, n is the SPI clock divider value (n \ge 8); PCLK is derived from the processor clock CCLK.

[2] Timing parameters are measured with respect to the 50 % edge of the clock PCLK and the 10 % (90 %) edge of the data signal (MOSI or MISO).

32-bit ARM Cortex-M3 microcontroller

13. ADC electrical characteristics

Table 18. ADC characteristics (full resolution)

 $V_{DDA} = 2.5 \text{ V}$ to 3.6 V; $T_{amb} = -40 \text{ °C}$ to +85 °C unless otherwise specified; ADC frequency 13 MHz; 12-bit resolution.[1]

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{IA}	analog input voltage			0	-	V _{DDA}	V
C _{ia}	analog input capacitance			-	-	15	pF
E _D	differential linearity error		[2][3]	-	-	±1	LSB
E _{L(adj)}	integral non-linearity		[4]	-	-	±3	LSB
E _O	offset error		[5][6]	-	-	±2	LSB
E _G	gain error		[7]	-	-	0.5	%
ET	absolute error		[8]	-	-	4	LSB
R _{vsi}	voltage source interface resistance		<u>[9]</u>	-	-	7.5	kΩ
f _{clk(ADC)}	ADC clock frequency			-	-	13	MHz
f _{c(ADC)}	ADC conversion frequency		[10]	-	-	200	kHz

[1] V_{DDA} and VREFP should be tied to V_{DD(3V3)} if the ADC and DAC are not used.

[2] The ADC is monotonic, there are no missing codes.

[3] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See Figure 26.

[4] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 26.

[5] The offset error (E_O) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See <u>Figure 26</u>.

[6] ADCOFFS value (bits 7:4) = 2 in the ADTRM register. See LPC17xx user manual UM10360.

[7] The gain error (E_G) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See <u>Figure 26</u>.

[8] The absolute error (E_T) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See Figure 26.

[9] See <u>Figure 27</u>.

[10] The conversion frequency corresponds to the number of samples per second.

32-bit ARM Cortex-M3 microcontroller

Table 22.	Recommended values for C_{X1}/C_{X2} in oscillation mode (crystal and external
	components parameters): low frequency mode

Fundamental oscillation frequency F _{OSC}	Crystal load capacitance C _L	Maximum crystal series resistance R _S	External load capacitors C _{X1} /C _{X2}
1 MHz to 5 MHz	10 pF	< 300 Ω	18 pF, 18 pF
	20 pF	< 300 Ω	39 pF, 39 pF
	30 pF	< 300 Ω	57 pF, 57 pF
5 MHz to 10 MHz	10 pF	< 300 Ω	18 pF, 18 pF
	20 pF	< 200 Ω	39 pF, 39 pF
	30 pF	< 100 Ω	57 pF, 57 pF
10 MHz to 15 MHz	10 pF	< 160 Ω	18 pF, 18 pF
	20 pF	< 60 Ω	39 pF, 39 pF
15 MHz to 20 MHz	10 pF	< 80 Ω	18 pF, 18 pF

Table 23. Recommended values for C_{X1}/C_{X2} in oscillation mode (crystal and external components parameters): high frequency mode

Fundamental oscillation frequency F _{OSC}	Crystal load capacitance C _L	Maximum crystal series resistance R _S	External load capacitors C _{X1} , C _{X2}
15 MHz to 20 MHz	10 pF	< 180 Ω	18 pF, 18 pF
	20 pF	< 100 Ω	39 pF, 39 pF
20 MHz to 25 MHz	10 pF	< 160 Ω	18 pF, 18 pF
	20 pF	< 80 Ω	39 pF, 39 pF

15.3 XTAL Printed-Circuit Board (PCB) layout guidelines

The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors C_{x1} , C_{x2} , and C_{x3} in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in

32-bit ARM Cortex-M3 microcontroller

17. Soldering

All information provided in this document is subject to legal disclaimers.

32-bit ARM Cortex-M3 microcontroller

23. Contents

1	General description 1
2	Features and benefits 1
3	Applications 3
4	Ordering information 4
4.1	Ordering options 4
5	Marking 5
6	Block diagram 6
7	Pinning information 7
7.1	Pinning
7.2	Pin description 7
8	Functional description 14
8.1	Architectural overview
8.2	ARM Cortex-M3 processor
8.3	On-chip flash program memory
0.4 9.5	Momony Protoction Unit (MPU) 15
8.6	Memory map 15
8.7	Nested Vectored Interrupt Controller (NVIC) 17
8.7.1	Features
8.7.2	Interrupt sources
8.8	Pin connect block 17
8.9	General purpose DMA controller 17
8.9.1	Features
8.10	Fast general purpose parallel I/O 18
8.10.1	Features
8.11 9.11.1	Ethernet (LPC1758 only) 19
8.12	Features 19 USB interface 20
8.12.1	USB device controller
8.12.1.1	Features
8.12.2	USB host controller (LPC1759/58/56/54 only). 21
8.12.2.1	Features
8.12.3	USB OTG controller (LPC1759/58/56/54 only)
	21
8.12.3.1	Features
8.13	CAN controller and acceptance filters 21
0.13.1 8 1/	12-hit ΔDC 22
8 14 1	Features 22
8.15	10-bit DAC (LPC1759/58/56/54 only)
8.15.1	Features
8.16	UARTs
8.16.1	Features
8.17	SPI serial I/O controller
8.17.1	Features
8.18	SSP serial I/O controller

8.18.1	Features	24
8.19	I ² C-bus serial I/O controllers	24
8.19.1	Features	24
8.20	I ² S-bus serial I/O controllers (LPC1759/58/56	
	only)	24
8.20.1	Features	25
8.21	General purpose 32-bit timers/external event	
	counters	25
8.21.1	Features	25
8.22	Pulse width modulator	26
8.22.1	Features	26
8.23	Motor control PWM	27
8.24	Quadrature Encoder Interface (QEI)	27
8.24.1	Features	27
8.25	Repetitive Interrupt (RI) timer	28
8.25.1	Features	28
8.26	ARM Cortex-M3 system tick timer	28
8.27	Watchdog timer	28
8.27.1	Features	28
8.28	RTC and backup registers	29
8.28.1	Features	29
8.29	Clocking and power control	29
8.29.1	Crystal oscillators	29
8.29.1.1	Internal RC oscillator	30
8.29.1.2	Main oscillator	30
8.29.1.3	RTC oscillator	30
8.29.2	Main PLL (PLL0)	31
8.29.3	USB PLL (PLL1)	31
8.29.4	Wake-up timer	31
8.29.5	Power control	32
8.29.5.1	Sleep mode	32
8.29.5.2	Deep-sleep mode	32
8.29.5.3	Power-down mode	33
8.29.5.4	Deep power-down mode	33
8.29.5.5	Wakeup interrupt controller	33
8.29.6	Peripheral power control	33
8.29.7	Power domains	33
8.30	System control	35
8.30.1	Reset	35
8.30.2	Brownout detection	36
8.30.3	Code security (Code Read Protection - CRP)	36
8.30.4	APB interface	36
8.30.5	AHB multilayer matrix	37
8.30.6	External interrupt inputs	37
8.30.7	Memory mapping control	37
8.31	Emulation and debugging	37
9	Limiting values	38
10	Thermal characteristics	39
-		

continued >>