

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, Microwire, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	52
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 6x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1759fbd80-551

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M3 microcontroller

5. Marking

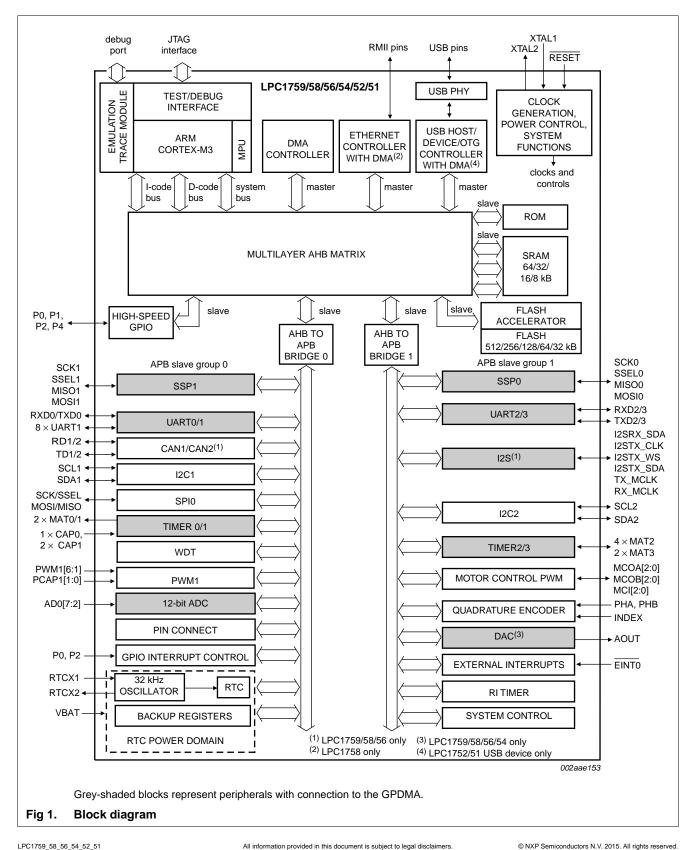
The LPC175x devices typically have the following top-side marking:

LPC175xxxx

XXXXXXX

xxYYWWR[x]

The last/second to last letter in the third line (field 'R') will identify the device revision. This data sheet covers the following revisions of the LPC175x:


Table 3. Device revision table

Revision identifier (R)	Revision description
(_) (_)	Initial device revision
Ϋ́Α'	Second device revision

Field 'YY' states the year the device was manufactured. Field 'WW' states the week the device was manufactured during that year.

32-bit ARM Cortex-M3 microcontroller

6. Block diagram

PC1759_58_56_54_52_51 Product data sheet

32-bit ARM Cortex-M3 microcontroller

Symbol	Pin	Туре	Description				
P0[7]/I2STX_CLK/	63 <u>[1]</u>	I/O	P0[7] — General purpose digital input/output pin.				
SCK1/MAT2[1]		I/O	I2STX_CLK — Transmit Clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the <i>I</i> ² <i>S</i> - <i>bus specification</i> . (LPC1759/58/56 only).				
		I/O	SCK1 — Serial Clock for SSP1.				
		0	MAT2[1] — Match output for Timer 2, channel 1.				
P0[8]/I2STX_WS/	62 <u>[1]</u>	I/O	P0[8] — General purpose digital input/output pin.				
MISO1/MAT2[2]		I/O	I2STX_WS — Transmit Word Select. It is driven by the master and received by the slave. Corresponds to the signal WS in the <i>I</i> ² <i>S</i> -bus specification. (LPC1759/58/56 only).				
		I/O	MISO1 — Master In Slave Out for SSP1.				
		0	MAT2[2] — Match output for Timer 2, channel 2.				
P0[9]/I2STX_SDA/	61 <u>[1]</u>	I/O	P0[9] — General purpose digital input/output pin.				
MOSI1/MAT2[3]		 I/O I2STX_SDA — Transmit data. It is driven by the transmitter and reareceiver. Corresponds to the signal SD in the <i>PS-bus specification</i>. (LPC1759/58/56 only). 					
		I/O	MOSI1 — Master Out Slave In for SSP1.				
		0	MAT2[3] — Match output for Timer 2, channel 3.				
P0[10]/TXD2/	39[1] I/O		P0[10] — General purpose digital input/output pin.				
SDA2/MAT3[0]		0	TXD2 — Transmitter output for UART2.				
		I/O	SDA2 — I ² C2 data input/output (this is not an open-drain pin).				
		0	MAT3[0] — Match output for Timer 3, channel 0.				
P0[11]/RXD2/ 40 ^[1]		I/O	P0[11] — General purpose digital input/output pin.				
SCL2/MAT3[1]		I	RXD2 — Receiver input for UART2.				
		I/O	SCL2 — I ² C2 clock input/output (this is not an open-drain pin).				
		0	MAT3[1] — Match output for Timer 3, channel 1.				
P0[15]/TXD1/	47 <u>[1]</u>	I/O	P0[15] — General purpose digital input/output pin.				
SCK0/SCK		0	TXD1 — Transmitter output for UART1.				
		I/O	SCK0 — Serial clock for SSP0.				
		I/O	SCK — Serial clock for SPI.				
P0[16]/RXD1/	48 <u>[1]</u>	I/O	P0[16] — General purpose digital input/output pin.				
SSEL0/SSEL		I	RXD1 — Receiver input for UART1.				
		I/O	SSEL0 — Slave Select for SSP0.				
		I/O	SSEL — Slave Select for SPI.				
P0[17]/CTS1/	46 <u>[1]</u>	I/O	P0[17] — General purpose digital input/output pin.				
MISO0/MISO		1	CTS1 — Clear to Send input for UART1.				
		I/O	MISO0 — Master In Slave Out for SSP0.				
		I/O	MISO — Master In Slave Out for SPI.				
P0[18]/DCD1/	45 <u>[1]</u>	I/O	P0[18] — General purpose digital input/output pin.				
MOSI0/MOSI		1	DCD1 — Data Carrier Detect input for UART1.				
		I/O	MOSI0 — Master Out Slave In for SSP0.				
		I/O	MOSI — Master Out Slave In for SPI.				

Table 4. Pin description ...continued

LPC1759_58_56_54_52_51

All information provided in this document is subject to legal disclaimers.

32-bit ARM Cortex-M3 microcontroller

8.13.1 Features

- One or two CAN controllers and buses.
- Data rates to 1 Mbit/s on each bus.
- 32-bit register and RAM access.
- Compatible with CAN specification 2.0B, ISO 11898-1.
- Global Acceptance Filter recognizes standard (11-bit) and extended-frame (29-bit) receive identifiers for all CAN buses.
- Acceptance Filter can provide FullCAN-style automatic reception for selected Standard Identifiers.
- FullCAN messages can generate interrupts.

8.14 12-bit ADC

The LPC1759/58/56/54/52/51 contain one ADC. It is a single 12-bit successive approximation ADC with six channels and DMA support.

8.14.1 Features

- 12-bit successive approximation ADC.
- Input multiplexing among 6 pins.
- Power-down mode.
- Measurement range VREFN to VREFP.
- 12-bit conversion rate: 200 kHz.
- Individual channels can be selected for conversion.
- Burst conversion mode for single or multiple inputs.
- Optional conversion on transition of input pin or Timer Match signal.
- Individual result registers for each ADC channel to reduce interrupt overhead.
- DMA support.

8.15 10-bit DAC (LPC1759/58/56/54 only)

The DAC allows to generate a variable analog output. The maximum output value of the DAC is VREFP.

8.15.1 Features

- 10-bit DAC
- Resistor string architecture
- Buffered output
- Power-down mode
- Selectable output drive
- Dedicated conversion timer
- DMA support

© NXP Semiconductors N.V. 2015. All rights reserved.

32-bit ARM Cortex-M3 microcontroller

bus during a given data transfer. The SSP supports full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. In practice, often only one of these data flows carries meaningful data.

8.18.1 Features

- Maximum SSP speed of 33 Mbit/s (master) or 8 Mbit/s (slave)
- Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National Semiconductor Microwire buses
- Synchronous serial communication
- Master or slave operation
- 8-frame FIFOs for both transmit and receive
- 4-bit to 16-bit frame
- DMA transfers supported by GPDMA

8.19 I²C-bus serial I/O controllers

The LPC1759/58/56/54/52/51 each contain two I²C-bus controllers.

The I²C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line (SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I²C is a multi-master bus and can be controlled by more than one bus master connected to it.

8.19.1 Features

- I²C1 and I²C2 use standard I/O pins with bit rates of up to 400 kbit/s (Fast I²C-bus).
- Easy to configure as master, slave, or master/slave.
- Programmable clocks allow versatile rate control.
- Bidirectional data transfer between masters and slaves.
- Multi-master bus (no central master).
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- The I²C-bus can be used for test and diagnostic purposes.
- Both I²C-bus controllers support multiple address recognition and a bus monitor mode.

8.20 I²S-bus serial I/O controllers (LPC1759/58/56 only)

The I²S-bus provides a standard communication interface for digital audio applications.

32-bit ARM Cortex-M3 microcontroller

- Do nothing on match.
- Up to two match registers can be used to generate timed DMA requests.

8.22 Pulse width modulator

The PWM is based on the standard Timer block and inherits all of its features, although only the PWM function is pinned out on the LPC1759/58/56/54/52/51. The Timer is designed to count cycles of the system derived clock and optionally switch pins, generate interrupts or perform other actions when specified timer values occur, based on seven match registers. The PWM function is in addition to these features, and is based on match register events.

The ability to separately control rising and falling edge locations allows the PWM to be used for more applications. For instance, multi-phase motor control typically requires three non-overlapping PWM outputs with individual control of all three pulse widths and positions.

Two match registers can be used to provide a single edge controlled PWM output. One match register (PWMMR0) controls the PWM cycle rate, by resetting the count upon match. The other match register controls the PWM edge position. Additional single edge controlled PWM outputs require only one match register each, since the repetition rate is the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a rising edge at the beginning of each PWM cycle, when an PWMMR0 match occurs.

Three match registers can be used to provide a PWM output with both edges controlled. Again, the PWMMR0 match register controls the PWM cycle rate. The other match registers control the two PWM edge positions. Additional double edge controlled PWM outputs require only two match registers each, since the repetition rate is the same for all PWM outputs.

With double edge controlled PWM outputs, specific match registers control the rising and falling edge of the output. This allows both positive going PWM pulses (when the rising edge occurs prior to the falling edge), and negative going PWM pulses (when the falling edge occurs prior to the rising edge).

8.22.1 Features

- LPC1759/58/56/54/52/51 has one PWM block with Counter or Timer operation (may use the peripheral clock or one of the capture inputs as the clock source).
- Seven match registers allow up to 6 single edge controlled or 3 double edge controlled PWM outputs, or a mix of both types. The match registers also allow:
 - Continuous operation with optional interrupt generation on match.
 - Stop timer on match with optional interrupt generation.
 - Reset timer on match with optional interrupt generation.
- Supports single edge controlled and/or double edge controlled PWM outputs. Single
 edge controlled PWM outputs all go high at the beginning of each cycle unless the
 output is a constant low. Double edge controlled PWM outputs can have either edge
 occur at any position within a cycle. This allows for both positive going and negative
 going pulses.

32-bit ARM Cortex-M3 microcontroller

8.25 Repetitive Interrupt (RI) timer

The repetitive interrupt timer provides a free-running 32-bit counter which is compared to a selectable value, generating an interrupt when a match occurs. Any bits of the timer/compare can be masked such that they do not contribute to the match detection. The repetitive interrupt timer can be used to create an interrupt that repeats at predetermined intervals.

8.25.1 Features

- 32-bit counter running from PCLK. Counter can be free-running or be reset by a generated interrupt.
- 32-bit compare value.
- 32-bit compare mask. An interrupt is generated when the counter value equals the compare value, after masking. This allows for combinations not possible with a simple compare.

8.26 ARM Cortex-M3 system tick timer

The ARM Cortex-M3 includes a system tick timer (SYSTICK) that is intended to generate a dedicated SYSTICK exception at a 10 ms interval. In the LPC1759/58/56/54/52/51, this timer can be clocked from the internal AHB clock or from a device pin.

8.27 Watchdog timer

The purpose of the watchdog is to reset the microcontroller within a reasonable amount of time if it enters an erroneous state. When enabled, the watchdog will generate a system reset if the user program fails to 'feed' (or reload) the watchdog within a predetermined amount of time.

8.27.1 Features

- Internally resets chip if not periodically reloaded.
- Debug mode.
- Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be disabled.
- Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.
- Flag to indicate watchdog reset.
- Programmable 32-bit timer with internal prescaler.
- Selectable time period from $(T_{cy(WDCLK)} \times 256 \times 4)$ to $(T_{cy(WDCLK)} \times 2^{32} \times 4)$ in multiples of $T_{cy(WDCLK)} \times 4$.
- The Watchdog Clock (WDCLK) source can be selected from the Internal RC (IRC) oscillator, the RTC oscillator, or the APB peripheral clock. This gives a wide range of potential timing choices of Watchdog operation under different power reduction conditions. It also provides the ability to run the WDT from an entirely internal source that is not dependent on an external crystal and its associated components and wiring for increased reliability.
- Includes lock/safe feature.

32-bit ARM Cortex-M3 microcontroller

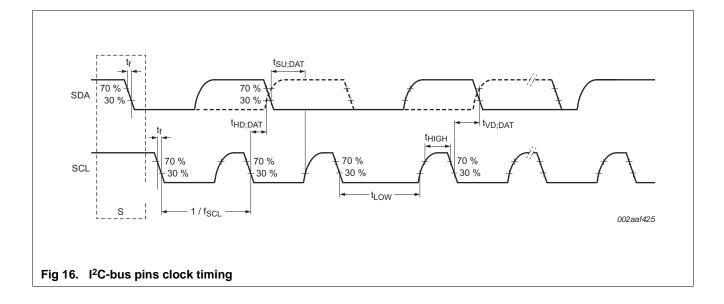
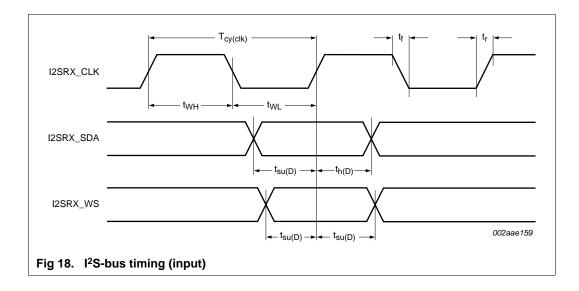

Symbol	Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Unit
I _{DD(ADC)}	ADC supply current	active mode;	[16][17]	-	1.95	-	mA
		ADC powered					
		ADC in Power-down mode	[16][18]	-	<0.2	-	μA
		Deep sleep mode	[16]	-	38	-	nA
		Power-down mode	[16]	-	38	-	nA
		Deep power-down mode	[16]	-	24	-	nA
I _{I(ADC)}	ADC input current	on pin VREFP					
		Deep sleep mode	[19]	-	100	-	nA
		Power-down mode	[19]	-	100	-	nA
		Deep power-down mode	[19]	-	100	-	nA
Standard po	rt pins, RESET						
IIL	LOW-level input current	$V_I = 0 V$; on-chip pull-up resistor disabled		-	0.5	10	nA
Iн	HIGH-level input current	$V_{I} = V_{DD(3V3)}$; on-chip pull-down resistor disabled		-	0.5	10	nA
l _{oz}	OFF-state output current	$V_O = 0 V$; $V_O = V_{DD(3V3)}$; on-chip pull-up/down resistors disabled		-	0.5	10	nA
VI	input voltage	pin configured to provide a digital function	[20][21] [22]	0	-	5.0	V
Vo	output voltage	output active		0	-	V _{DD(3V3)}	V
V _{IH}	HIGH-level input voltage			0.7V _{DD(3V3)}	-	-	V
VIL	LOW-level input voltage			-	-	0.3V _{DD(3V3)}	V
V _{hys}	hysteresis voltage			0.4	-	-	V
V _{OH}	HIGH-level output voltage	$I_{OH} = -4 \text{ mA}$		V _{DD(3V3)} - 0.4	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 4 mA		-	-	0.4	V
I _{ОН}	HIGH-level output current	$V_{OH} = V_{DD(3V3)} - 0.4 V$		-4	-	-	mA
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		4	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	V _{OH} = 0 V	[23]	-	-	-45	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DD(3V3)}$	[23]	-	-	50	mA
I _{pd}	pull-down current	V _I = 5 V		10	50	150	μΑ
I _{pu}	pull-up current	V _I = 0 V		-15	-50	-85	μΑ
		$V_{DD(3V3)} < V_{I} < 5 V$		0	0	0	μA

Table 7. Static characteristics ... continued

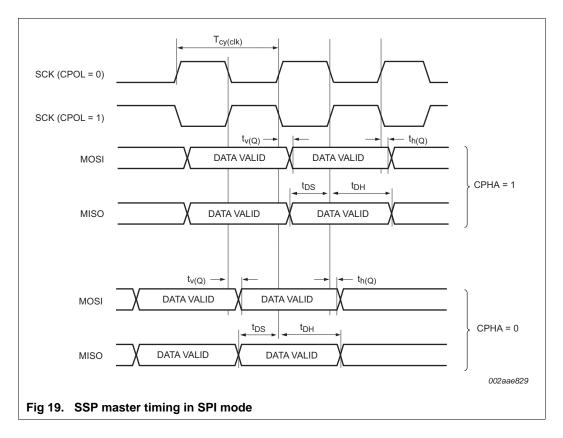

NXP Semiconductors

LPC1759/58/56/54/52/51

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller

32-bit ARM Cortex-M3 microcontroller


12.7 SSP interface

The maximum SSP speed is 33 Mbit/s in master mode or 8 Mbit/s in slave mode. In slave mode, the maximum SSP clock rate must be 1/12 of the SSP PCLK clock rate.

Table 15. Dynamic characteristics: SSP pins in SPI mode

 $C_L = 30 \text{ pF}$ on all SSP pins; $T_{amb} = -40 \text{ °C}$ to 85 °C; $V_{DD(3V3)} = 3.3 \text{ V}$ to 3.6 V; input slew = 1 ns; sampled at 10 % and 90 % of the signal level. Values guaranteed by design.

Symbol	Parameter	Conditions	Min	Max	Unit
SSP master	r	I	I		
t _{DS}	data set-up time	in SPI mode	16.1	-	ns
t _{DH}	data hold time	in SPI mode	0	-	ns
t _{v(Q)}	data output valid time	in SPI mode	-	2.5	ns
t _{h(Q)}	data output hold time	in SPI mode	0	-	ns
SSP slave					
t _{DS}	data set-up time	in SPI mode	16.1	-	ns
t _{DH}	data hold time	in SPI mode	0	-	ns
t _{v(Q)}	data output valid time	in SPI mode	-	3*T _{cy(PCLK)} + 2.5	ns
t _{h(Q)}	data output hold time	in SPI mode	0	-	ns

32-bit ARM Cortex-M3 microcontroller

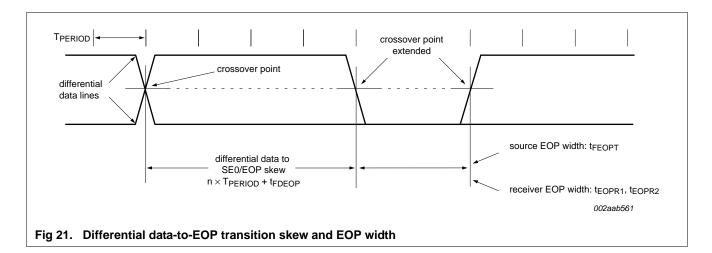

12.8 USB interface

Table 16. Dynamic characteristics: USB pins (full-speed)

 $C_L = 50 \ pF; R_{pu} = 1.5 \ k\Omega \ on \ D+ to \ V_{DD(3V3)}; 3.0 \ V \le V_{DD(3V3)} \le 3.6 \ V.$

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
t _r	rise time	10 % to 90 %		8.5	-	13.8	ns
t _f	fall time	10 % to 90 %		7.7	-	13.7	ns
t _{FRFM}	differential rise and fall time matching	t _r / t _f		-	-	109	%
V _{CRS}	output signal crossover voltage			1.3	-	2.0	V
t _{FEOPT}	source SE0 interval of EOP	see Figure 21		160	-	175	ns
t _{FDEOP}	source jitter for differential transition to SE0 transition	see <u>Figure 21</u>		-2	-	+5	ns
t _{JR1}	receiver jitter to next transition			-18.5	-	+18.5	ns
t _{JR2}	receiver jitter for paired transitions	10 % to 90 %		-9	-	+9	ns
t _{EOPR1}	EOP width at receiver	must reject as EOP; see Figure 21	[1]	40	-	-	ns
t _{EOPR2}	EOP width at receiver	must accept as EOP; see Figure 21	[1]	82	-	-	ns

[1] Characterized but not implemented as production test. Guaranteed by design.

32-bit ARM Cortex-M3 microcontroller

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
E _D	differential linearity error		[2][3]	-	±1	-	LSB
E _{L(adj)}	integral non-linearity		[4]	-	±1.5	-	LSB
Eo	offset error		[5]	-	±2	-	LSB
E _G	gain error		[6]	-	±2	-	LSB
f _{clk(ADC)}	ADC clock frequency	$3.0~V \leq V_{DDA} \leq 3.6~V$		-	-	33	MHz
		$2.7 \text{ V} \leq \text{V}_{\text{DDA}} < 3.0 \text{ V}$		-	-	25	MHz
f _{c(ADC)}	ADC conversion frequency	$3~V \leq V_{DDA} \leq 3.6~V$	[7]	-	-	500	kHz
		$2.7 \text{ V} \leq \text{V}_{\text{DDA}} < 3.0 \text{ V}$	[7]	-	-	400	kHz

Table 19. ADC characteristics (lower resolution) $T_{1} = 40\%$ to 185% unless otherwise specified: 12-bit ADC

 $f_{amb} = -40 \text{ }^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$ unless otherwise specified; 12-bit ADC used as 10-bit resolution ADC.[1]

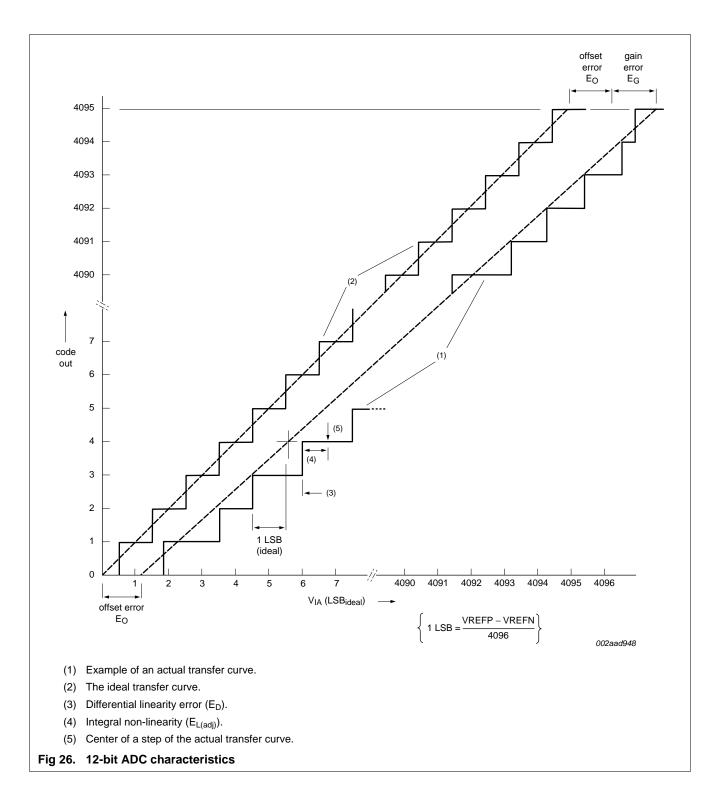
[1] V_{DDA} and VREFP should be tied to $V_{DD(3V3)}$ if the ADC and DAC are not used.

[2] The ADC is monotonic, there are no missing codes.

[3] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See Figure 26.

[4] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See <u>Figure 26</u>.

[5] The offset error (E_O) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 26.


[6] The gain error (E_G) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See <u>Figure 26</u>.

[7] The conversion frequency corresponds to the number of samples per second.

NXP Semiconductors

LPC1759/58/56/54/52/51

32-bit ARM Cortex-M3 microcontroller


32-bit ARM Cortex-M3 microcontroller

15. Application information

15.1 Suggested USB interface solutions

If the LPC1759/58/56/54/52/51 V_{DD} is always greater than 0 V while V_{BUS} = 5 V, the V_{BUS} pin can be connected directly to the V_{BUS} pin on the USB connector.

This applies to bus powered devices where the USB cable supplies the system power. For systems where V_{DD} can be 0 V and V_{BUS} is directly applied to the V_{BUS} pin, precautions must be taken to reduce the voltage to below 3.6 V.

The maximum allowable voltage on the V_{BUS} pin is 3.6 V. One method is to use a voltage divider to connect the V_{BUS} pin to the V_{BUS} on the USB connector.

The voltage divider ratio should be such that the V_{BUS} pin will be greater than $0.7V_{DD}$ to indicate a logic HIGH while below the 3.6 V allowable maximum voltage.

Use the following operating conditions:

 $VBUS_{max} = 5.25 V$

 $V_{DD} = 3.6 V$

The voltage divider would need to provide a reduction of 3.6 V/5.25 V or ~0.686 V.

NXP Semiconductors

LPC1759/58/56/54/52/51

32-bit ARM Cortex-M3 microcontroller

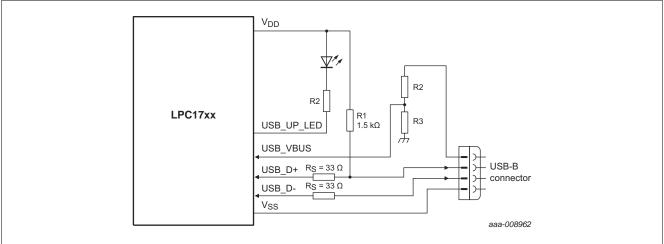
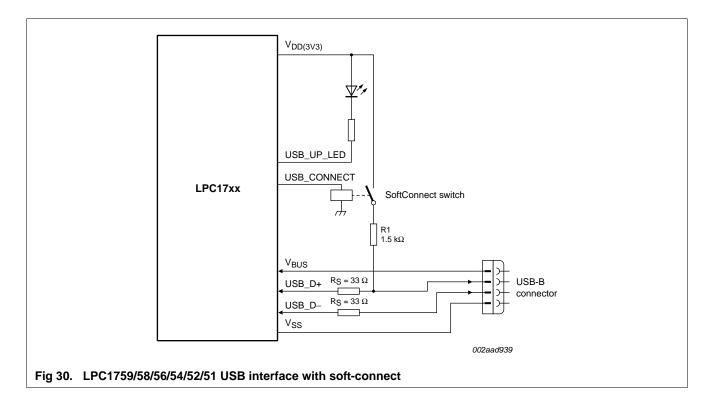
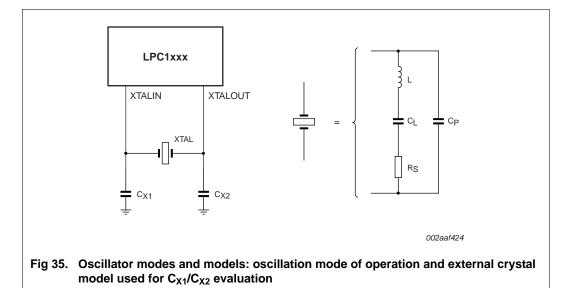




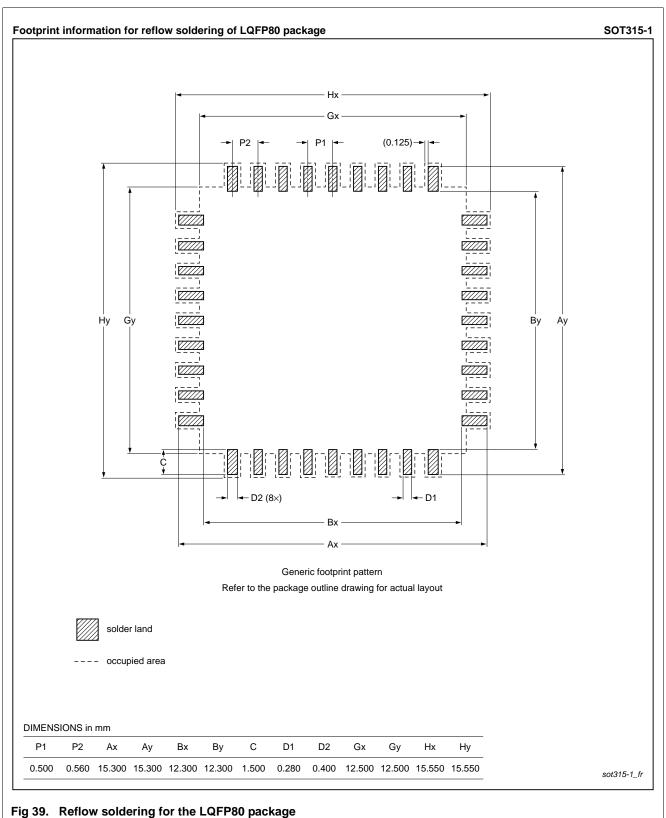
Fig 29. USB interface on a bus-powered device where $V_{BUS} = 5 V$, V_{DD} not present

32-bit ARM Cortex-M3 microcontroller

Table 22.	Recommended values for C_{X1}/C_{X2} in oscillation mode (crystal and external
	components parameters): low frequency mode

Fundamental oscillation frequency F _{OSC}	Crystal load capacitance C _L	Maximum crystal series resistance R _S	External load capacitors C _{X1} /C _{X2}
1 MHz to 5 MHz	10 pF	< 300 Ω	18 pF, 18 pF
	20 pF	< 300 Ω	39 pF, 39 pF
	30 pF	< 300 Ω	57 pF, 57 pF
5 MHz to 10 MHz	10 pF	< 300 Ω	18 pF, 18 pF
	20 pF	< 200 Ω	39 pF, 39 pF
	30 pF	< 100 Ω	57 pF, 57 pF
10 MHz to 15 MHz	10 pF	< 160 Ω	18 pF, 18 pF
	20 pF	< 60 Ω	39 pF, 39 pF
15 MHz to 20 MHz	10 pF	< 80 Ω	18 pF, 18 pF

Table 23. Recommended values for C_{X1}/C_{X2} in oscillation mode (crystal and external components parameters): high frequency mode


Fundamental oscillation frequency F _{OSC}	Crystal load capacitance C _L	Maximum crystal series resistance R _S	External load capacitors C _{X1} , C _{X2}
15 MHz to 20 MHz	10 pF	< 180 Ω	18 pF, 18 pF
	20 pF	< 100 Ω	39 pF, 39 pF
20 MHz to 25 MHz	10 pF	< 160 Ω	18 pF, 18 pF
	20 pF	< 80 Ω	39 pF, 39 pF

15.3 XTAL Printed-Circuit Board (PCB) layout guidelines

The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors C_{x1} , C_{x2} , and C_{x3} in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in

32-bit ARM Cortex-M3 microcontroller

17. Soldering

All information provided in this document is subject to legal disclaimers.

32-bit ARM Cortex-M3 microcontroller

20. Revision history

Table 26.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
LPC1759_58_56_54_52_51 v.8.6	20150818	Product data sheet	-	LPC1759_58_56_54_52_51 v.8.5		
Modifications:		value of t _{v(Q)} (data outpu 15 "Dynamic characteris		e) in SPI mode to 3*T _{cy(PCLK)} + 2.5 pins in SPI mode".		
		ion 2 "Features and ben SDL) is not available for t		ed Boundary scan Description		
	 Updated Figure 3 "LPC1759/58/56/54/52/51 memory map": APB0 slot 7 (0x4001C000) was "reserved" and changed it to I2C0. 					
		mn for GPIO pins and de See <u>Table 2 "Ordering o</u>		part number to the ordering		
LPC1759_58_56_54_52_51 v.8.5	20140624	Product data sheet	-	LPC1759_58_56_54_52_51 v.8.4		
Modifications:		agram updated. SSP tim ection 12.7 "SSP interfa		eters $t_{v(Q)},t_{h(Q)},t_{DS},\text{and}t_{DH}$		
	 SSP maximur 	m bit rate in master mode	e corrected	d to 33 Mbit/s.		
	 Parameter T_j 	_{max)} added in <u>Table 5 "Li</u>	miting valu	les".		
	 Description of 	capture channels correct	cted in <u>Sec</u>	ction 8.21.1.		
LPC1759_58_56_54_52_51 v.8.4	20140404	Product data sheet	-	LPC1759_58_56_54_52_51 v.8.3		
Modifications:	 Table 4 "Pin d OUTPUT. 	lescription": Changed R>	(_MCLK a	nd TX_MCLK type from INPUT to		
LPC1759_58_56_54_52_51 v.8.3	20140108	Product data sheet	-	LPC1759_58_56_54_52_51 v.8.2		
Modifications:	Table 6 "There	mal resistance (±15 %)":	Added ±1	5 % to table title.		
LPC1759_58_56_54_52_51 v.8.2	20131018	Product data sheet	-	LPC1759_58_56_54_52_51 v.8.1		
Modifications:	 Table 5 "Limit V_I. 	ing values": Removed co	ondition "5	V tolerant open-drain pins" from		
	Table 7 "Static	c characteristics":				
		ble note 3 "VDDA and VF are not used."	REFP shou	Ild be tied to VDD(3V3) if the ADC		
	 Added Tab 	ble note 4 "VDDA for DA	C specs ar	re from 2.7 V to 3.6 V."		
	– V _{DDA} /VRE	FP spec changed from 2	2.7 V to 2.5	5 V.		
	• Table 18 "ADO	C characteristics (full res	olution)":			
	 Added Table note 1 "VDDA and VREFP should be tied to VDD(3V3) if the ADC and DAC are not used." 					
	– V _{DDA} chan	iged from 2.7 V to 2.5 V.				
		C characteristics (lower r d be tied to VDD(3V3) if	,	": Added Table note 1 "VDDA and and DAC are not used."		

32-bit ARM Cortex-M3 microcontroller

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b)

22. Contact information

whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

21.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP Semiconductors N.V.

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

LPC1759_58_56_54_52_51

78 of 80