E·XFL

NXP USA Inc. - MK22FX512VLL12 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 33x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk22fx512vll12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I _{DD_VLLS1}	 @ 70°C @ 105°C 		30	112	•	
I _{DD_VLLS1}	• @ 105°C			112	μA	
I _{DD_VLLS1}						
	Very low-leakage stop mode 1 current at 3.0 V					
	• @ -40 to 25°C	—	1.25	2.1	μA	
	• @ 70°C	—	6.5	18.5	μA	
	• @ 105°C	—	37	108	μA	
	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled					
	 @ -40 to 25°C 	—	0.745	1.65	μA	
	• @ 70°C	—	6.03	18	μA	
	• @ 105°C	—	37	108	μA	
	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled					
	 @ -40 to 25°C 	—	0.268	1.25	μA	
	• @ 70°C	—	3.7	15	μA	
	• @ 105°C	—	22.9	95	μA	
	Average current with RTC and 32kHz disabled at 3.0 V					
	• @ -40 to 25°C	_	0.19	0.22	μA	
	• @ 70°C	_	0.49	0.64	μA	
	• @ 105°C	_	2.2	3.2	μA	
	Average current when CPU is not accessing RTC registers					9
	• @ 1.8V					
	 @ -40 to 25°C 	_	0.68	0.8	μA	
	• @ 70°C		1.2	1.56	μA	
	• @ 105°C		3.6	5.3	μA	
	• @ 3.0V			0.0	μ.,	
	● @ -40 to 25°C		0.81	0.96	μA	
	• @ 70°C		1.45	1.89	μΑ μΑ	
	• @ 105°C		4.3	6.33	μΑ μΑ	

Table 6. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. 120 MHz core and system clock, 60 MHz bus 40 Mhz and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled.
- 3. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled.
- 4. Max values are measured with CPU executing DSP instructions.

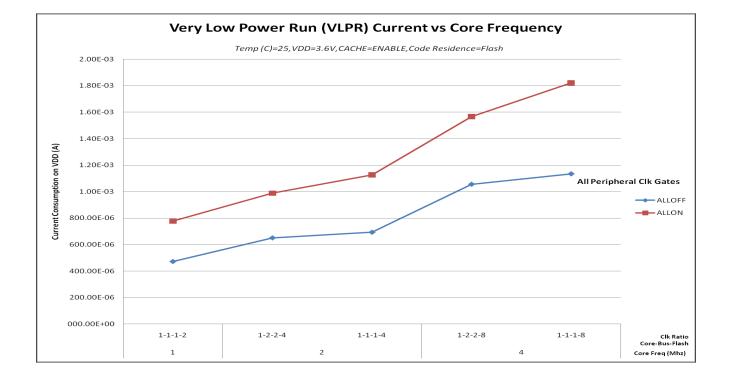


Figure 4. VLPR mode supply current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	23	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	27	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	28	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	14	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	К		2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code.

Board type	Symbol	Description	100 LQFP	Unit	Notes
Single-layer (1s)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	37	°C/W	1
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	29	°C/W	1
_	R _{θJB}	Thermal resistance, junction to board	20	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	9	°C/W	3
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	2	°C/W	4

Notes

- 1. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)*, or EIA/ JEDEC Standard JESD51-6, *Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air)*.
- 2. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard*, *Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

3 Peripheral operating requirements and behaviors

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — t nominal VDD and 25 °C	—	32.768	—	kHz	
f _{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25	_	39.0625	kHz	
I _{ints}	Internal reference	(slow clock) current	_	20	—	μA	
$\Delta_{fdco_res_t}$		med average DCO output I voltage and temperature — Id SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$		med average DCO output I voltage and temperature — Iy	_	± 0.2	± 0.5	%f _{dco}	1
Δf_{dco_t}		trimmed average DCO output ltage and temperature	—	± 0.5	± 2	%f _{dco}	1,2
Δf_{dco_t}		trimmed average DCO output ed voltage and temperature	_	± 0.3	± 1	%f _{dco}	1
f _{intf_ft}		frequency (fast clock) — t nominal VDD and 25°C	—	4	—	MHz	
f _{intf_t}		frequency (fast clock) — ominal VDD and 25 °C	3	—	5	MHz	
l _{intf}	Internal reference	—	25	—	μA		
f _{loc_low}	Loss of external c RANGE = 00	(3/5) x f _{ints_t}	—	—	kHz		
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	_	—	kHz	
	1	FL	L				1
f _{fll_ref}	FLL reference free	quency range	31.25		39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS=01) 1280 × f _{fll ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10)	60	62.91	75	MHz	
		$1920 \times f_{fll_ref}$ High range (DRS=11)	80	83.89	100	MHz	
		$2560 \times f_{fll_ref}$					
f _{dco_t_} DMX3 2	DCO output frequency	Low range (DRS=00) 732 × f _{fll ref}	_	23.99		MHz	5, ⁶
	Mid range (DRS=01		_	47.97	-	MHz	
		$\frac{1464 \times f_{fil_ref}}{Mid-high range (DRS=10)}$		71.99		MHz	-

Table 15. MCG specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
		—	0	—	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

Table 16. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C, Internal capacitance = 20 pf
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x, C_y can be provided by using either the integrated capacitors or by using external components.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications

Table 17. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32		40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	—	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)		1	_	ms	

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

26

3.4.1 Flash (FTFE) electrical specifications

This section describes the electrical characteristics of the FTFE module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm8}	Program Phrase high-voltage time	—	7.5	18	μs	
t _{hversscr}	Erase Flash Sector high-voltage time	_	13	113	ms	1
t _{hversblk128k}	Erase Flash Block high-voltage time for 128 KB	_	104	904	ms	1
t _{hversblk512k}	Erase Flash Block high-voltage time for 512 KB	—	416	3616	ms	1

Table 20. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 21. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					
t _{rd1blk128k}	128 KB data flash	_	_	0.5	ms	
t _{rd1blk512k}	• 512 KB program flash	-	_	1.8	ms	
t _{rd1sec4k}	Read 1s Section execution time (4 KB flash)	-		100	μs	1
t _{pgmchk}	Program Check execution time	_	_	95	μs	1
t _{rdrsrc}	Read Resource execution time	_	_	40	μs	1
t _{pgm8}	Program Phrase execution time	_	90	150	μs	
	Erase Flash Block execution time					2
t _{ersblk128k}	• 128 KB data flash	_	110	925	ms	
t _{ersblk512k}	• 512 KB program flash		435	3700	ms	
t _{ersscr}	Erase Flash Sector execution time	-	15	115	ms	2
t _{pgmsec1k}	Program Section execution time (1KB flash)	_	5	_	ms	
	Read 1s All Blocks execution time					
t _{rd1allx}	FlexNVM devices	_	_	2.2	ms	
t _{rdonce}	Read Once execution time	-	_	30	μs	1
t _{pgmonce}	Program Once execution time	-	90	-	μs	
t _{ersall}	Erase All Blocks execution time	—	870	7400	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	30	μs	1

Table continues on the next page...

2. Specification is valid for all FB_AD[31:0] and FB_TA.

Table 26. Flexbus full voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	—	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid	_	13.5	ns	1
FB3	Address, data, and control output hold	0	—	ns	1
FB4	Data and FB_TA input setup	13.7	—	ns	2
FB5	Data and FB_TA input hold	0.5		ns	2

- 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.
- 2. Specification is valid for all FB_AD[31:0] and $\overline{FB_TA}$.

3.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL		31/32 * VREFH	V	_
		All other modes	VREFL	—	VREFH		
C _{ADIN}	Input	16-bit mode		8	10	pF	
	capacitance	 8-bit / 10-bit / 12-bit modes 	—	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz		_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging	20.000	_	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging	37.037	_	461.467	Ksps	

3.6.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
		Continuous conversions enabled, subsequent conversion time					

Table 27. 16-bit ADC operating conditions

 Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.

2. DC potential difference.

- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.</p>
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.

5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

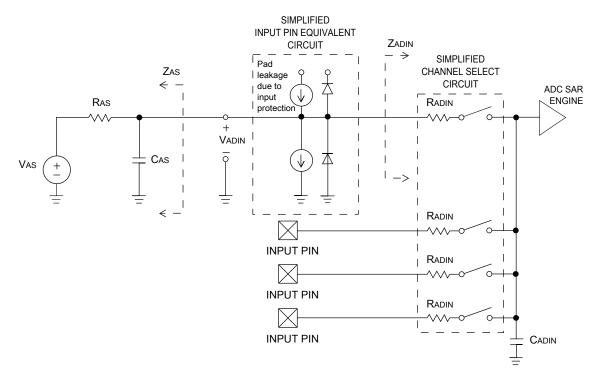


Figure 15. ADC input impedance equivalency diagram

3.6.1.2 16-bit ADC electrical characteristics

Table 28.	16-bit ADC	characteristics	$(V_{REFH} = V_{DI})$	$D_A, V_{REFL} = V_{SSA}$
-----------	------------	-----------------	-----------------------	---------------------------

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215		1.7	mA	3

Table continues on the next page...

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Run mode	2.1	2.8	3.6	V	
	Standby mode					
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode		_	3.6	V	2
C _{OUT}	T External output capacitor		2.2	8.16	μF	
ESR	SR External output capacitor equivalent series resistance			100	mΩ	
I _{LIM}	Short circuit current		290		mA	

Table 37. USB VREG electrical specifications (continued)

1. Typical values assume VREGIN = 5.0 V, Temp = 25 $^{\circ}$ C unless otherwise stated.

2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I_{Load}.

3.8.4 CAN switching specifications

See General switching specifications.

3.8.5 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	30	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 2	_	ns	1
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	_	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	—	ns	

 Table 38. Master mode DSPI timing (limited voltage range)

Table continues on the next page ...

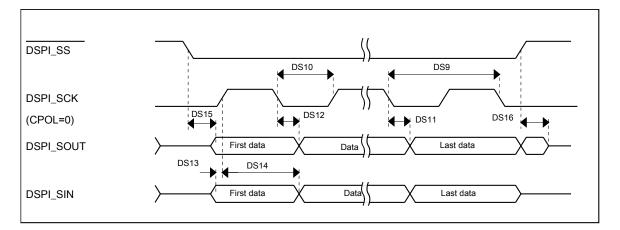
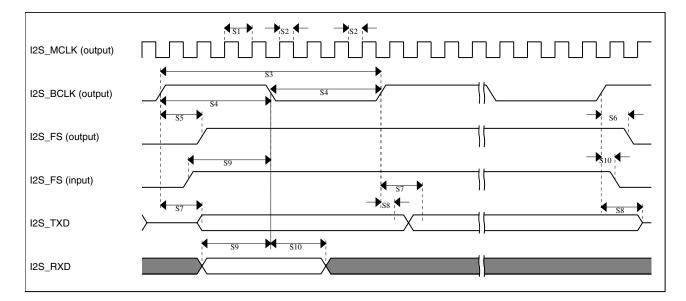


Figure 23. DSPI classic SPI timing — slave mode

3.8.6 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	—	15	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	—	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	_	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	20.5	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	


Table 40. Master mode DSPI timing (full voltage range)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 27. I²S timing — master mode

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S11	I2S_BCLK cycle time (input)	80	—	ns
S12	I2S_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_FS input setup before I2S_BCLK	4.5	_	ns
S14	I2S_FS input hold after I2S_BCLK	2	—	ns
S15	I2S_BCLK to I2S_TXD/I2S_FS output valid	—	18	ns
S16	I2S_BCLK to I2S_TXD/I2S_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_BCLK	4.5	—	ns
S18	I2S_RXD hold after I2S_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹		21	ns

Table 44. I²S slave mode timing

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

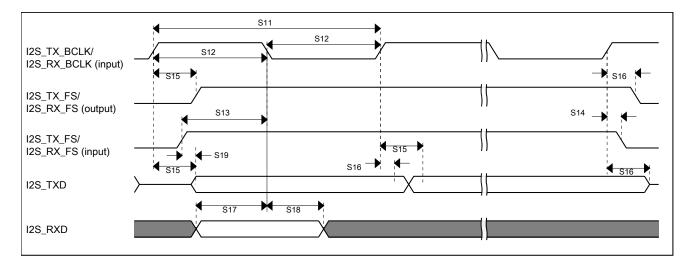


Figure 32. I2S/SAI timing — slave modes

3.8.10.3 Ordering parts

3.8.10.3.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK22 and MK22

3.8.10.4 Part identification

3.8.10.4.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

3.8.10.4.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

3.8.10.4.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

3.8.10.4.5 Small package marking

In an effort to save space, small package devices use special marking on the chip. These markings have the following format:

Q ## C F T PP

This table lists the possible values for each field in the part number for small packages (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
##	Kinetis family	• 2# = K21/K22
С	Speed	• H = 120 MHz
F	Flash memory configuration	 K = 512 KB + Flex 1 = 1 MB
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 LL = 100 LQFP MC = 121 MAPBGA LQ = 144 LQFP MD = 144 MAPBGA DC = 121 XFBGA

This tables lists some examples of small package marking along with the original part numbers:

Original part number	Alternate part number
MK22FX512VLL12	M22HKVLL

3.8.10.5 Terminology and guidelines

3.8.10.5.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

3.8.10.5.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.8.10.5.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

3.8.10.5.2.1 Example

This is an example of an operating behavior:

Symbol	Description	Min.	Max.	Unit
•••	Digital I/O weak pullup/ pulldown current	10	130	μA

3.8.10.5.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

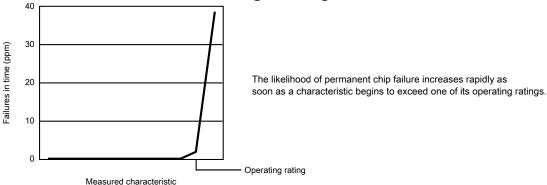
3.8.10.5.3.1 Example

This is an example of an attribute:

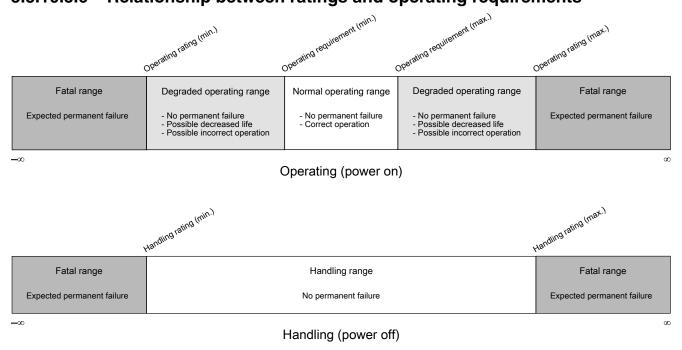
Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

3.8.10.5.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:


- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

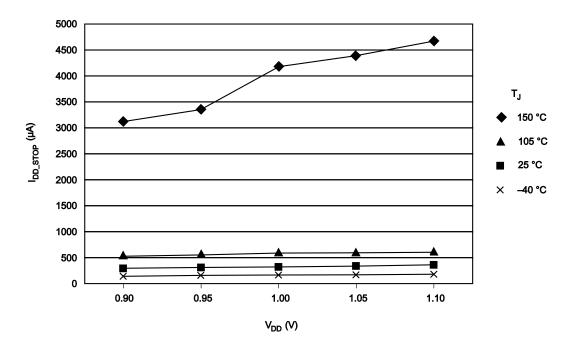
3.8.10.5.4.1 Example


This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

3.8.10.5.5 Result of exceeding a rating

3.8.10.5.6 Relationship between ratings and operating requirements



3.8.10.5.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

Dimensions

3.8.10.5.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit		
T _A	Ambient temperature	25	٦°		
V _{DD}	3.3 V supply voltage	3.3	V		

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number			
100-pin LQFP	98ASS23308W			
169-pin MAPBGA	98ASA00628D			

Pinout

100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
59	PTB11	ADC1_SE15	ADC1_SE15	PTB11	SPI1_SCK	UART3_TX		FB_AD18	FTM0_FLT2		
60	VSS	VSS	VSS								
61	VDD	VDD	VDD								
62	PTB16	DISABLED		PTB16	SPI1_SOUT	UART0_RX	FTM_CLKIN0	FB_AD17	EWM_IN		
63	PTB17	DISABLED		PTB17	SPI1_SIN	UART0_TX	FTM_CLKIN1	FB_AD16	EWM_OUT_b		
64	PTB18	DISABLED		PTB18	CAN0_TX	FTM2_CH0	I2S0_TX_ BCLK	FB_AD15	FTM2_QD_ PHA		
65	PTB19	DISABLED		PTB19	CAN0_RX	FTM2_CH1	I2S0_TX_FS	FB_OE_b	FTM2_QD_ PHB		
66	PTB20	DISABLED		PTB20	SPI2_PCS0			FB_AD31	CMP0_OUT		
67	PTB21	DISABLED		PTB21	SPI2_SCK			FB_AD30	CMP1_OUT		
68	PTB22	DISABLED		PTB22	SPI2_SOUT			FB_AD29	CMP2_OUT		
69	PTB23	DISABLED		PTB23	SPI2_SIN	SPI0_PCS5		FB_AD28			
70	PTC0	ADC0_SE14	ADC0_SE14	PTC0	SPI0_PCS4	PDB0_ EXTRG		FB_AD14	I2S0_TXD1		
71	PTC1/ LLWU_P6	ADC0_SE15	ADC0_SE15	PTC1/ LLWU_P6	SPI0_PCS3	UART1_ RTS_b	FTM0_CH0	FB_AD13	I2S0_TXD0		
72	PTC2	ADC0_SE4b/ CMP1_IN0	ADC0_SE4b/ CMP1_IN0	PTC2	SPI0_PCS2	UART1_ CTS_b	FTM0_CH1	FB_AD12	I2S0_TX_FS		
73	PTC3/ LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_PCS1	UART1_RX	FTM0_CH2	CLKOUT	I2S0_TX_ BCLK		
74	VSS	VSS	VSS								
75	VDD	VDD	VDD								
76	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	FTM0_CH3	FB_AD11	CMP1_OUT		
77	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2	I2S0_RXD0	FB_AD10	CMP0_OUT	FTM0_CH2	
78	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB0_ EXTRG	I2S0_RX_ BCLK	FB_AD9	I2S0_MCLK		
79	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_SIN	USB_SOF_ OUT	I2S0_RX_FS	FB_AD8			
80	PTC8	ADC1_SE4b/ CMP0_IN2	ADC1_SE4b/ CMP0_IN2	PTC8		FTM3_CH4	I2S0_MCLK	FB_AD7			
81	PTC9	ADC1_SE5b/ CMP0_IN3	ADC1_SE5b/ CMP0_IN3	PTC9		FTM3_CH5	I2S0_RX_ BCLK	FB_AD6	FTM2_FLT0		
82	PTC10	ADC1_SE6b	ADC1_SE6b	PTC10	I2C1_SCL	FTM3_CH6	I2S0_RX_FS	FB_AD5			
83	PTC11/ LLWU_P11	ADC1_SE7b	ADC1_SE7b	PTC11/ LLWU_P11	I2C1_SDA	FTM3_CH7	I2S0_RXD1	FB_RW_b			
84	PTC12	DISABLED		PTC12		UART4_ RTS_b		FB_AD27	FTM3_FLT0		
85	PTC13	DISABLED		PTC13		UART4_ CTS_b		FB_AD26			
86	PTC14	DISABLED		PTC14		UART4_RX		FB_AD25			
87	PTC15	DISABLED		PTC15		UART4_TX		FB_AD24			

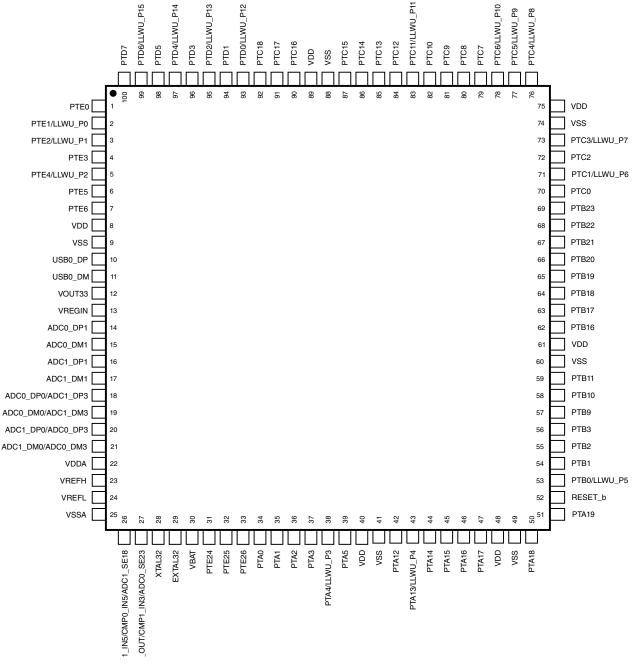


Figure 33. K22 100 LQFP Pinout Diagram

6 Revision History

The following table provides a revision history for this document.

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2013-2014 Freescale Semiconductor, Inc.

Document Number K22P100M120SF5 Revision 4, 11/2014

