




Welcome to <u>E-XFL.COM</u>

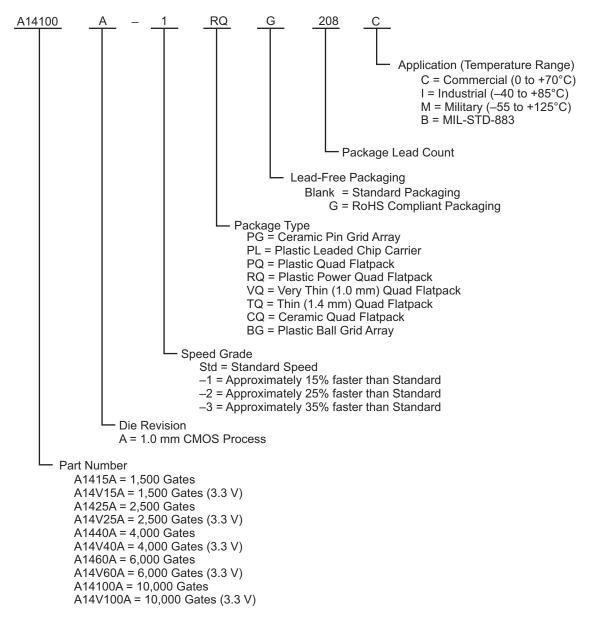
#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details


| Details                        |                                                                |
|--------------------------------|----------------------------------------------------------------|
| Product Status                 | Obsolete                                                       |
| Number of LABs/CLBs            | 1377                                                           |
| Number of Logic Elements/Cells | -                                                              |
| Total RAM Bits                 | -                                                              |
| Number of I/O                  | 228                                                            |
| Number of Gates                | 10000                                                          |
| Voltage - Supply               | 4.5V ~ 5.5V                                                    |
| Mounting Type                  | Surface Mount                                                  |
| Operating Temperature          | 0°C ~ 70°C (TA)                                                |
| Package / Case                 | 256-BFCQFP with Tie Bar                                        |
| Supplier Device Package        | 256-CQFP (75x75)                                               |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microsemi/a14100a-1cq256c |
|                                |                                                                |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Accelerator Series FPGAs - ACT 3 Family

# **Ordering Information**



Notes:

- 1. The -2 and -3 speed grades have been discontinued.
- The Ceramic Pin Grid Array packages PG100, PG133, and PG175 have been discontinued in all device densities, speed grades, and temperature grades.
   The Plastic Ball Grid Array package BG225 has been discontinued in all device densities (specifically for A1460A), all speed
- 3. The Plastic Ball Grid Array package BG225 has been discontinued in all device densities (specifically for A1460A), all speed grades, and all temperature grades.
- 4. Military Grade devices are no longer available for the A1440A device.
- For more information about discontinued devices, refer to the Product Discontinuation Notices (PDNs) listed below, available on the Microsemi SoC Products Group website: PDN March 2001

PDN March 20 PDN 0104 PDN 0203 PDN 0604 PDN 1004

# **Product Plan**

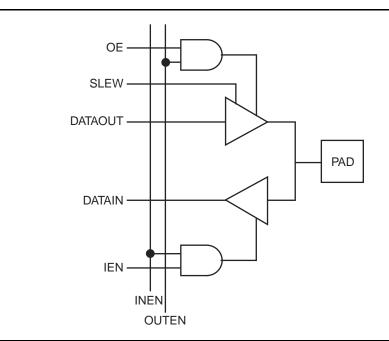
|                                           |                       | Speed | Grade <sup>1</sup> |    |   | Applic | cation <sup>1</sup> |   |
|-------------------------------------------|-----------------------|-------|--------------------|----|---|--------|---------------------|---|
| Device/Package                            | Std.                  | -1    | -2                 | -3 | С | I      | М                   | В |
| A1415A Device                             |                       | 1     |                    | 1  |   |        | •                   |   |
| 84-Pin Plastic Leaded Chip Carrier (PLCC) | 1                     | 1     | D                  | D  | ✓ | 1      | 1                   | - |
| 100-Pin Plastic Quad Flatpack (PQFP)      | 1                     | ✓     | D                  | D  | ✓ | 1      | 1                   | - |
| 100-Pin Very Thin Quad Flatpack (VQFP)    | 1                     | 1     | D                  | D  | 1 | 1      | 1                   | - |
| 100-Pin Ceramic Pin Grid Array (CPGA)     | D                     | D     | D                  | D  | D | -      | -                   | - |
| A14V15A Device                            |                       |       |                    |    |   |        | •                   |   |
| 84-Pin Plastic Leaded Chip Carrier (PLCC) | 1                     | -     | -                  | —  | ✓ | -      | -                   | - |
| 100-Pin Very Thin Quad Flatpack (VQFP)    | 1                     | -     | -                  | -  | 1 | -      | -                   | - |
| A1425A Device                             | •                     | I     |                    | 1  |   |        | 1                   |   |
| 84-Pin Plastic Leaded Chip Carrier (PLCC) | 1                     | ✓     | D                  | D  | ✓ | 1      |                     |   |
| 100-Pin Plastic Quad Flatpack (PQFP)      | 1                     | 1     | D                  | D  | 1 | ✓      | -                   | - |
| 100-Pin Very Thin Quad Flatpack (VQFP)    | 1                     | 1     | D                  | D  | 1 | 1      | -                   | - |
| 132-Pin Ceramic Quad Flatpack (CQFP)      | 1                     | 1     | -                  | -  | 1 | -      | 1                   | 1 |
| 133-Pin Ceramic Pin Grid Array (CPGA)     | D                     | D     | D                  | D  | D | _      | D                   | D |
| 160-Pin Plastic Quad Flatpack (PQFP)      | 1                     | ✓     | D                  | D  | ✓ | ~      | -                   | - |
| A14V25A Device                            | •                     |       | •                  |    |   | •      |                     |   |
| 84-Pin Plastic Leaded Chip Carrier (PLCC) | 1                     | -     | -                  | —  | ✓ | -      | -                   | - |
| 100-Pin Very Thin Quad Flatpack (VQFP)    | 1                     | -     | -                  | -  | 1 | -      | -                   | - |
| 160-Pin Plastic Quad Flatpack (PQFP)      | 1                     | -     | -                  | -  | 1 | -      | -                   | - |
| A1440A Device                             |                       | 1     | L                  | 1  | J |        | 1                   |   |
| 84-Pin Plastic Leaded Chip Carrier (PLCC) | ✓                     | 1     | D                  | D  | 1 | 1      | -                   | - |
| 100-Pin Very Thin Quad Flatpack (VQFP)    | 1                     | 1     | D                  | D  | ✓ | ✓      | -                   | - |
| 160-Pin Plastic Quad Flatpack (PQFP)      | <ul> <li>✓</li> </ul> | 1     | D                  | D  | 1 | 1      | -                   | - |
| 175-Pin Ceramic Pin Grid Array (CPGA)     | D                     | D     | D                  | D  | D | -      | -                   | - |
| 176-Pin Thin Quad Flatpack (TQFP)         | 1                     | 1     | D                  | D  | 1 | 1      | -                   | _ |

Notes:

 Applications:
 C = Commercial
 I = Industrial M = Military

Availability:  $\checkmark = Available$  P = Planned

- = Not plannedD = Discontinued


Speed Grade: -1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std. -3 = Approx. 35% faster than Std. (-2 and -3 speed grades have been discontinued.)



The I/O module output Y is used to bring Pad signals into the array or to feed the output register back into the array. This allows the output register to be used in high-speed state machine applications. Side I/O modules have a dedicated output segment for Y extending into the routing channels above and below (similar to logic modules). Top/Bottom I/O modules have no dedicated output segment. Signals coming into the chip from the top or bottom are routed using F-fuses and LVTs (F-fuses and LVTs are explained in detail in the routing section).

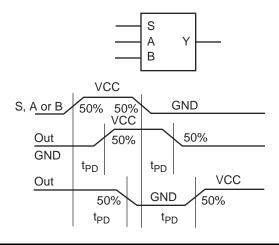
## I/O Pad Drivers

All pad drivers are capable of being tristate. Each buffer connects to an associated I/O module with four signals: OE (Output Enable), IE (Input Enable), DataOut, and DataIn. Certain special signals used only during programming and test also connect to the pad drivers: OUTEN (global output enable), INEN (global input enable), and SLEW (individual slew selection). See Figure 2-5.

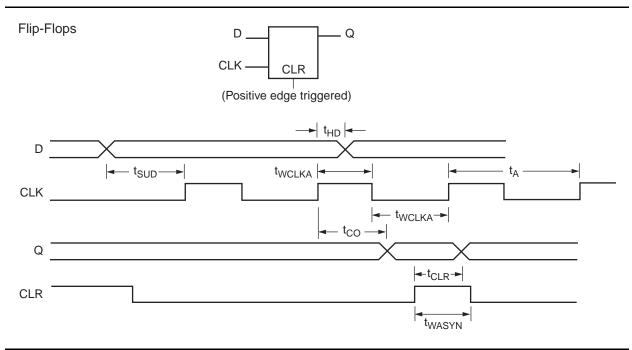


*Figure 2-5* • Function Diagram for I/O Pad Driver


## **Special I/Os**


The special I/Os are of two types: temporary and permanent. Temporary special I/Os are used during programming and testing. They function as normal I/Os when the MODE pin is inactive. Permanent special I/Os are user programmed as either normal I/Os or special I/Os. Their function does not change once the device has been programmed. The permanent special I/Os consist of the array clock input buffers (CLKA and CLKB), the hard-wired array clock input buffer (HCLK), the hard-wired I/O clock input buffer (IOCLK), and the hard-wired I/O register preset/clear input buffer (IOPCL). Their function is determined by the I/O macros selected.

## **Clock Networks**


The ACT 3 architecture contains four clock networks: two high-performance dedicated clock networks and two general purpose routed networks. The high-performance networks function up to 200 MHz, while the general purpose routed networks function up to 150 MHz.







### Figure 2-14 • Module Delays



#### Figure 2-15 • Sequential Module Timing Characteristics

### A1425A, A14V25A Timing Characteristics (continued)

| I/O Mod            | ule Input Propagation Delays         | -3 S | beed <sup>1</sup> | -2 Sp | beed <sup>1</sup> | -1 Speed |      | Std. Speed |      | 3.3 V Speed <sup>1</sup> |      | Units |
|--------------------|--------------------------------------|------|-------------------|-------|-------------------|----------|------|------------|------|--------------------------|------|-------|
| Parame             | eter/Description                     | Min. | Max.              | Min.  | Max.              | Min.     | Max. | Min.       | Max. | Min.                     | Max. |       |
| t <sub>INY</sub>   | Input Data Pad to Y                  |      | 2.8               |       | 3.2               |          | 3.6  |            | 4.2  |                          | 5.5  | ns    |
| t <sub>ICKY</sub>  | Input Reg IOCLK Pad to Y             |      | 4.7               |       | 5.3               |          | 6.0  |            | 7.0  |                          | 9.2  | ns    |
| t <sub>OCKY</sub>  | Output Reg IOCLK Pad to Y            |      | 4.7               |       | 5.3               |          | 6.0  |            | 7.0  |                          | 9.2  | ns    |
| t <sub>ICLRY</sub> | Input Asynchronous Clear to Y        |      | 4.7               |       | 5.3               |          | 6.0  |            | 7.0  |                          | 9.2  | ns    |
| t <sub>OCLRY</sub> | Output Asynchronous Clear to Y       |      | 4.7               |       | 5.3               |          | 6.0  |            | 7.0  |                          | 9.2  | ns    |
| Predict            | ed Input Routing Delays <sup>2</sup> |      |                   |       |                   |          |      |            |      |                          |      |       |
| t <sub>RD1</sub>   | FO = 1 Routing Delay                 |      | 0.9               |       | 1.0               |          | 1.1  |            | 1.3  |                          | 1.7  | ns    |
| t <sub>RD2</sub>   | FO = 2 Routing Delay                 |      | 1.2               |       | 1.4               |          | 1.6  |            | 1.8  |                          | 2.4  | ns    |
| t <sub>RD3</sub>   | FO = 3 Routing Delay                 |      | 1.4               |       | 1.6               |          | 1.8  |            | 2.1  |                          | 2.8  | ns    |
| t <sub>RD4</sub>   | FO = 4 Routing Delay                 |      | 1.7               |       | 1.9               |          | 2.2  |            | 2.5  |                          | 3.3  | ns    |
| t <sub>RD8</sub>   | FO = 8 Routing Delay                 |      | 2.8               |       | 3.2               |          | 3.6  |            | 4.2  |                          | 5.5  | ns    |
| I/O Mod            | ule Sequential Timing (wrt IOCLK     | pad) |                   |       |                   |          |      |            |      |                          |      |       |
| t <sub>INH</sub>   | Input F-F Data Hold                  | 0.0  |                   | 0.0   |                   | 0.0      |      | 0.0        |      | 0.0                      |      | ns    |
| t <sub>INSU</sub>  | Input F-F Data Setup                 | 1.8  |                   | 2.0   |                   | 2.3      |      | 2.7        |      | 3.0                      |      | ns    |
| t <sub>IDEH</sub>  | Input Data Enable Hold               | 0.0  |                   | 0.0   |                   | 0.0      |      | 0.0        |      | 0.0                      |      | ns    |
| t <sub>IDESU</sub> | Input Data Enable Setup              | 5.8  |                   | 6.5   |                   | 7.5      |      | 8.6        |      | 8.6                      |      | ns    |
| t <sub>OUTH</sub>  | Output F-F Data hold                 | 0.7  |                   | 0.8   |                   | 0.9      |      | 1.0        |      | 1.0                      |      | ns    |
| t <sub>OUTSU</sub> | Output F-F Data Setup                | 0.7  |                   | 0.8   |                   | 0.9      |      | 1.0        |      | 1.0                      |      | ns    |
| t <sub>ODEH</sub>  | Output Data Enable Hold              | 0.3  |                   | 0.4   |                   | 0.4      |      | 0.5        |      | 0.5                      |      | ns    |
| f <sub>ODESU</sub> | Output Data Enable Setup             | 1.3  |                   | 1.5   |                   | 1.7      |      | 2.0        |      | 2.0                      |      | ns    |

Notes: \*

1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.



**Detailed Specifications** 

### A1440A, A14V40A Timing Characteristics

Table 2-26 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, T<sub>J</sub> = 70°C<sup>1</sup>

| Logic N            | Iodule Propagation Delays <sup>2</sup> | -3 Sp | beed <sup>3</sup> | -2 S | peed <sup>3</sup> | -1 S | peed | Std. S    | Speed | 3.3 V     | Speed <sup>1</sup> | Units |
|--------------------|----------------------------------------|-------|-------------------|------|-------------------|------|------|-----------|-------|-----------|--------------------|-------|
| Parame             | eter/Description                       | Min.  | Max.              | Min. | Max.              | Min. | Max. | Min. Max. |       | Min. Max. |                    |       |
| t <sub>PD</sub>    | Internal Array Module                  |       | 2.0               |      | 2.3               |      | 2.6  |           | 3.0   |           | 3.9                | ns    |
| t <sub>CO</sub>    | Sequential Clock to Q                  |       | 2.0               |      | 2.3               |      | 2.6  |           | 3.0   |           | 3.9                | ns    |
| t <sub>CLR</sub>   | Asynchronous Clear to Q                |       | 2.0               |      | 2.3               |      | 2.6  |           | 3.0   |           | 3.9                | ns    |
| Predict            | ed Routing Delays <sup>4</sup>         |       |                   |      |                   |      |      |           |       |           | 1                  |       |
| t <sub>RD1</sub>   | FO = 1 Routing Delay                   |       | 0.9               |      | 1.0               |      | 1.1  |           | 1.3   |           | 1.7                | ns    |
| t <sub>RD2</sub>   | FO = 2 Routing Delay                   |       | 1.2               |      | 1.4               |      | 1.6  |           | 1.8   |           | 2.4                | ns    |
| t <sub>RD3</sub>   | FO = 3 Routing Delay                   |       | 1.4               |      | 1.6               |      | 1.8  |           | 2.1   |           | 2.8                | ns    |
| t <sub>RD4</sub>   | FO = 4 Routing Delay                   |       | 1.7               |      | 1.9               |      | 2.2  |           | 2.5   |           | 3.3                | ns    |
| t <sub>RD8</sub>   | FO = 8 Routing Delay                   |       | 2.8               |      | 3.2               |      | 3.6  |           | 4.2   |           | 5.5                | ns    |
| Logic N            | Nodule Sequential Timing               |       |                   |      |                   |      |      |           |       |           |                    |       |
| t <sub>SUD</sub>   | Flip-Flop Data Input Setup             | 0.5   |                   | 0.6  |                   | 0.7  |      | 0.8       |       | 0.8       |                    | ns    |
| t <sub>HD</sub>    | Flip-Flop Data Input Hold              | 0.0   |                   | 0.0  |                   | 0.0  |      | 0.0       |       | 0.0       |                    | ns    |
| t <sub>SUD</sub>   | Latch Data Input Setup                 | 0.5   |                   | 0.6  |                   | 0.7  |      | 0.8       |       | 0.8       |                    | ns    |
| t <sub>HD</sub>    | Latch Data Input Hold                  | 0.0   |                   | 0.0  |                   | 0.0  |      | 0.0       |       | 0.0       |                    | ns    |
| t <sub>WASYN</sub> | Asynchronous Pulse Width               | 1.9   |                   | 2.4  |                   | 3.2  |      | 3.8       |       | 4.8       |                    | ns    |
| t <sub>WCLKA</sub> | Flip-Flop Clock Pulse Width            | 1.9   |                   | 2.4  |                   | 3.2  |      | 3.8       |       | 4.8       |                    | ns    |
| t <sub>A</sub>     | Flip-Flop Clock Input Period           | 4.0   |                   | 5.0  |                   | 6.8  |      | 8.0       |       | 10.0      |                    | ns    |
| f <sub>MAX</sub>   | Flip-Flop Clock Frequency              |       | 250               |      | 200               |      | 150  |           | 125   |           | 100                | MHz   |

Notes:

1. VCC = 3.0 V for 3.3 V specifications.

2. For dual-module macros, use  $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$  or  $t_{PD1} + t_{RD1} + t_{SUD}$ , whichever is appropriate.

3. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

### A1440A, A14V40A Timing Characteristics (continued)

| Table 2-29 • A1440A. | A14V40A Worst-Case                     | Commercial Conditions.                  | VCC = 4.75 V, T <sub>J</sub> = 70°C |
|----------------------|----------------------------------------|-----------------------------------------|-------------------------------------|
|                      | ////////////////////////////////////// | ••••••••••••••••••••••••••••••••••••••• |                                     |

| Dedicate             | d (hardwired) I/O Clock Network                   | -3 Sp      | beed <sup>1</sup> | –2 Speed <sup>1</sup> |            | –1 S       | peed       | Std. Speed |            | I 3.3 V Speed <sup>1</sup> |            | Units |
|----------------------|---------------------------------------------------|------------|-------------------|-----------------------|------------|------------|------------|------------|------------|----------------------------|------------|-------|
| Paramete             | er/Description                                    | Min.       | Max.              | Min.                  | Max.       | Min.       | Max.       | Min.       | Max.       | Min.                       | Max.       |       |
| t <sub>IOCKH</sub>   | Input Low to High (pad to I/O module input)       |            | 2.0               |                       | 2.3        |            | 2.6        |            | 3.0        |                            | 3.5        | ns    |
| t <sub>IOPWH</sub>   | Minimum Pulse Width High                          | 1.9        |                   | 2.4                   |            | 3.3        |            | 3.8        |            | 4.8                        |            | ns    |
| t <sub>IPOWL</sub>   | Minimum Pulse Width Low                           | 1.9        |                   | 2.4                   |            | 3.3        |            | 3.8        |            | 4.8                        |            | ns    |
| t <sub>IOSAPW</sub>  | Minimum Asynchronous Pulse Width                  | 1.9        |                   | 2.4                   |            | 3.3        |            | 3.8        |            | 4.8                        |            | ns    |
| t <sub>IOCKSW</sub>  | Maximum Skew                                      |            | 0.4               |                       | 0.4        |            | 0.4        |            | 0.4        |                            | 0.4        | ns    |
| t <sub>IOP</sub>     | Minimum Period                                    | 4.0        |                   | 5.0                   |            | 6.8        |            | 8.0        |            | 10.0                       |            | ns    |
| f <sub>IOMAX</sub>   | Maximum Frequency                                 |            | 250               |                       | 200        |            | 150        |            | 125        |                            | 100        | MHz   |
| Dedicate             | d (hardwired) Array Clock                         | •          |                   |                       |            |            |            | •          | -          |                            |            |       |
| <sup>t</sup> нскн    | Input Low to High (pad to S-module input)         |            | 3.0               |                       | 3.4        |            | 3.9        |            | 4.5        |                            | 5.5        | ns    |
| t <sub>HCKL</sub>    | Input High to Low (pad to S-module input)         |            | 3.0               |                       | 3.4        |            | 3.9        |            | 4.5        |                            | 5.5        | ns    |
| t <sub>HPWH</sub>    | Minimum Pulse Width High                          | 1.9        |                   | 2.4                   |            | 3.3        |            | 3.8        |            | 4.8                        |            | ns    |
| t <sub>HPWL</sub>    | Minimum Pulse Width Low                           | 1.9        |                   | 2.4                   |            | 3.3        |            | 3.8        |            | 4.8                        |            | ns    |
| t <sub>HCKSW</sub>   | Delta High to Low, Low Slew                       |            | 0.3               |                       | 0.3        |            | 0.3        |            | 0.3        |                            | 0.3        | ns    |
| t <sub>HP</sub>      | Minimum Period                                    | 4.0        |                   | 5.0                   |            | 6.8        |            | 8.0        |            | 10.0                       |            | ns    |
| f <sub>HMAX</sub>    | Maximum Frequency                                 |            | 250               |                       | 200        |            | 150        |            | 125        |                            | 100        | MHz   |
| Routed A             | rray Clock Networks                               | •          |                   |                       |            |            |            | •          | -          |                            |            |       |
| t <sub>RCKH</sub>    | Input Low to High (FO = 64)                       |            | 3.7               |                       | 4.1        |            | 4.7        |            | 5.5        |                            | 9.0        | ns    |
| t <sub>RCKL</sub>    | Input High to Low (FO = 64)                       |            | 4.0               |                       | 4.5        |            | 5.1        |            | 6.0        |                            | 9.0        | ns    |
| t <sub>RPWH</sub>    | Min. Pulse Width High (FO = 64)                   | 3.3        |                   | 3.8                   |            | 4.2        |            | 4.9        |            | 6.5                        |            | ns    |
| t <sub>RPWL</sub>    | Min. Pulse Width Low (FO = 64)                    | 3.3        |                   | 3.8                   |            | 4.2        |            | 4.9        |            | 6.5                        |            | ns    |
| t <sub>RCKSW</sub>   | Maximum Skew (FO = 128)                           |            | 0.7               |                       | 0.8        |            | 0.9        |            | 1.0        |                            | 1.0        | ns    |
| t <sub>RP</sub>      | Minimum Period (FO = 64)                          | 6.8        |                   | 8.0                   |            | 8.7        |            | 10.0       |            | 13.4                       |            | ns    |
| f <sub>RMAX</sub>    | Maximum Frequency (FO = 64)                       |            | 150               |                       | 125        |            | 115        |            | 100        |                            | 75         | MHz   |
| Clock-to-            | Clock Skews                                       | •          |                   |                       |            |            |            | •          | -          |                            |            |       |
| t <sub>IOHCKSW</sub> | I/O Clock to H-Clock Skew                         | 0.0        | 1.7               | 0.0                   | 1.8        | 0.0        | 2.0        | 0.0        | 2.2        | 0.0                        | 3.0        | ns    |
| t <sub>IORCKSW</sub> | I/O Clock to R-Clock Skew (FO = 64)<br>(FO = 144) | 0.0<br>0.0 | 1.0<br>3.0        | 0.0<br>0.0            | 1.0<br>3.0 | 0.0<br>0.0 | 1.0<br>3.0 | 0.0<br>0.0 | 1.0<br>3.0 | 0.0<br>0.0                 | 3.0<br>3.0 | ns    |
| t <sub>HRCKSW</sub>  | H-Clock to R-Clock Skew (FO = 64)<br>(FO = 144)   | 0.0<br>0.0 | 1.0<br>3.0        | 0.0<br>0.0            | 1.0<br>3.0 | 0.0<br>0.0 | 1.0<br>3.0 | 0.0<br>0.0 | 1.0<br>3.0 | 0.0<br>0.0                 | 1.0<br>3.0 | ns    |

Notes:

1. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

2. Delays based on 35 pF loading.

### A14100A, A14V100A Timing Characteristics (continued)

Table 2-35 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T<sub>J</sub> = 70°C

| I/O Moo            | dule Input Propagation Delays        | -3 S | beed <sup>1</sup> | -2 S | beed <sup>1</sup> | -1 Speed  |     | Std. Speed |     | 3.3 V Speed <sup>1</sup> |     | Units |
|--------------------|--------------------------------------|------|-------------------|------|-------------------|-----------|-----|------------|-----|--------------------------|-----|-------|
| Parame             | eter/Description                     | Min. | Max.              | Min. | Max.              | Min. Max. |     | Min. Max.  |     | Min. Max.                |     |       |
| t <sub>INY</sub>   | Input Data Pad to Y                  |      | 2.8               |      | 3.2               |           | 3.6 |            | 4.2 |                          | 5.5 | ns    |
| t <sub>ICKY</sub>  | Input Reg IOCLK Pad to Y             |      | 4.7               |      | 5.3               |           | 6.0 |            | 7.0 |                          | 9.2 | ns    |
| t <sub>OCKY</sub>  | Output Reg IOCLK Pad to Y            |      | 4.7               |      | 5.3               |           | 6.0 |            | 7.0 |                          | 9.2 | ns    |
| t <sub>ICLRY</sub> | Input Asynchronous Clear to Y        |      | 4.7               |      | 5.3               |           | 6.0 |            | 7.0 |                          | 9.2 | ns    |
| t <sub>OCLRY</sub> | Output Asynchronous Clear to Y       |      | 4.7               |      | 5.3               |           | 6.0 |            | 7.0 |                          | 9.2 | ns    |
| Predict            | ed Input Routing Delays <sup>2</sup> |      |                   |      |                   |           |     |            |     |                          |     |       |
| t <sub>RD1</sub>   | FO = 1 Routing Delay                 |      | 0.9               |      | 1.0               |           | 1.1 |            | 1.3 |                          | 1.7 | ns    |
| t <sub>RD2</sub>   | FO = 2 Routing Delay                 |      | 1.2               |      | 1.4               |           | 1.6 |            | 1.8 |                          | 2.4 | ns    |
| t <sub>RD3</sub>   | FO = 3 Routing Delay                 |      | 1.4               |      | 1.6               |           | 1.8 |            | 2.1 |                          | 2.8 | ns    |
| t <sub>RD4</sub>   | FO = 4 Routing Delay                 |      | 1.7               |      | 1.9               |           | 2.2 |            | 2.5 |                          | 3.3 | ns    |
| t <sub>RD8</sub>   | FO = 8 Routing Delay                 |      | 2.8               |      | 3.2               |           | 3.6 |            | 4.2 |                          | 5.5 | ns    |
| I/O Moo            | dule Sequential Timing (wrt IOCLK    | pad) |                   |      | I                 |           |     |            |     | J I                      |     |       |
| t <sub>INH</sub>   | Input F-F Data Hold                  | 0.0  |                   | 0.0  |                   | 0.0       |     | 0.0        |     | 0.0                      |     | ns    |
| t <sub>INSU</sub>  | Input F-F Data Setup                 | 1.2  |                   | 1.4  |                   | 1.5       |     | 1.8        |     | 1.8                      |     | ns    |
| t <sub>IDEH</sub>  | Input Data Enable Hold               | 0.0  |                   | 0.0  |                   | 0.0       |     | 0.0        |     | 0.0                      |     | ns    |
| t <sub>IDESU</sub> | Input Data Enable Setup              | 5.8  |                   | 6.5  |                   | 7.5       |     | 8.6        |     | 8.6                      |     | ns    |
| t <sub>OUTH</sub>  | Output F-F Data hold                 | 0.7  |                   | 0.8  |                   | 1.0       |     | 1.0        |     | 1.0                      |     | ns    |
| t <sub>OUTSU</sub> | Output F-F Data Setup                | 0.7  |                   | 0.8  |                   | 1.0       |     | 1.0        |     | 1.0                      |     | ns    |
| t <sub>ODEH</sub>  | Output Data Enable Hold              | 0.3  |                   | 0.4  |                   | 0.5       |     | 0.5        |     | 0.5                      |     | ns    |
| f <sub>ODESU</sub> | Output Data Enable Setup             | 1.3  |                   | 1.5  |                   | 2.0       |     | 2.0        |     | 2.0                      |     | ns    |

Notes: \*

1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

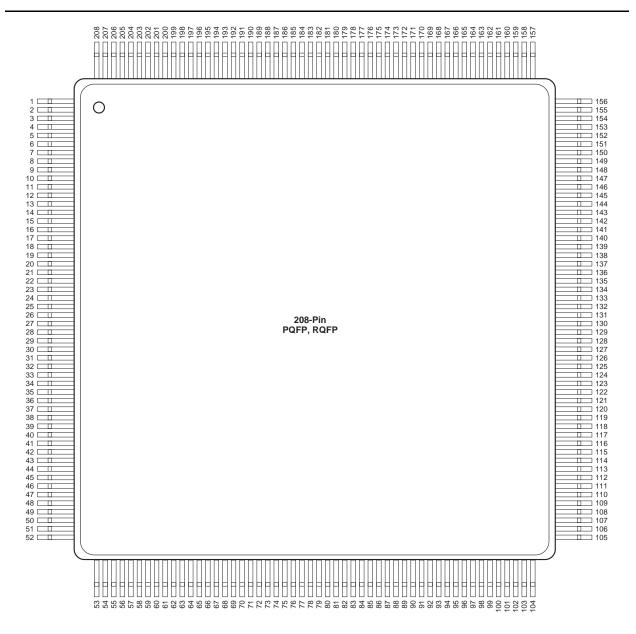
 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

### A14100A, A14V100A Timing Characteristics (continued)

| Dedicate             | d (hardwired) I/O Clock Network                   | -3 Sp      | beed <sup>1</sup> | -2 Sp      | –2 Speed <sup>1</sup> |            | peed       | Std. Speed |            | I 3.3 V Speed <sup>1</sup> |            | Units |
|----------------------|---------------------------------------------------|------------|-------------------|------------|-----------------------|------------|------------|------------|------------|----------------------------|------------|-------|
| Paramete             | er/Description                                    | Min.       | Max.              | Min.       | Max.                  | Min.       | Max.       | Min.       | Max.       | Min.                       | Max.       |       |
| t <sub>IOCKH</sub>   | Input Low to High (pad to I/O module input)       |            | 2.3               |            | 2.6                   |            | 3.0        |            | 3.5        |                            | 4.5        | ns    |
| t <sub>IOPWH</sub>   | Minimum Pulse Width High                          | 2.4        |                   | 3.3        |                       | 3.8        |            | 4.8        |            | 6.5                        |            | ns    |
| t <sub>IPOWL</sub>   | Minimum Pulse Width Low                           | 2.4        |                   | 3.3        |                       | 3.8        |            | 4.8        |            | 6.5                        |            | ns    |
| t <sub>IOSAPW</sub>  | Minimum Asynchronous Pulse Width                  | 2.4        |                   | 3.3        |                       | 3.8        |            | 4.8        |            | 6.5                        |            | ns    |
| t <sub>IOCKSW</sub>  | Maximum Skew                                      |            | 0.6               |            | 0.6                   |            | 0.7        |            | 0.8        |                            | 0.6        | ns    |
| t <sub>IOP</sub>     | Minimum Period                                    | 5.0        |                   | 6.8        |                       | 8.0        |            | 10.0       |            | 13.4                       |            | ns    |
| f <sub>IOMAX</sub>   | Maximum Frequency                                 |            | 200               |            | 150                   |            | 125        |            | 100        |                            | 75         | MHz   |
| Dedicated            | d (hardwired) Array Clock                         | •          |                   |            | •                     |            |            | •          |            |                            |            |       |
| t <sub>HCKH</sub>    | Input Low to High (pad to S-module input)         |            | 3.7               |            | 4.1                   |            | 4.7        |            | 5.5        |                            | 7.0        | ns    |
| t <sub>HCKL</sub>    | Input High to Low (pad to S-module input)         |            | 3.7               |            | 4.1                   |            | 4.7        |            | 5.5        |                            | 7.0        | ns    |
| t <sub>HPWH</sub>    | Minimum Pulse Width High                          | 2.4        |                   | 3.3        |                       | 3.8        |            | 4.8        |            | 6.5                        |            | ns    |
| t <sub>HPWL</sub>    | Minimum Pulse Width Low                           | 2.4        |                   | 3.3        |                       | 3.8        |            | 4.8        |            | 6.5                        |            | ns    |
| t <sub>HCKSW</sub>   | Delta High to Low, Low Slew                       |            | 0.6               |            | 0.6                   |            | 0.7        |            | 0.8        |                            | 0.6        | ns    |
| t <sub>HP</sub>      | Minimum Period                                    | 5.0        |                   | 6.8        |                       | 8.0        |            | 10.0       |            | 13.4                       |            | ns    |
| f <sub>HMAX</sub>    | Maximum Frequency                                 |            | 200               |            | 150                   |            | 125        |            | 100        |                            | 75         | MHz   |
| Routed A             | rray Clock Networks                               |            |                   |            |                       |            |            |            |            | -                          | -          |       |
| t <sub>RCKH</sub>    | Input Low to High (FO = 64)                       |            | 6.0               |            | 6.8                   |            | 7.7        |            | 9.0        |                            | 11.8       | ns    |
| t <sub>RCKL</sub>    | Input High to Low (FO = 64)                       |            | 6.0               |            | 6.8                   |            | 7.7        |            | 9.0        |                            | 11.8       | ns    |
| t <sub>RPWH</sub>    | Min. Pulse Width High (FO = 64)                   | 4.1        |                   | 4.5        |                       | 5.4        |            | 6.1        |            | 8.2                        |            | ns    |
| t <sub>RPWL</sub>    | Min. Pulse Width Low (FO = 64)                    | 4.1        |                   | 4.5        |                       | 5.4        |            | 6.1        |            | 8.2                        |            | ns    |
| t <sub>RCKSW</sub>   | Maximum Skew (FO = 128)                           |            | 1.2               |            | 1.4                   |            | 1.6        |            | 1.8        |                            | 1.8        | ns    |
| t <sub>RP</sub>      | Minimum Period (FO = 64)                          | 8.3        |                   | 9.3        |                       | 11.1       |            | 12.5       |            | 16.7                       |            | ns    |
| f <sub>RMAX</sub>    | Maximum Frequency (FO = 64)                       |            | 120               |            | 105                   |            | 90         |            | 80         |                            | 60         | MHz   |
| Clock-to-            | Clock Skews                                       |            |                   |            |                       |            |            |            |            | -                          | -          |       |
| t <sub>IOHCKSW</sub> | I/O Clock to H-Clock Skew                         | 0.0        | 2.6               | 0.0        | 2.7                   | 0.0        | 2.9        | 0.0        | 3.0        | 0.0                        | 3.0        | ns    |
| t <sub>IORCKSW</sub> | I/O Clock to R-Clock Skew (FO = 64)<br>(FO = 350) | 0.0<br>0.0 | 1.7<br>5.0        | 0.0<br>0.0 | 1.7<br>5.0            | 0.0<br>0.0 | 1.7<br>5.0 | 0.0<br>0.0 | 1.7<br>5.0 | 0.0<br>0.0                 | 5.0<br>5.0 | ns    |
| t <sub>HRCKSW</sub>  | H-Clock to R-Clock Skew (FO = 64)<br>(FO = 350)   | 0.0<br>0.0 | 1.3<br>3.0        | 0.0<br>0.0 | 1.0<br>3.0            | 0.0<br>0.0 | 1.0<br>3.0 | 0.0<br>0.0 | 1.0<br>3.0 | 0.0<br>0.0                 | 1.0<br>3.0 | ns    |

Notes: \*

1. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.


2. Delays based on 35 pF loading.



|            |                        | PQ160                  |                        |
|------------|------------------------|------------------------|------------------------|
| Pin Number | A1425, A14V25 Function | A1440, A14V40 Function | A1460, A14V60 Function |
| 1          | GND                    | GND                    | GND                    |
| 2          | SDI, I/O               | SDI, I/O               | SDI, I/O               |
| 5          | NC                     | I/O                    | I/O                    |
| 9          | MODE                   | MODE                   | MODE                   |
| 10         | VCC                    | VCC                    | VCC                    |
| 14         | NC                     | I/O                    | I/O                    |
| 15         | GND                    | GND                    | GND                    |
| 18         | VCC                    | VCC                    | VCC                    |
| 19         | GND                    | GND                    | GND                    |
| 20         | NC                     | I/O                    | I/O                    |
| 24         | NC                     | I/O                    | I/O                    |
| 27         | NC                     | I/O                    | I/O                    |
| 28         | VCC                    | VCC                    | VCC                    |
| 29         | VCC                    | VCC                    | VCC                    |
| 40         | GND                    | GND                    | GND                    |
| 41         | NC                     | I/O                    | I/O                    |
| 43         | NC                     | I/O                    | I/O                    |
| 45         | NC                     | I/O                    | I/O                    |
| 46         | VCC                    | VCC                    | VCC                    |
| 47         | NC                     | I/O                    | I/O                    |
| 49         | NC                     | I/O                    | I/O                    |
| 51         | NC                     | I/O                    | I/O                    |
| 53         | NC                     | I/O                    | I/O                    |
| 58         | PRB, I/O               | PRB, I/O               | PRB, I/O               |
| 59         | GND                    | GND                    | GND                    |
| 60         | VCC                    | VCC                    | VCC                    |
| 62         | HCLK, I/O              | HCLK, I/O              | HCLK, I/O              |
| 63         | GND                    | GND                    | GND                    |
| 74         | NC                     | I/O                    | I/O                    |
| 75         | VCC                    | VCC                    | VCC                    |
| 76         | NC                     | I/O                    | I/O                    |
| 77         | NC                     | I/O                    | I/O                    |
| 78         | NC                     | I/O                    | I/O                    |
| 79         | SDO                    | SDO                    | SDO                    |
| 80         | IOPCL, I/O             | IOPCL, I/O             | IOPCL, I/O             |
| 81         | GND                    | GND                    | GND                    |
| 90         | VCC                    | VCC                    | VCC                    |
| 91         | VCC                    | VCC                    | VCC                    |



# PQ208, RQ208



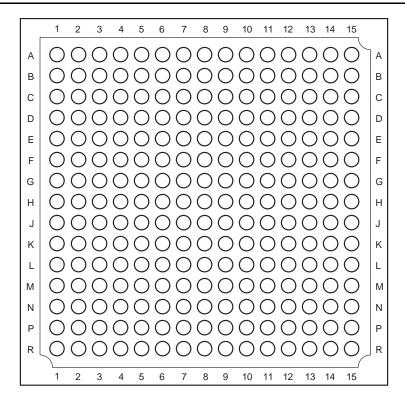
Note: This is the top view of the package

### Note

Accelerator Series FPGAs - ACT 3 Family

|            | CQ132          |            | CQ132          |
|------------|----------------|------------|----------------|
| Pin Number | A1425 Function | Pin Number | A1425 Function |
| 1          | NC             | 67         | NC             |
| 2          | GND            | 74         | GND            |
| 3          | SDI, I/O       | 75         | VCC            |
| 9          | MODE           | 78         | VCC            |
| 10         | GND            | 89         | VCC            |
| 11         | VCC            | 90         | GND            |
| 22         | VCC            | 91         | VCC            |
| 26         | GND            | 92         | GND            |
| 27         | VCC            | 98         | IOCLK, I/O     |
| 34         | NC             | 99         | NC             |
| 36         | GND            | 100        | NC             |
| 42         | GND            | 101        | GND            |
| 43         | VCC            | 106        | GND            |
| 48         | PRB, I/O       | 107        | VCC            |
| 50         | HCLK, I/O      | 116        | CLKA, I/O      |
| 58         | GND            | 117        | CLKB, I/O      |
| 59         | VCC            | 118        | PRA, I/O       |
| 63         | SDO            | 122        | GND            |
| 64         | IOPCL, I/O     | 123        | VCC            |
| 65         | GND            | 131        | DCLK, I/O      |
| 66         | NC             | 132        | NC             |

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

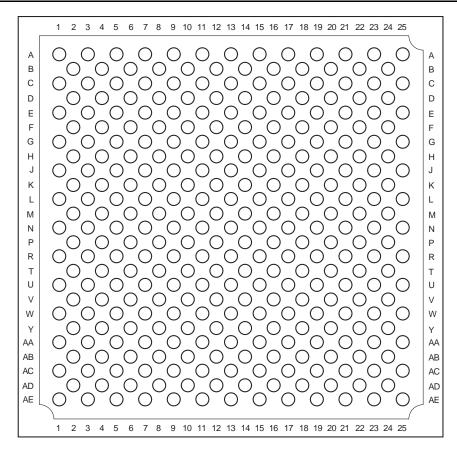

Accelerator Series FPGAs - ACT 3 Family

| CQ256      |                 | CQ256      |                 |
|------------|-----------------|------------|-----------------|
| Pin Number | A14100 Function | Pin Number | A14100 Function |
| 1          | GND             | 141        | VCC             |
| 2          | SDI, I/O        | 158        | GND             |
| 11         | MODE            | 159        | VCC             |
| 28         | VCC             | 160        | GND             |
| 29         | GND             | 161        | VCC             |
| 30         | VCC             | 174        | VCC             |
| 31         | GND             | 175        | GND             |
| 46         | VCC             | 176        | GND             |
| 59         | GND             | 188        | IOCLK, I/O      |
| 90         | PRB, I/O        | 189        | GND             |
| 91         | GND             | 219        | CLKA, I/O       |
| 92         | VCC             | 220        | CLKB, I/O       |
| 93         | GND             | 221        | VCC             |
| 94         | VCC             | 222        | GND             |
| 96         | HCLK, I/O       | 223        | VCC             |
| 110        | GND             | 224        | GND             |
| 126        | SDO             | 225        | PRA, I/O        |
| 127        | IOPCL, I/O      | 240        | GND             |
| 128        | GND             | 256        | DCLK, I/O       |

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

## **BG225**




Note: This is the top view.

### Note

Microsemi

# BG313



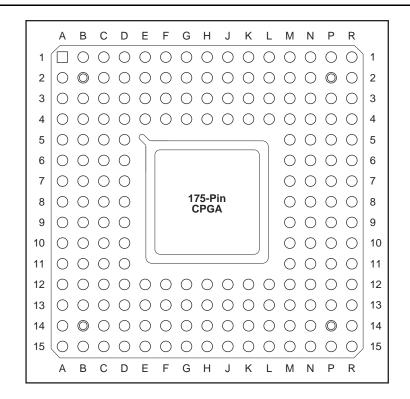
#### Note: This is the top view.

#### Note

Accelerator Series FPGAs – ACT 3 Family

|                             | BG313                                                                                                                                                                                                                                               |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A14100, A14V100<br>Function | Location                                                                                                                                                                                                                                            |  |  |
| CLKA or I/O                 | J13                                                                                                                                                                                                                                                 |  |  |
| CLKB or I/O                 | G13                                                                                                                                                                                                                                                 |  |  |
| DCLK or I/O                 | B2                                                                                                                                                                                                                                                  |  |  |
| GND                         | A1, A25, AD2, AE25, J21, L13, M12, M14, N11, N13, N15, P12, P14, R13                                                                                                                                                                                |  |  |
| HCLK or I/O                 | T14                                                                                                                                                                                                                                                 |  |  |
| IOCLK or I/O                | B24                                                                                                                                                                                                                                                 |  |  |
| IOPCL or I/O                | AD24                                                                                                                                                                                                                                                |  |  |
| MODE                        | G3                                                                                                                                                                                                                                                  |  |  |
| NC                          | A3, A13, A23, AA5, AA9, AA23, AB2, AB4, AB20, AC13, AC25, AD22, AE1, AE21, B14, C5, C25, D4, D24, E3, E21, F6, F10, F16, G1, G25, H18, H24, J1, J7, J25, K12, L15, L17, M6, N1, N5, N7, N21, N23, P20, R11, T6, T8, U9, U13, U21, V16, W7, Y20, Y24 |  |  |
| PRA or I/O                  | H12                                                                                                                                                                                                                                                 |  |  |
| PRB or I/O                  | AD12                                                                                                                                                                                                                                                |  |  |
| SDI or I/O                  | C1                                                                                                                                                                                                                                                  |  |  |
| SDO                         | AE23                                                                                                                                                                                                                                                |  |  |
| VCC                         | AB18, AD6, AE13, C13, C19, E13, G9, H22, K8, K20, M16, N3, N9, N25, U5, W13, V2, V22, V24                                                                                                                                                           |  |  |

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.


Accelerator Series FPGAs – ACT 3 Family

|                | PG133                                                    |  |  |
|----------------|----------------------------------------------------------|--|--|
| A1425 Function | Location                                                 |  |  |
| CLKA or I/O    | D7                                                       |  |  |
| CLKB or I/O    | B6                                                       |  |  |
| DCLK or I/O    | D4                                                       |  |  |
| GND            | A2, C3, C7, C11, C12, F10, G3, G11, L3, L7, L11, M3, N12 |  |  |
| HCLK or I/O    | К7                                                       |  |  |
| IOCLK or I/O   | C10                                                      |  |  |
| IOPCL or I/O   | L10                                                      |  |  |
| MODE           | E3                                                       |  |  |
| NC             | A1, A7, A13, G1, G13, N1, N7, N13                        |  |  |
| PRA or I/O     | A6                                                       |  |  |
| PRB or I/O     | L6                                                       |  |  |
| SDI or I/O     | C2                                                       |  |  |
| SDO            | M11                                                      |  |  |
| VCC            | B2, B7, B12, E11, G2, G12, J2, J12, M2, M7, M12          |  |  |

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG133 package has been discontinued.



# PG175



Note: This is the top view.

### Note



Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.