

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1377
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	228
Number of Gates	10000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	256-BFCQFP with Tie Bar
Supplier Device Package	256-CQFP (75x75)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a14100a-1cq256m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Accelerator Series FPGAs - ACT 3 Family

		Speed	Grade ¹			Applic	cation ¹	
Device/Package	Std.	-1	-2	-3	С	I	М	В
A14V40A Device	•	•	•	•	•	•		
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	-	_	_	✓	_	_	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	_	_	_	✓	_	_	_
160-Pin Plastic Quad Flatpack (PQFP)	/	_	_	_	1	-	-	_
176-Pin Thin Quad Flatpack (TQFP)	1	_	_	_	1	_	-	_
A1460A Device								
160-Pin Plastic Quad Flatpack (PQFP)	√	✓	D	D	✓	✓	_	_
176-Pin Thin Quad Flatpack (TQFP)	✓	1	D	D	1	1	-	-
196-Pin Ceramic Quad Flatpack (CQFP)	1	1	_	-	1	-	1	✓
207-Pin Ceramic Pin Grid Array (CPGA)	✓	1	D	D	1	-	1	✓
208-Pin Plastic Quad Flatpack (PQFP)	✓	1	D	D	1	1	-	-
225-Pin Plastic Ball Grid Array (BGA)	D	D	D	D	D	-	-	-
A14V60A Device	•	•	•	•	•	•	•	
160-Pin Plastic Quad Flatpack (PQFP)	✓	_	_	_	1	_	-	_
176-Pin Thin Quad Flatpack (TQFP)	✓	_	_	-	1	-	-	_
208-Pin Plastic Quad Flatpack (PQFP)	✓	-	_	-	1	-	-	-
A14100A Device								
208-Pin Power Quad Flatpack (RQFP)	✓	1	D	D	1	✓	-	_
257-Pin Ceramic Pin Grid Array (CPGA)	✓	1	D	D	1	-	1	✓
313-Pin Plastic Ball Grid Array (BGA)	✓	1	D	D	1	-	-	_
256-Pin Ceramic Quad Flatpack (CQFP)	✓	✓	-	_	✓	_	1	✓
A14V100A Device	•		-			•	-	•
208-Pin Power Quad Flatpack (RQFP)	✓	-	_	-	✓	_	-	_
313-Pin Plastic Ball Grid Array (BGA)	1	_	_	_	1	_	_	_

Notes:

1. Applications: C = CommercialI = Industrial
M = Military
Commercial only

Availability: ✓ = Available P = Planned -= Not planned D = Discontinued Speed Grade:

-1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std. -3 = Approx. 35% faster than Std. (-2 and -3 speed grades have been discontinued.)

١٧ Revision 3

Plastic Device Resources

Device	Logic			User I/Os								
Series	Modules	Gates	PL84	PQ100	PQ160	PQ/RQ208	VQ100	TQ176	BG225*	BG313		
A1415	200	1500	70	80	_	_	80	_	_	_		
A1425	310	2500	70	80	100	_	83	-	-	_		
A1440	564	4000	70	_	131	_	83	140	_	_		
A1460	848	6000	_	_	131	167	_	151	168	_		
A14100	1377	10000	-	-	_	175	1	-	_	228		

Note: *Discontinued

Hermetic Device Resources

Device	Logic			User I/Os								
Series	Modules	Gates	PG100*	PG133*	PG175*	PG207	PG257	CQ132	CQ196	CQ256		
A1415	200	1500	80	_	_	_	_	_	_	_		
A1425	310	2500	-	100	-	-	_	100	_	-		
A1440	564	4000	-	_	140	_	_	_	_	_		
A1460	848	6000	-	-	_	168	_	-	168	-		
A14100	1377	10000	-	-	-	-	228	-	-	228		

Note: *Discontinued

Contact your local Microsemi SoC Products Group (formerly Actel) representative for device availability: http://www.microsemi.com/soc/contact/default.aspx.

Revision 3 V

Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used over a wide range of operating conditions. Equivalent capacitance values are shown in Figure 2-10.

Table 2-10 • CEQ Values for Microsemi FPGAs

Item	CEQ Value
Modules (C _{EQM})	6.7
Input Buffers (C _{EQI})	7.2
Output Buffers (C _{EQO})	10.4
Routed Array Clock Buffer Loads (C _{EQCR})	1.6
Dedicated Clock Buffer Loads (C _{EQCD})	0.7
I/O Clock Buffer Loads (C _{EQCI)}	0.9

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 5 shows a piece-wise linear summation over all components.

$$\begin{split} & \text{Power =VCC2} * \text{[(m * C_{EQM} * f_m)_{modules} + (n * C_{EQI} * f_n)_{inputs} \\ & + (p * (C_{EQO} + C_L) * f_p)_{outputs} \\ & + 0.5 * (q1 * C_{EQCR} * f_{q1})_{routed_Clk1} + (r1 * fq1)_{routed_Clk1} \\ & + 0.5 * (q2 * C_{EQCR} * fq2)_{routed_Clk2} \\ & + (r_2 * f_{q2})_{routed_Clk2} + 0.5 * (s_1 * C_{EQCD} * f_{s1})_{dedicated_Clk} \\ & + (s_2 * C_{EQCI} * f_{s2})_{IO_Clk} \end{split}$$

EQ5

Where:

m = Number of logic modules switching at f_m

n = Number of input buffers switching at fn

p = Number of output buffers switching at f_p

q1 = Number of clock loads on the first routed array clock

q2 = Number of clock loads on the second routed array clock

r₁ = Fixed capacitance due to first routed array clock

r₂ = Fixed capacitance due to second routed array clock

s₁ = Fixed number of clock loads on the dedicated array clock

s₂ = Fixed number of clock loads on the dedicated I/O clock

C_{EQM} = Equivalent capacitance of logic modules in pF

 C_{EQI} = Equivalent capacitance of input buffers in pF

C_{EQO} = Equivalent capacitance of output buffers in pF

C_{EQCR} = Equivalent capacitance of routed array clock in pF

C_{EOCD} = Equivalent capacitance of dedicated array clock in pF

C_{FOCI} = Equivalent capacitance of dedicated I/O clock in pF

C_L = Output lead capacitance in pF

f_m = Average logic module switching rate in MHz

f_n = Average input buffer switching rate in MHz

f_n = Average output buffer switching rate in MHz

f_{q1} = Average first routed array clock rate in MHz

f_{q2} = Average second routed array clock rate in MHz

f_{s1} = Average dedicated array clock rate in MHz

f_{s2} = Average dedicated I/O clock rate in MHz

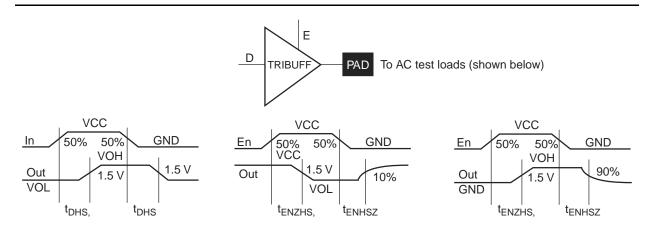


Figure 2-11 • Output Buffers



Figure 2-12 • AC Test Loads

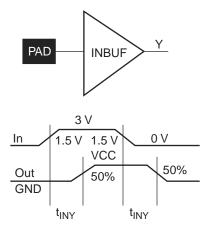


Figure 2-13 • Input Buffer Delays

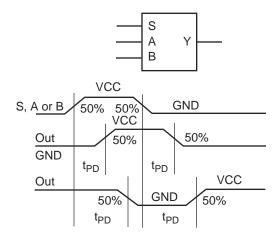


Figure 2-14 • Module Delays

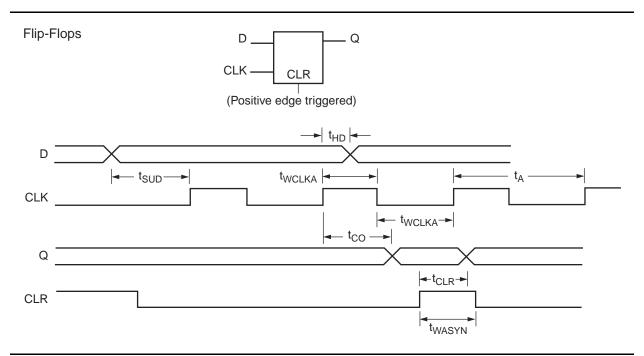


Figure 2-15 • Sequential Module Timing Characteristics

2-18 Revision 3

Detailed Specifications

A1440A, A14V40A Timing Characteristics (continued)

Table 2-28 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	dule – TTL Output Timing ¹	-3 Sp	-3 Speed ² -2 Spee		peed ²	d ² –1 Speed		Std.	Speed	3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.5		8.5		9.5		11.0		14.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.0		9.0		10.1		11.8		14.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d_{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d_{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes:

2-32 Revision 3

^{1.} Delays based on 35 pF loading.

^{2.} The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1440A, A14V40A Timing Characteristics (continued)

Table 2-29 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C

Dedicate	d (hardwired) I/O Clock Network	–3 Sp	eed ¹	–2 Sp	oeed ¹	–1 S	peed	Std.	Speed	3.3 V Speed ¹		Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.0		2.3		2.6		3.0		3.5	ns
t _{IOPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{IPOWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	1.9		2.4		3.3		3.8		4.8		ns
t _{iocksw}	Maximum Skew		0.4		0.4		0.4		0.4		0.4	ns
t _{IOP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{IOMAX}	Maximum Frequency		250		200		150		125		100	MHz
Dedicate	d (hardwired) Array Clock											
t _{HCKH}	Input Low to High (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{HPWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.3		0.3		0.3		0.3		0.3	ns
t _{HP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{HMAX}	Maximum Frequency		250		200		150		125		100	MHz
Routed A	rray Clock Networks											
t _{RCKH}	Input Low to High (FO = 64)		3.7		4.1		4.7		5.5		9.0	ns
t _{RCKL}	Input High to Low (FO = 64)		4.0		4.5		5.1		6.0		9.0	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RCKSW}	Maximum Skew (FO = 128)		0.7		0.8		0.9		1.0		1.0	ns
t _{RP}	Minimum Period (FO = 64)	6.8		8.0		8.7		10.0		13.4		ns
f _{RMAX}	Maximum Frequency (FO = 64)		150		125		115		100		75	MHz
Clock-to-	Clock Skews											
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	1.7	0.0	1.8	0.0	2.0	0.0	2.2	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 144)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	3.0 3.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 144)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes:

^{1.} The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

^{2.} Delays based on 35 pF loading.

Detailed Specifications

A14100A, A14V100A Timing Characteristics

Table 2-34 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C¹

Logic N	Module Propagation Delays ²	-3 Speed ³		-2 Speed ³		-1 Speed		Std. S	Speed	3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴						•					
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Module Sequential Timing											•
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.8		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.5		0.5		0.5		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.8		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.5		0.5		0.5		ns
t _{WASYN}	Asynchronous Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _A	Flip-Flop Clock Input Period	5.0		6.8		8.0		10.0		13.4		ns
f _{MAX}	Flip-Flop Clock Frequency		200		150		125		100		75	MHz

Notes:

- 1. VCC = 3.0 V for 3.3 V specifications.
- 2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.
- 3. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
- 4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

2-38 Revision 3

Detailed Specifications

Pin Descriptions

CLKA Clock A (Input)

Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKB Clock B (Input)

Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

GND Ground

LOW supply voltage.

HCLK Dedicated (Hard-wired) Array Clock (Input)

Clock input for sequential modules. This input is directly wired to each S-Module and offers clock speeds independent of the number of S-Modules being driven. This pin can also be used as an I/O.

I/O Input/Output (Input, Output)

The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are tristated by the Designer Series software.

IOCLK Dedicated (Hard-wired) I/O Clock (Input)

Clock input for I/O modules. This input is directly wired to each I/O module and offers clock speeds independent of the number of I/O modules being driven. This pin can also be used as an I/O.

IOPCL Dedicated (Hard-wired) I/O Preset/Clear (Input)

Input for I/O preset or clear. This global input is directly wired to the preset and clear inputs of all I/O registers. This pin functions as an I/O when no I/O preset or clear macros are used.

MODE Mode (Input)

The MODE pin controls the use of diagnostic pins (DCLK, PRA, PRB, SDI). When the MODE pin is HIGH, the special functions are active. When the MODE pin is LOW, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled high when required.

NC No Connection

This pin is not connected to circuitry within the device.

PRA Probe A (Output)

The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

PRB Probe B (Output)

The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

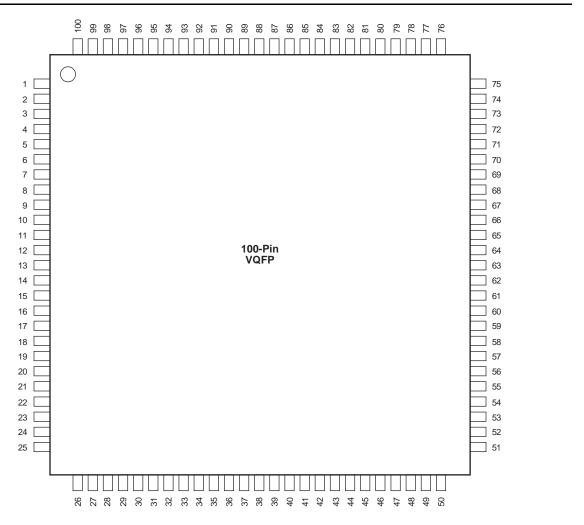
SDI Serial Data Input (Input)

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

2-42 Revision 3

		PQ160	
Pin Number	A1425, A14V25 Function	A1440, A14V40 Function	A1460, A14V60 Function
1	GND	GND	GND
2	SDI, I/O	SDI, I/O	SDI, I/O
5	NC	I/O	I/O
9	MODE	MODE	MODE
10	VCC	VCC	VCC
14	NC	I/O	I/O
15	GND	GND	GND
18	VCC	VCC	VCC
19	GND	GND	GND
20	NC	I/O	I/O
24	NC	I/O	I/O
27	NC	I/O	I/O
28	VCC	VCC	VCC
29	VCC	VCC	VCC
40	GND	GND	GND
41	NC	I/O	I/O
43	NC	I/O	I/O
45	NC	I/O	I/O
46	VCC	VCC	VCC
47	NC	I/O	I/O
49	NC	I/O	I/O
51	NC	I/O	I/O
53	NC	I/O	I/O
58	PRB, I/O	PRB, I/O	PRB, I/O
59	GND	GND	GND
60	VCC	VCC	VCC
62	HCLK, I/O	HCLK, I/O	HCLK, I/O
63	GND	GND	GND
74	NC	I/O	I/O
75	VCC	VCC	VCC
76	NC	I/O	I/O
77	NC	I/O	I/O
78	NC	I/O	I/O
79	SDO	SDO	SDO
80	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O
81	GND	GND	GND
90	VCC	VCC	VCC
91	VCC	VCC	VCC

3-6 Revision 3

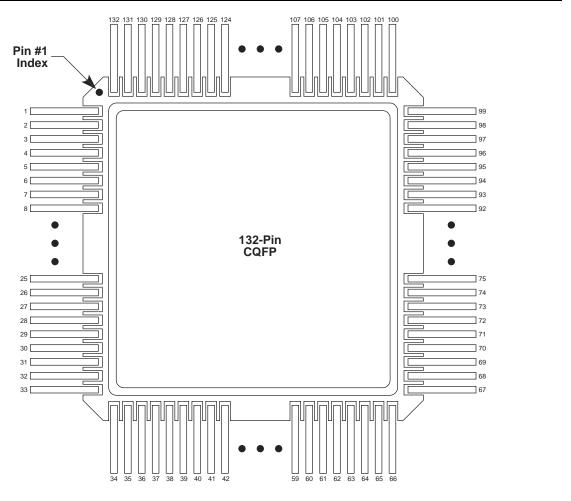

	TQ176	
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function
1	GND	GND
2	SDI, I/O	SDI, I/O
10	MODE	MODE
11	VCC	VCC
20	NC	I/O
21	GND	GND
22	VCC	VCC
23	GND	GND
32	VCC	VCC
33	VCC	VCC
44	GND	GND
49	NC	I/O
51	NC	I/O
63	NC	I/O
64	PRB, I/O	PRB, I/O
65	GND	GND
66	VCC	VCC
67	VCC	VCC
69	HCLK, I/O	HCLK, I/O
82	NC	I/O
83	NC	I/O
87	SDO	SDO
88	IOPCL, I/O	IOPCL, I/O

TQ176								
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function						
89	GND	GND						
98	VCC	VCC						
99	VCC	VCC						
108	GND	GND						
109	VCC	VCC						
110	GND	GND						
119	NC	I/O						
121	NC	I/O						
122	VCC	VCC						
123	GND	GND						
124	VCC	VCC						
132	IOCLK, I/O	IOCLK, I/O						
133	GND	GND						
138	NC	I/O						
152	CLKA, I/O	CLKA, I/O						
153	CLKB, I/O	CLKB, I/O						
154	VCC	VCC						
155	GND	GND						
156	VCC	VCC						
157	PRA, I/O	PRA, I/O						
158	NC	I/O						
170	NC	I/O						
176	DCLK, I/O	DCLK, I/O						

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

VQ100


Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at $\label{eq:http://www.microsemi.com/soc/products/solutions/package/docs.aspx$

3-12 Revision 3

CQ132

Note: This is the top view

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-14 Revision 3

Accelerator Series FPGAs – ACT 3 Family

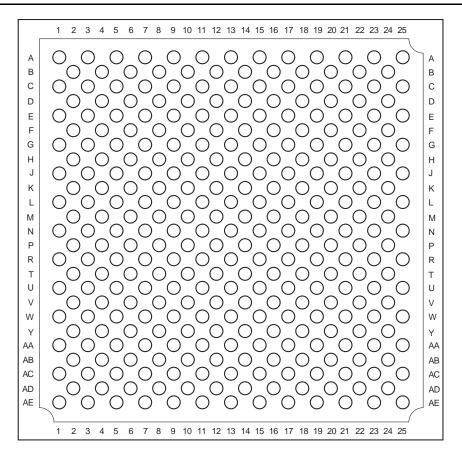
	CQ256
Pin Number	A14100 Function
1	GND
2	SDI, I/O
11	MODE
28	VCC
29	GND
30	VCC
31	GND
46	VCC
59	GND
90	PRB, I/O
91	GND
92	VCC
93	GND
94	VCC
96	HCLK, I/O
110	GND
126	SDO
127	IOPCL, I/O
128	GND

CQ256		
Pin Number	A14100 Function	
141	VCC	
158	GND	
159	VCC	
160	GND	
161	VCC	
174	VCC	
175	GND	
176	GND	
188	IOCLK, I/O	
189	GND	
219	CLKA, I/O	
220	CLKB, I/O	
221	VCC	
222	GND	
223	VCC	
224	GND	
225	PRA, I/O	
240	GND	
256	DCLK, I/O	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs – ACT 3 Family


BG225	
A1460 Function	Location
CLKA or I/O	C8
CLKB or I/O	B8
DCLK or I/O	B2
GND	A1, A15, D15, F8, G7, G8, G9, H6, H7, H8, H9, H10, J7, J8, J9, K8, P2, R15
HCLK or I/O	P9
IOCLK or I/O	B14
IOPCL or I/O	P14
MODE	D1
NC	A11, B5, B7, D8, D12, F6, F11, H1, H12, H14, K11, L1, L13, N8, P5, R1, R8, R11, R14
PRA or I/O	A7
PRB or I/O	L7
SDI or I/O	D4
SDO	N13
VCC	A8, B12, D5, D14, E3, E8, E13, H2, H3, H11, H15, K4, L2, L12, M8, M15, P4, P8, R13

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The BG225 package has been discontinued.

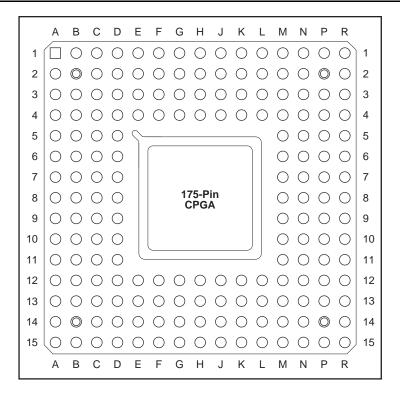
BG313

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-22 Revision 3


PG133	
A1425 Function	Location
CLKA or I/O	D7
CLKB or I/O	B6
DCLK or I/O	D4
GND	A2, C3, C7, C11, C12, F10, G3, G11, L3, L7, L11, M3, N12
HCLK or I/O	K7
IOCLK or I/O	C10
IOPCL or I/O	L10
MODE	E3
NC	A1, A7, A13, G1, G13, N1, N7, N13
PRA or I/O	A6
PRB or I/O	L6
SDI or I/O	C2
SDO	M11
VCC	B2, B7, B12, E11, G2, G12, J2, J12, M2, M7, M12

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG133 package has been discontinued.

PG175

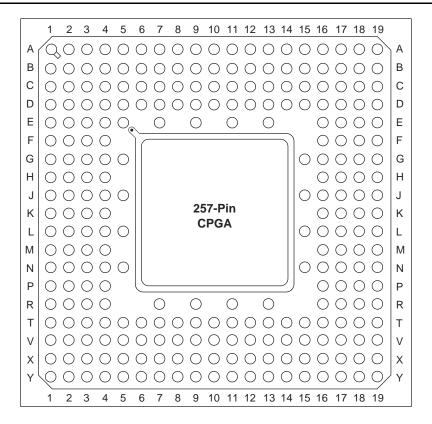
Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-28 Revision 3

Accelerator Series FPGAs - ACT 3 Family


	PG175	
A1440 Function	Location	
CLKA or I/O	C9	
CLKB or I/O	A9	
DCLK or I/O	D5	
GND	D4, D8, D11, D12, E4, E14, H4, H12, L4, L12, M4, M8, M12	
HCLK or I/O	R8	
IOCLK or I/O	E12	
IOPCL or I/O	P13	
MODE	F3	
NC	A1, A2, A15, B2, B3, P2, P14, R1, R2, R14, R15	
PRA or I/O	B8	
PRB or I/O	R7	
SDI or I/O	D3	
SDO	N12	
VCC	C3, C8, C13, E15, H3, H13, L1, L14, N3, N8, N13	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG175 package has been discontinued.

PG257

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-32 Revision 3