

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1377
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	228
Number of Gates	10000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-BFCQFP with Tie Bar
Supplier Device Package	256-CQFP (75x75)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a14100a-cq256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The I/O module output Y is used to bring Pad signals into the array or to feed the output register back into the array. This allows the output register to be used in high-speed state machine applications. Side I/O modules have a dedicated output segment for Y extending into the routing channels above and below (similar to logic modules). Top/Bottom I/O modules have no dedicated output segment. Signals coming into the chip from the top or bottom are routed using F-fuses and LVTs (F-fuses and LVTs are explained in detail in the routing section).

I/O Pad Drivers

All pad drivers are capable of being tristate. Each buffer connects to an associated I/O module with four signals: OE (Output Enable), IE (Input Enable), DataOut, and DataIn. Certain special signals used only during programming and test also connect to the pad drivers: OUTEN (global output enable), INEN (global input enable), and SLEW (individual slew selection). See Figure 2-5.

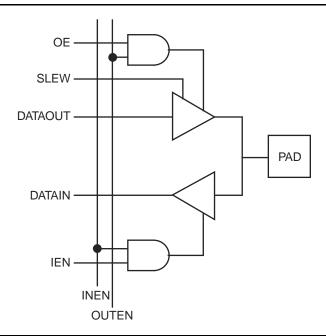


Figure 2-5 • Function Diagram for I/O Pad Driver

Special I/Os

The special I/Os are of two types: temporary and permanent. Temporary special I/Os are used during programming and testing. They function as normal I/Os when the MODE pin is inactive. Permanent special I/Os are user programmed as either normal I/Os or special I/Os. Their function does not change once the device has been programmed. The permanent special I/Os consist of the array clock input buffers (CLKA and CLKB), the hard-wired array clock input buffer (HCLK), the hard-wired I/O clock input buffer (IOCLK), and the hard-wired I/O register preset/clear input buffer (IOPCL). Their function is determined by the I/O macros selected.

Clock Networks

The ACT 3 architecture contains four clock networks: two high-performance dedicated clock networks and two general purpose routed networks. The high-performance networks function up to 200 MHz, while the general purpose routed networks function up to 150 MHz.

2-4 Revision 3

Dedicated Clocks

Dedicated clock networks support high performance by providing sub-nanosecond skew and guaranteed performance. Dedicated clock networks contain no programming elements in the path from the I/O Pad Driver to the input of S-modules or I/O modules. There are two dedicated clock networks: one for the array registers (HCLK), and one for the I/O registers (IOCLK). The clock networks are accessed by special I/Os.

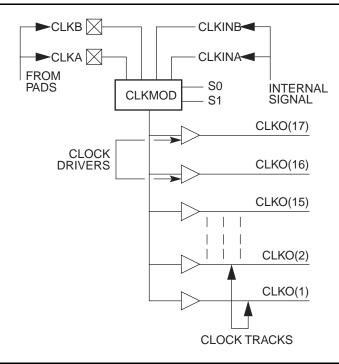


Figure 2-6 • Clock Networks

The routed clock networks are referred to as CLK0 and CLK1. Each network is connected to a clock module (CLKMOD) that selects the source of the clock signal and may be driven as follows (Figure 2-6):

- · Externally from the CLKA pad
- Externally from the CLKB pad
- · Internally from the CLKINA input
- · Internally from the CLKINB input

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel. The function of the clock module is determined by the selection of clock macros from the macro library. The macro CLKBUF is used to connect one of the two external clock pins to a clock network, and the macro CLKINT is used to connect an internally generated clock signal to a clock network. Since both clock networks are identical, the user does not care whether CLK0 or CLK1 is being used. Routed clocks can also be used to drive high fanout nets like resets, output enables, or data enables. This saves logic modules and results in performance increases in some cases.

Routing Structure

The ACT 3 architecture uses vertical and horizontal routing tracks to connect the various logic and I/O modules. These routing tracks are metal interconnects that may either be of continuous length or broken into segments. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track.

Module Output Connections

Module outputs have dedicated output segments. Output segments extend vertically two channels above and two channels below, except at the top or bottom of the array. Output segments twist, as shown in Figure 10, so that only four vertical tracks are required.

LVT Connections

Outputs may also connect to nondedicated segments called Long Vertical Tracks (LVTs). Each module pair in the array shares four LVTs that span the length of the column. Any module in the column pair can connect to one of the LVTs in the column using an FF connection. The FF connection uses antifuses connected directly to the driver stage of the module output, bypassing the isolation transistor. FF antifuses are programmed at a higher current level than HF, VF, or XF antifuses to produce a lower resistance value.

Antifuse Connections

In general every intersection of a vertical segment and a horizontal segment contains an unprogrammed antifuse (XF-type). One exception is in the case of the clock networks.

Clock Connections

To minimize loading on the clock networks, a subset of inputs has antifuses on the clock tracks. Only a few of the C-module and S-module inputs can be connected to the clock networks. To further reduce loading on the clock network, only a subset of the horizontal routing tracks can connect to the clock inputs of the S-module.

Programming and Test Circuits

The array of logic and I/O modules is surrounded by test and programming circuits controlled by the temporary special I/O pins MODE, SDI, and DCLK. The function of these pins is similar to all ACT family devices. The ACT 3 family also includes support for two Actionprobe[®] circuits, allowing complete observability of any logic or I/O module in the array using the temporary special I/O pins, PRA and PRB.

2-8 Revision 3

5 V Operating Conditions

Table 2-2 • Absolute Maximum Ratings¹, Free Air Temperature Range

Symbol	Parameter	Limits	Units
VCC	DC supply voltage	-0.5 to +7.0	V
VI	Input voltage	-0.5 to VCC + 0.5	V
VO	Output voltage	-0.5 to VCC + 0.5	V
IIO	I/O source sink current ²	±20	mA
T _{STG}	Storage temperature	-65 to +150	°C

Notes:

- Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions.
- 2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND -0.5 V, the internal protection diodes will forward bias and can draw excessive current.

Table 2-3 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature range*	0 to +70	-40 to +85	-55 to +125	°C
5 V power supply tolerance	±5	±10	±10	%VCC

Note: *Ambient temperature (T_A) is used for commercial and industrial; case temperature (T_C) is used for military.

Table 2-4 • Electrical Specifications

			Coi	mmercial	In	dustrial	N	Military	
Symbol	Parameter	Test Condition	Min.	Max.	Min.	Max.	Min.	Max.	Units
VOH ^{1,2}	High level output	IOH = -4 mA (CMOS)	_	_	3.7	-	3.7	_	V
		IOH = -6 mA (CMOS)	3.84						V
		$IOH = -10 \text{ mA } (TTL)^3$	2.40						V
VOL ^{1,2}	Low level output	IOL = +6 mA (CMOS)		0.33		0.4		0.4	V
		$IOL = +12 \text{ mA } (TTL)^3$		0.50					
VIH	High level input	TTL inputs	2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	V
VIL	Low level input	TTL inputs	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
IIN	Input leakage	VI = VCC or GND	-10	+10	-10	+10	-10	+10	μΑ
IOZ	3-state output leakage	VO = VCC or GND	-10	+10	-10	+10	-10	+10	μΑ
C _{IO}	I/O capacitance ^{3,4}			10		10		10	pF
ICC(S)	Standby VCC supply cu	rrent (typical = 0.7 mA)		2		10		20	mΑ
ICC(D)	Dynamic VCC supply c	urrent. See the Power Dis	ssipatio	on section.					

Notes:

- Microsemi devices can drive and receive either CMOS or TTL signal levels. No assignment of I/Os as TTL or CMOS is required.
- 2. Tested one output at a time, VCC = minimum.
- 3. Not tested; for information only.
- 4. VOUT = 0 V, f = 1 MHz
- 5. Typical standby current = 0.7 mA. All outputs unloaded. All inputs = VCC or GND.

3.3 V Operating Conditions

Table 2-5 • Absolute Maximum Ratings¹, Free Air Temperature Range

Symbol	Parameter	Limits	Units
VCC	DC supply voltage	−0.5 to +7.0	V
VI	Input voltage	-0.5 to VCC + 0.5	V
VO	Output voltage	-0.5 to VCC + 0.5	V
IIO	I/O source sink current ²	±20	mA
T _{STG}	Storage temperature	-65 to +150	°C

Notes:

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions.
- 2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND -0.5 V, the internal protection diodes will forward bias and can draw excessive current.

Table 2-6 • Recommended Operating Conditions

Parameter	Commercial	Units
Temperature range*	0 to +70	°C
Power supply tolerance	3.0 to 3.6	V

Note: *Ambient temperature (T_A) is used for commercial.

Table 2-7 • Electrical Specifications

		С		
Parameter		Min.	Max.	Units
VOH ¹	IOH = -4 mA	2.15	_	V
	IOH = −3.2 mA	2.4		V
VOL ¹	IOL = 6 mA		0.4	V
VIL		-0.3	0.8	V
VIH		2.0	VCC + 0.3	V
Input transition time t _R , t _F ²	VI = VCC or GND	-10	+10	μA
C _{IO} I/O Capacitance ^{2,3}			10	pF
Standby current, ICC ⁴ (typical =	0.3 mA)		0.75	mA
Leakage current ⁵		-10	10	μA

- 1. Only one output tested at a time. VCC = minimum.
- 2. Not tested; for information only.
- 3. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f 1 MHz.
- 4. Typical standby current = 0.3 mA. All outputs unloaded. All inputs = VCC or GND.
- 5. VO, VIN = VCC or GND

2-10 Revision 3

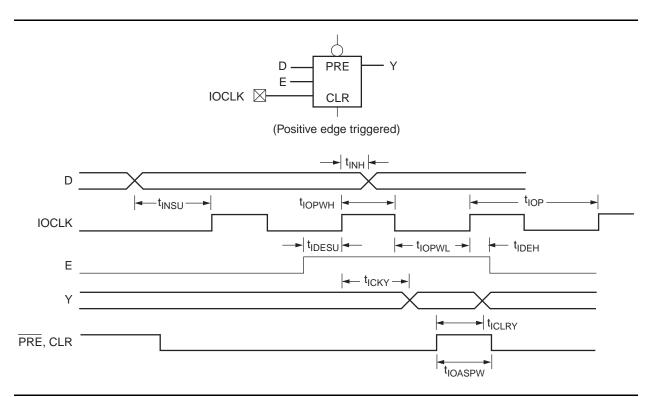


Figure 2-16 • I/O Module: Sequential Input Timing Characteristics

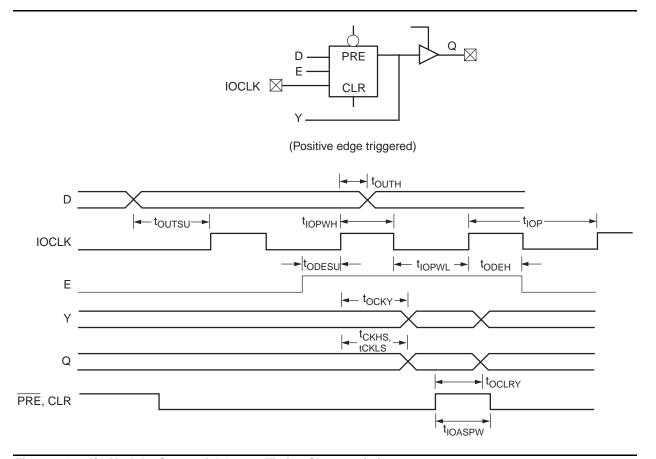


Figure 2-17 • I/O Module: Sequential Output Timing Characteristics

A1415A, A14V15A Timing Characteristics

Table 2-18 • A1415A, A14V15A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C¹

Logic N	Module Propagation Delays ²	-3 S	peed ³	-2 S _l	peed ³	-1 S	peed	Std. S	Speed	3.3 V	Speed ¹	Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴											•
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Module Sequential Timing											•
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _A	Flip-Flop Clock Input Period	4.0		5.0		6.8		8.0		10.0		ns
f _{MAX}	Flip-Flop Clock Frequency		250		200		150		125		100	MHz

Notes:

- 1. VCC = 3.0 V for 3.3 V specifications.
- 2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.
- 3. The -2 and -3 speed grades have been discontinued. Please refer to the Product Discontinuation Notices (PDNs) listed below:

PDN March 2001

PDN 0104

PDN 0203

PDN 0604

PDN 1004

4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

2-22 Revision 3

A1425A, A14V25A Timing Characteristics

Table 2-22 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C¹

Logic N	Module Propagation Delays ²	−3 S	peed ³	-2 S _l	peed ³	–1 S	peed	Std. S	Speed	3.3 V	Speed ¹	Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Module Sequential Timing											•
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _A	Flip-Flop Clock Input Period	4.0		5.0		6.8		8.0		10.0		ns
f _{MAX}	Flip-Flop Clock Frequency		250		200		150		125		100	MHz

Notes:

- 1. VCC = 3.0 V for 3.3 V specifications.
- 2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.
- 3. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
- 4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

2-26 Revision 3

A1460A, A14V60A Timing Characteristics

Table 2-30 • A1460A, A14V60A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C¹

Logic N	Module Propagation Delays ²	−3 S	peed ³	–2 Sp	eed ³	–1 S	peed	Std. S	peed	3.3 V	Speed ¹	Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Module Sequential Timing											
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _A	Flip-Flop Clock Input Period	5.0		6.8		8.0		10.0		13.4		ns
f _{MAX}	Flip-Flop Clock Frequency		200		150		125		100		75	MHz

Notes:

- 1. VCC = 3.0 V for 3.3 V specifications.
- 2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.
- 3. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
- 4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

2-34 Revision 3

Accelerator Series FPGAs – ACT 3 Family

SDO Serial Data Output (Output)

Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

DCLK Diagnostic Clock (Input)

Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

VCC 5 V Supply Voltage

HIGH supply voltage.

	PQ100	
Pin Number	A1415 Function	A1425 Function
2	IOCLK, I/O	IOCLK, I/O
14	CLKA, I/O	CLKA, I/O
15	CLKB, I/O	CLKB, I/O
16	VCC	VCC
17	GND	GND
18	VCC	VCC
19	GND	GND
20	PRA, I/O	PRA, I/O
27	DCLK, I/O	DCLK, I/O
28	GND	GND
29	SDI, I/O	SDI, I/O
34	MODE	MODE
35	VCC	VCC
36	GND	GND
47	GND	GND
48	VCC	VCC
61	PRB, I/O	PRB, I/O
62	GND	GND
63	VCC	VCC
64	GND	GND
65	VCC	VCC
67	HCLK, I/O	HCLK, I/O
77	SDO	SDO
78	IOPCL, I/O	IOPCL, I/O
79	GND	GND
85	VCC	VCC
86	VCC	VCC
87	GND	GND
96	VCC	VCC
97	GND	GND

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-4 Revision 3

	PQ160							
Pin Number	A1425, A14V25 Function	A1440, A14V40 Function	A1460, A14V60 Function					
92	NC	I/O	I/O					
93	NC	I/O	I/O					
98	GND	GND	GND					
99	VCC	VCC	VCC					
100	NC	I/O	I/O					
103	GND	GND	GND					
107	NC	I/O	I/O					
109	NC	I/O	I/O					
110	VCC	VCC	VCC					
111	GND	GND	GND					
112	VCC	VCC	VCC					
113	NC	I/O	I/O					
119	NC	I/O	I/O					
120	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O					
121	GND	GND	GND					
124	NC	I/O	I/O					
127	NC	I/O	I/O					
136	CLKA, I/O	CLKA, I/O	CLKA, I/O					
137	CLKB, I/O	CLKB, I/O	CLKB, I/O					
138	VCC	VCC	VCC					
139	GND	GND	GND					
140	VCC	VCC	VCC					
141	GND	GND	GND					
142	PRA, I/O	PRA, I/O	PRA, I/O					
143	NC	I/O	I/O					
145	NC	I/O	I/O					
147	NC	I/O	I/O					
149	NC	I/O	I/O					
151	NC	I/O	I/O					
153	NC	I/O	I/O					
154	VCC	VCC	VCC					
160	DCLK, I/O	DCLK, I/O	DCLK, I/O					

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

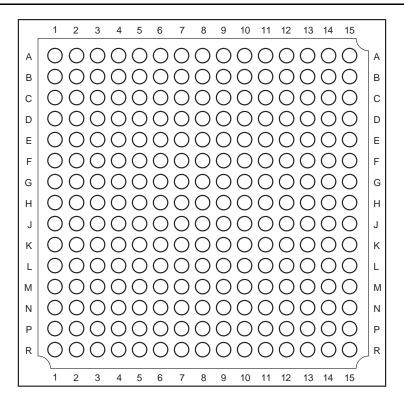
VQ100				
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function	
1	GND	GND	GND	
2	SDI, I/O	SDI, I/O	SDI, I/O	
7	MODE	MODE	MODE	
8	VCC	VCC	VCC	
9	GND	GND	GND	
20	VCC	VCC	VCC	
21	NC	I/O	I/O	
34	PRB, I/O	PRB, I/O	PRB, I/O	
35	VCC	VCC	VCC	
36	GND	GND	GND	
37	VCC	VCC	VCC	
39	HCLK, I/O	HCLK, I/O	HCLK, I/O	
49	SDO	SDO	SDO	
50	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O	
51	GND	GND	GND	
57	VCC	VCC	VCC	
58	VCC	VCC	VCC	
67	VCC	VCC	VCC	
68	GND	GND	GND	
69	GND	GND	GND	
74	NC	I/O	I/O	
75	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O	
87	CLKA, I/O	CLKA, I/O	CLKA, I/O	
88	CLKB, I/O	CLKB, I/O	CLKB, I/O	
89	VCC	VCC	VCC	
90	VCC	VCC	VCC	
91	GND	GND	GND	
92	PRA, I/O	PRA, I/O	PRA, I/O	
93	NC	I/O	I/O	
100	DCLK, I/O	DCLK, I/O	DCLK, I/O	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs – ACT 3 Family

CQ196			
Pin Number	A1460 Function		
1	GND		
2	SDI, I/O		
11	MODE		
12	VCC		
13	GND		
37	GND		
38	VCC		
39	VCC		
51	GND		
52	GND		
59	VCC		
64	GND		
77	HCLK, I/O		
79	PRB, I/O		
86	GND		
94	VCC		
98	GND		
99	SDO		
100	IOPCL, I/O		

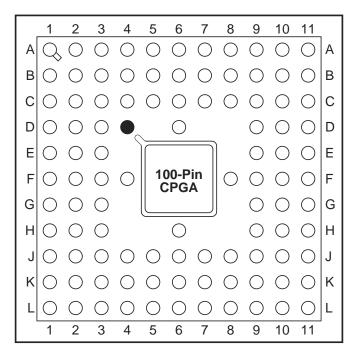

CQ196		
Pin Number	A1460 Function	
101	GND	
110	VCC	
111	VCC	
112	GND	
137	VCC	
138	GND	
139	GND	
140	VCC	
148	IOCLK, I/O	
149	GND	
155	VCC	
162	GND	
172	CLKA, I/O	
173	CLKB, I/O	
174	PRA, I/O	
183	GND	
189	VCC	
193	GND	
196	DCLK, I/O	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

BG225

Note: This is the top view.


Note

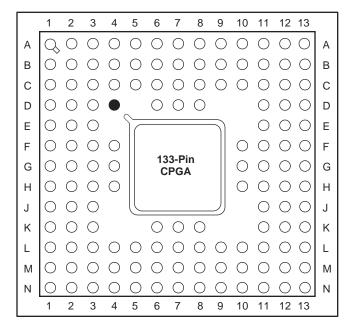
For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-20 Revision 3

PG100

Orientation Pin

Note: This is the top view.

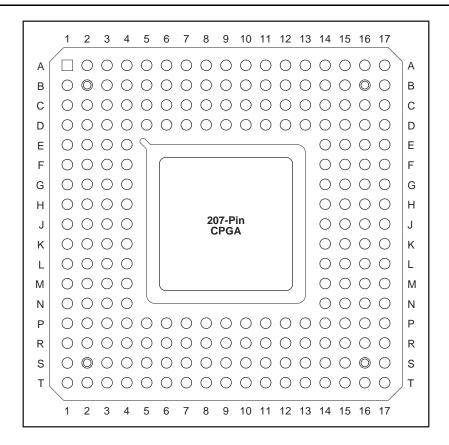

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-24 Revision 3

PG133

Note: This is the top view.


Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-26 Revision 3

PG207

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-30 Revision 3

Accelerator Series FPGAs – ACT 3 Family

PG207		
A1460 Function	Location	
CLKA or I/O	K1	
CLKB or I/O	J3	
DCLK or I/O	E4	
GND	C14, D4, D5, D9, D14, J4, J14, P3, P4, P7, P9, P14, R15	
HCLK or I/O	J15	
IOCLK or I/O	P5	
IOPCL or I/O	N14	
MODE	D7	
NC	A1, A2, A16, A17, B1, B17, C1, C2, S1, S3, S17, T1, T2, T16, T17	
PRA or I/O	H1	
PRB or I/O	K16	
SDI or I/O	C3	
SDO	P15	
VCC	B2, B9, B16, D11, J2, J16, P12, S2, S9, S16, T5	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.