

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1377
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	228
Number of Gates	10000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Through Hole
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	257-BCPGA
Supplier Device Package	257-CPGA (50x50)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a14100a-pg257c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Plan

	Speed Grade ¹				Applic	ation ¹		
Device/Package	Std.	-1	-2	-3	С	I	М	В
A1415A Device	•	•		•	•	•	•	•
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	✓	D	D	✓	1	1	_
100-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	✓	✓	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	✓	D	D	✓	1	✓	-
100-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	_	_	-
A14V15A Device								
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	-	_	_	✓	_	-	_
100-Pin Very Thin Quad Flatpack (VQFP)	✓	-	-	_	✓	-	-	_
A1425A Device							•	•
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	✓	D	D	✓	1		
100-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	1	-	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	✓	✓	-	_
132-Pin Ceramic Quad Flatpack (CQFP)	✓	✓	-	_	✓	-	✓	1
133-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	_	D	D
160-Pin Plastic Quad Flatpack (PQFP)	✓	✓	D	D	✓	1	-	_
A14V25A Device								
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	-	_	_	✓	_	_	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	-	-	_	✓	-	-	-
160-Pin Plastic Quad Flatpack (PQFP)	1	-	_	_	✓	-	-	-
A1440A Device		.•						
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	✓	D	D	✓	1	_	_
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	✓	✓	-	-
160-Pin Plastic Quad Flatpack (PQFP)	1	1	D	D	✓	✓	-	-
175-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	-	-
176-Pin Thin Quad Flatpack (TQFP)	✓	✓	D	D	✓	1	-	-

Notes:

1. Applications: C = Commercial I = Industrial M = Military

2. Commercial only

Availability: ✓ = Available P = Planned-= Not planned D = Discontinued

Speed Grade:

-1 = Approx. 15% faster than Std.

-2 = Approx. 25% faster than Std.

-3 = Approx. 35% faster than Std.

(-2 and -3 speed grades have been discontinued.)

Revision 3 Ш

Accelerator Series FPGAs - ACT 3 Family

	Speed Grade ¹				Applic	cation ¹		
Device/Package	Std.	-1	-2	-3	С	I	М	В
A14V40A Device	•	•	•	•	•	•		
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	-	_	_	✓	_	_	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	_	_	_	✓	_	_	_
160-Pin Plastic Quad Flatpack (PQFP)	/	_	_	_	1	-	-	_
176-Pin Thin Quad Flatpack (TQFP)	1	_	_	_	1	_	-	_
A1460A Device								
160-Pin Plastic Quad Flatpack (PQFP)	√	✓	D	D	✓	✓	_	_
176-Pin Thin Quad Flatpack (TQFP)	✓	1	D	D	1	1	-	-
196-Pin Ceramic Quad Flatpack (CQFP)	1	1	_	-	1	_	1	✓
207-Pin Ceramic Pin Grid Array (CPGA)	✓	1	D	D	1	-	1	✓
208-Pin Plastic Quad Flatpack (PQFP)	✓	1	D	D	1	1	-	-
225-Pin Plastic Ball Grid Array (BGA)	D	D	D	D	D	-	-	-
A14V60A Device	•	•	•	•	•	•	•	
160-Pin Plastic Quad Flatpack (PQFP)	✓	_	_	_	1	_	-	_
176-Pin Thin Quad Flatpack (TQFP)	✓	_	_	-	1	-	-	_
208-Pin Plastic Quad Flatpack (PQFP)	✓	-	_	-	1	-	-	-
A14100A Device								
208-Pin Power Quad Flatpack (RQFP)	✓	1	D	D	1	✓	-	-
257-Pin Ceramic Pin Grid Array (CPGA)	✓	1	D	D	1	-	1	✓
313-Pin Plastic Ball Grid Array (BGA)	✓	1	D	D	1	-	-	_
256-Pin Ceramic Quad Flatpack (CQFP)	✓	✓	-	_	✓	_	1	✓
A14V100A Device	•		-			•	-	•
208-Pin Power Quad Flatpack (RQFP)	✓	-	_	-	✓	_	-	_
313-Pin Plastic Ball Grid Array (BGA)	1	-	_	_	1	_	_	_

Notes:

1. Applications: C = CommercialI = Industrial
M = Military
Commercial only

Availability: ✓ = Available P = Planned -= Not planned D = Discontinued Speed Grade:

-1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std. -3 = Approx. 35% faster than Std. (-2 and -3 speed grades have been discontinued.)

١٧ Revision 3

2 - Detailed Specifications

This section of the datasheet is meant to familiarize the user with the architecture of the ACT 3 family of FPGA devices. A generic description of the family will be presented first, followed by a detailed description of the logic blocks, the routing structure, the antifuses, and the special function circuits. The on-chip circuitry required to program the devices is not covered.

Topology

The ACT 3 family architecture is composed of six key elements: Logic modules, I/O modules, I/O Pad Drivers, Routing Tracks, Clock Networks, and Programming and Test Circuits. The basic structure is similar for all devices in the family, differing only in the number of rows, columns, and I/Os. The array itself consists of alternating rows of modules and channels. The logic modules and channels are in the center of the array; the I/O modules are located along the array periphery. A simplified floor plan is depicted in Figure 2-1.

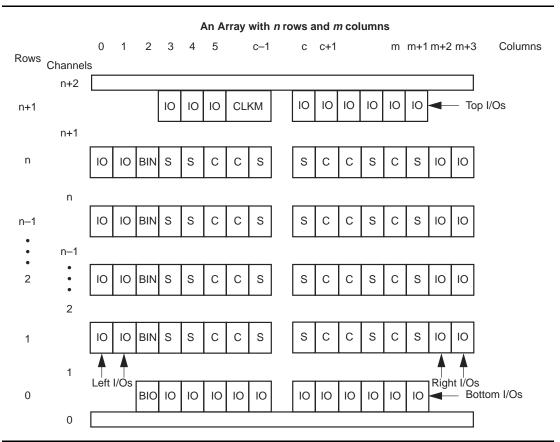



Figure 2-1 • Generalized Floor Plan of ACT 3 Device

ACT 3 Timing Model

Note: Values shown for A1425A -1 speed grade device.

Figure 2-10 • Timing Model

2-16 Revision 3

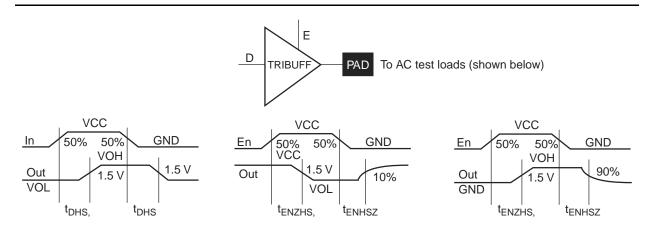


Figure 2-11 • Output Buffers

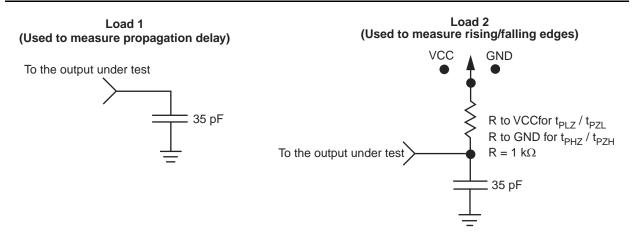


Figure 2-12 • AC Test Loads

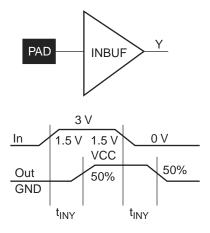


Figure 2-13 • Input Buffer Delays

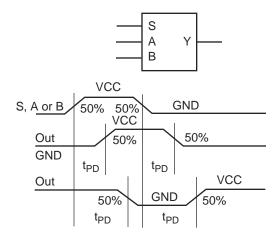


Figure 2-14 • Module Delays

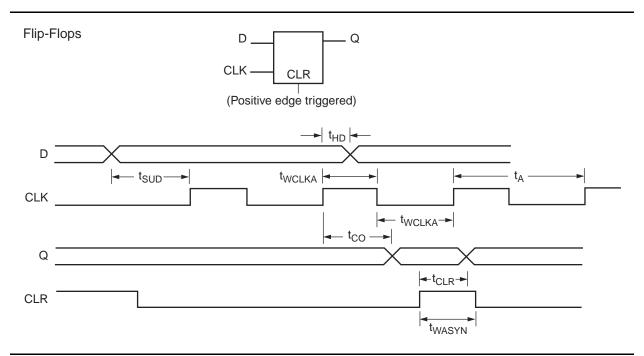


Figure 2-15 • Sequential Module Timing Characteristics

2-18 Revision 3

Tightest Delay Distributions

Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases.

From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer lengths of routing track. The ACT 3 family delivers the tightest fanout delay distribution of any FPGA. This tight distribution is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path.

Microsemi's patented PLICE antifuse offers a very low resistive/capacitive interconnect. The ACT 3 family's antifuses, fabricated in 0.8 micron m lithography, offer nominal levels of 200Ω resistance and 6 femtofarad (fF) capacitance per antifuse. The ACT 3 fanout distribution is also tighter than alternative devices due to the low number of antifuses required per interconnect path. The ACT 3 family's proprietary architecture limits the number of antifuses per path to only four, with 90% of interconnects using only two antifuses.

The ACT 3 family's tight fanout delay distribution offers an FPGA design environment in which fanout can be traded for the increased performance of reduced logic level designs. This also simplifies performance estimates when designing with ACT 3 devices.

Speed Grade	FO = 1	FO = 2	FO = 3	FO = 4	FO = 8		
ACT 3 –3	2.9	3.2	3.4	3.7	4.8		
ACT 3 –2	3.3	3.7	3.9	4.2	5.5		
ACT 3 –1	3.7	4.2	4.4	4.8	6.2		
ACT 3 STD	4.3	4.8	5.1	5.5	7.2		

Table 2-14 • Logic Module and Routing Delay by Fanout (ns); Worst-Case Commercial Conditions

Notes:

- Obtained by added t_{RD(X=FO)} to t_{PD} from the Logic Module Timing Characteristics Tables found in this datasheet.
- 2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

Timing Characteristics

Timing characteristics for ACT 3 devices fall into three categories: family dependent, device dependent, and design dependent. The input and output buffer characteristics are common to all ACT 3 family members. Internal routing delays are device dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the ALS Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections. This increases capacitance and resistance, result ng in longer net delays for macros connected to long tracks. Typically up to 6% of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 14 ns delay. This additional delay is represented statistically in higher fanout (FO=8) routing delays in the datasheet specifications section.

2-20 Revision 3

Detailed Specifications

A1425A, A14V25A Timing Characteristics (continued)

Table 2-24 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Module – TTL Output Timing ¹		-3 S _I	peed ²	-2 Sp	peed ²	-1 S	peed	Std.	Speed	Speed 3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		7.5		7.5		9.0		10.0		13.0	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d_{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d_{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d_{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹	•	•			•		•				
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.7		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.7		7.5		9.0		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.9		8.9		10.7		11.8		15.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d_{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d_{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

2-28 Revision 3

^{1.} Delays based on 35 pF loading.

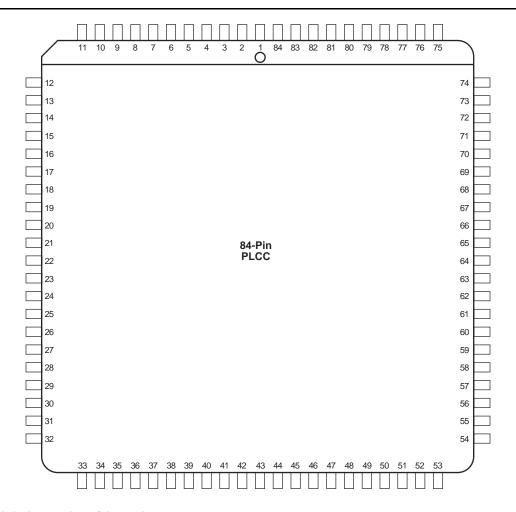
^{2.} The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1460A, A14V60A Timing Characteristics (continued)

Table 2-31 • A1460A, A14V60A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	I/O Module Input Propagation Delays		peed ¹	-2 Sp	peed ¹	-1 S	peed	Std.	Speed	3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²		•			•						
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	dule Sequential Timing (wrt IOCLK	pad)										
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	1.3		1.5		1.8		2.0		2.0		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns
Motoo:												

Notes:


^{5.} The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

^{6.} Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3 – Package Pin Assignments

PL84

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Package Pin Assignments

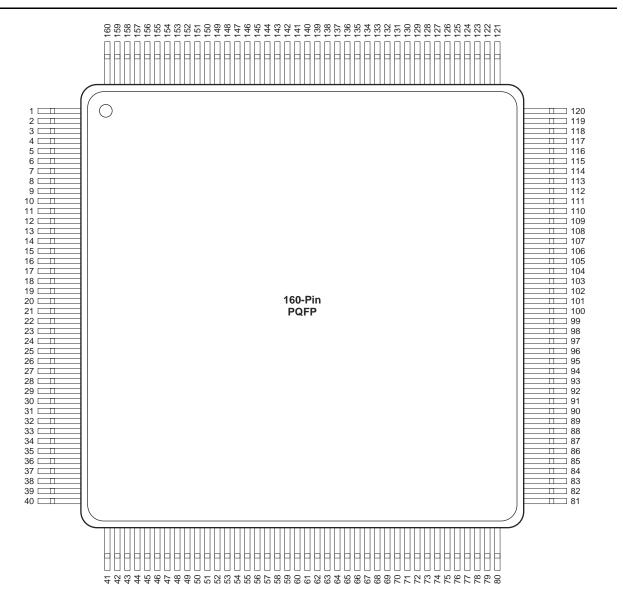
	PL84							
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function					
1	VCC	VCC	VCC					
2	GND	GND	GND					
3	VCC	VCC	VCC					
4	PRA, I/O	PRA, I/O	PRA, I/O					
11	DCLK, I/O	DCLK, I/O	DCLK, I/O					
12	SDI, I/O	SDI, I/O	SDI, I/O					
16	MODE	MODE	MODE					
27	GND	GND	GND					
28	VCC	VCC	VCC					
40	PRB, I/O	PRB, I/O	PRB, I/O					
41	VCC	VCC	VCC					
42	GND	GND	GND					
43	VCC	VCC	VCC					
45	HCLK, I/O	HCLK, I/O	HCLK, I/O					
52	SDO	SDO	SDO					
53	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O					
59	VCC	VCC	VCC					
60	VCC	VCC	VCC					
61	GND	GND	GND					
68	VCC	VCC	VCC					
69	GND	GND	GND					
74	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O					
83	CLKA, I/O	CLKA, I/O	CLKA, I/O					
84	CLKB, I/O	CLKB, I/O	CLKB, I/O					

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-2 Revision 3

Package Pin Assignments


	PQ100	
Pin Number	A1415 Function	A1425 Function
2	IOCLK, I/O	IOCLK, I/O
14	CLKA, I/O	CLKA, I/O
15	CLKB, I/O	CLKB, I/O
16	VCC	VCC
17	GND	GND
18	VCC	VCC
19	GND	GND
20	PRA, I/O	PRA, I/O
27	DCLK, I/O	DCLK, I/O
28	GND	GND
29	SDI, I/O	SDI, I/O
34	MODE	MODE
35	VCC	VCC
36	GND	GND
47	GND	GND
48	VCC	VCC
61	PRB, I/O	PRB, I/O
62	GND	GND
63	VCC	VCC
64	GND	GND
65	VCC	VCC
67	HCLK, I/O	HCLK, I/O
77	SDO	SDO
78	IOPCL, I/O	IOPCL, I/O
79	GND	GND
85	VCC	VCC
86	VCC	VCC
87	GND	GND
96	VCC	VCC
97	GND	GND

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-4 Revision 3

PQ160

Note: This is the top view of the package

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

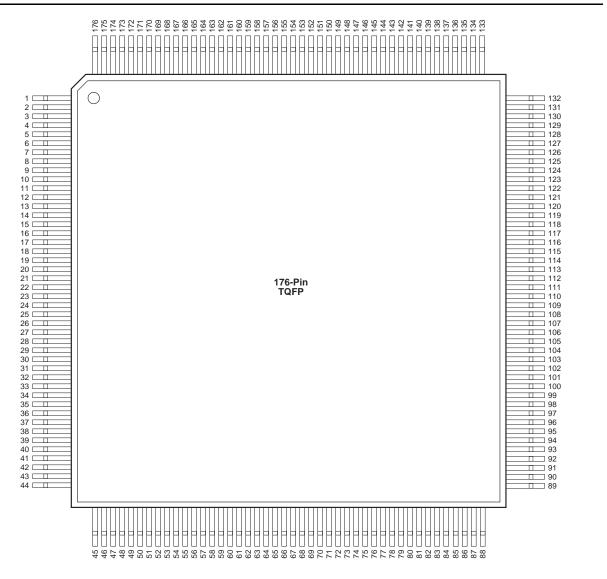
Package Pin Assignments

		PQ160	
Pin Number	A1425, A14V25 Function	A1440, A14V40 Function	A1460, A14V60 Function
1	GND	GND	GND
2	SDI, I/O	SDI, I/O	SDI, I/O
5	NC	I/O	I/O
9	MODE	MODE	MODE
10	VCC	VCC	VCC
14	NC	I/O	I/O
15	GND	GND	GND
18	VCC	VCC	VCC
19	GND	GND	GND
20	NC	I/O	I/O
24	NC	I/O	I/O
27	NC	I/O	I/O
28	VCC	VCC	VCC
29	VCC	VCC	VCC
40	GND	GND	GND
41	NC	I/O	I/O
43	NC	I/O	I/O
45	NC	I/O	I/O
46	VCC	VCC	VCC
47	NC	I/O	I/O
49	NC	I/O	I/O
51	NC	I/O	I/O
53	NC	I/O	I/O
58	PRB, I/O	PRB, I/O	PRB, I/O
59	GND	GND	GND
60	VCC	VCC	VCC
62	HCLK, I/O	HCLK, I/O	HCLK, I/O
63	GND	GND	GND
74	NC	I/O	I/O
75	VCC	VCC	VCC
76	NC	I/O	I/O
77	NC	I/O	I/O
78	NC	I/O	I/O
79	SDO	SDO	SDO
80	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O
81	GND	GND	GND
90	VCC	VCC	VCC
91	VCC	VCC	VCC

3-6 Revision 3

PQ208, RQ208						
Pin Number	A1460, A14V60 Function	A14100, A14V100 Function				
1	GND	GND				
2	SDI, I/O	SDI, I/O				
11	MODE	MODE				
12	VCC	VCC				
25	VCC	VCC				
26	GND	GND				
27	VCC	VCC				
28	GND	GND				
40	VCC	VCC				
41	VCC	VCC				
52	GND	GND				
53	NC	I/O				
60	VCC	VCC				
65	NC	I/O				
76	PRB, I/O	PRB, I/O				
77	GND	GND				
78	VCC	VCC				
79	GND	GND				
80	VCC	VCC				
82	HCLK, I/O	HCLK, I/O				
98	VCC	VCC				
102	NC	I/O				
103	SDO	SDO				
104	IOPCL, I/O	IOPCL, I/O				
105	GND	GND				
114	VCC	VCC				

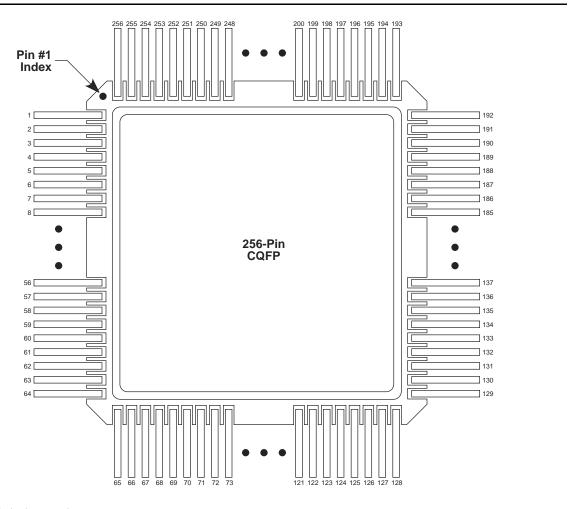
	PQ208, RQ208						
Pin Number	A1460, A14V60 Function	A14100, A14V100 Function					
115	VCC	VCC					
116	NC	I/O					
129	GND	GND					
130	VCC	VCC					
131	GND	GND					
132	VCC	VCC					
145	VCC	VCC					
146	GND	GND					
147	NC	I/O					
148	VCC	VCC					
156	IOCLK, I/O	IOCLK, I/O					
157	GND	GND					
158	NC	I/O					
164	VCC	VCC					
180	CLKA, I/O	CLKA, I/O					
181	CLKB, I/O	CLKB, I/O					
182	VCC	VCC					
183	GND	GND					
184	VCC	VCC					
185	GND	GND					
186	PRA, I/O	PRA, I/O					
195	NC	I/O					
201	VCC	VCC					
205	NC	I/O					
208	DCLK, I/O	DCLK, I/O					


Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

TQ176


Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-10 Revision 3

CQ256

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-18 Revision 3

Accelerator Series FPGAs – ACT 3 Family

	CQ256
Pin Number	A14100 Function
1	GND
2	SDI, I/O
11	MODE
28	VCC
29	GND
30	VCC
31	GND
46	VCC
59	GND
90	PRB, I/O
91	GND
92	VCC
93	GND
94	VCC
96	HCLK, I/O
110	GND
126	SDO
127	IOPCL, I/O
128	GND

CQ256	
Pin Number	A14100 Function
141	VCC
158	GND
159	VCC
160	GND
161	VCC
174	VCC
175	GND
176	GND
188	IOCLK, I/O
189	GND
219	CLKA, I/O
220	CLKB, I/O
221	VCC
222	GND
223	VCC
224	GND
225	PRA, I/O
240	GND
256	DCLK, I/O

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs – ACT 3 Family

BG225	
A1460 Function	Location
CLKA or I/O	C8
CLKB or I/O	B8
DCLK or I/O	B2
GND	A1, A15, D15, F8, G7, G8, G9, H6, H7, H8, H9, H10, J7, J8, J9, K8, P2, R15
HCLK or I/O	P9
IOCLK or I/O	B14
IOPCL or I/O	P14
MODE	D1
NC	A11, B5, B7, D8, D12, F6, F11, H1, H12, H14, K11, L1, L13, N8, P5, R1, R8, R11, R14
PRA or I/O	A7
PRB or I/O	L7
SDI or I/O	D4
SDO	N13
VCC	A8, B12, D5, D14, E3, E8, E13, H2, H3, H11, H15, K4, L2, L12, M8, M15, P4, P8, R13

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The BG225 package has been discontinued.

Accelerator Series FPGAs – ACT 3 Family

PG175	
A1440 Function	Location
CLKA or I/O	C9
CLKB or I/O	A9
DCLK or I/O	D5
GND	D4, D8, D11, D12, E4, E14, H4, H12, L4, L12, M4, M8, M12
HCLK or I/O	R8
IOCLK or I/O	E12
IOPCL or I/O	P13
MODE	F3
NC	A1, A2, A15, B2, B3, P2, P14, R1, R2, R14, R15
PRA or I/O	B8
PRB or I/O	R7
SDI or I/O	D3
SDO	N12
VCC	C3, C8, C13, E15, H3, H13, L1, L14, N3, N8, N13

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG175 package has been discontinued.