

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	1377
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	228
Number of Gates	10000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Through Hole
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	257-BCPGA
Supplier Device Package	257-CPGA (50x50)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a14100a-pg257m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Plan

		Speed	Grade ¹	Application ¹					
Device/Package	Std.	-1	-2	-3	С	I	М	В	
A1415A Device		1		1			•		
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	1	D	D	✓	1	1	-	
100-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	1	1	-	
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	1	1	1	-	
100-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	-	-	
A14V15A Device							•		
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	-	-	—	✓	-	-	-	
100-Pin Very Thin Quad Flatpack (VQFP)	1	-	-	-	1	-	-	-	
A1425A Device	•	I		1			1		
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	✓	D	D	✓	1			
100-Pin Plastic Quad Flatpack (PQFP)	1	1	D	D	1	✓	-	-	
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	1	1	-	-	
132-Pin Ceramic Quad Flatpack (CQFP)	1	1	-	-	1	-	1	1	
133-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	_	D	D	
160-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	~	-	-	
A14V25A Device	•		•			•			
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	-	-	—	✓	-	-	-	
100-Pin Very Thin Quad Flatpack (VQFP)	1	-	-	-	1	-	-	-	
160-Pin Plastic Quad Flatpack (PQFP)	1	-	-	-	1	-	-	-	
A1440A Device		1	L	1	J		1		
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	1	D	D	1	1	-	-	
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	✓	✓	-	-	
160-Pin Plastic Quad Flatpack (PQFP)	 ✓ 	1	D	D	1	1	-	-	
175-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	-	-	
176-Pin Thin Quad Flatpack (TQFP)	1	1	D	D	1	1	-	_	

Notes:

 Applications:
 C = Commercial
 I = Industrial M = Military

Availability: $\checkmark = Available$ P = Planned

- = Not plannedD = Discontinued

Speed Grade: -1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std. -3 = Approx. 35% faster than Std. (-2 and -3 speed grades have been discontinued.)

Plastic Device Resources

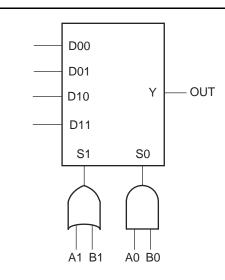
Device	Logic		User I/Os								
Series	Modules	Gates	PL84	PQ100	PQ160	PQ/RQ208	VQ100	TQ176	BG225*	BG313	
A1415	200	1500	70	80	-	-	80	-	-	-	
A1425	310	2500	70	80	100	-	83	-	-	-	
A1440	564	4000	70	-	131	-	83	140	-	-	
A1460	848	6000	-	-	131	167	167 –		168	-	
A14100	1377	10000	-	-	-	175	-	-	-	228	

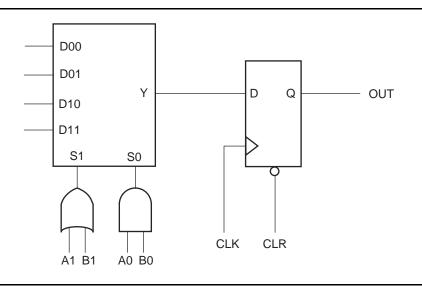
Note: *Discontinued

Hermetic Device Resources

Device	Logic		User I/Os											
Series	Modules	Gates	PG100*	PG133*	PG175*	PG207	PG257	CQ132	CQ196	CQ256				
A1415	200	1500	80	-	-	-	-	-	-	-				
A1425	310	2500	-	100	-	-	-	100	-	-				
A1440	564	4000	-	-	140	-	-	-	-	-				
A1460	848	6000	-	-	-	168	-	-	168	-				
A14100	1377	10000	-	-	-	-	228	-	-	228				

Note: *Discontinued


Contact your local Microsemi SoC Products Group (formerly Actel) representative for device availability: http://www.microsemi.com/soc/contact/default.aspx.


Detailed Specifications

Logic Modules

ACT 3 logic modules are enhanced versions of the 1200XL family logic modules. As in the 1200XL family, there are two types of modules: C-modules and S-modules (Figure 2-2 and Figure 2-3). The C-module is functionally equivalent to the 1200XL C-module and implements high fanin combinatorial macros, such as 5-input AND, 5-input OR, and so on. It is available for use as the CM8 hard macro. The S-module is designed to implement high-speed sequential functions within a single module.

Figure 2-3 • S-Module Diagram

S-modules consist of a full C-module driving a flip-flop, which allows an additional level of logic to be implemented without additional propagation delay. It is available for use as the DFM8A/B and DLM8A/B hard macros. C-modules and S-modules are arranged in pairs called module-pairs. Module-pairs are arranged in alternating patterns and make up the bulk of the array. This arrangement allows the placement software to support two-module macros of four types (CC, CS, SC, and SS). The C-module implements the following function:

EQ 1

where: S0 = A0 * B0 and S1 = A1 + B1

Horizontal Routing

Horizontal channels are located between the rows of modules and are composed of several routing tracks. The horizontal routing tracks within the channel are divided into one or more segments. The minimum horizontal segment length is the width of a module-pair, and the maximum horizontal segment length is the full length of the channel. Any segment that spans more than one-third the row length is considered a long horizontal segment. A typical channel is shown in Figure 2-7. Undedicated horizontal routing tracks are used to route signal nets. Dedicated routing tracks are used for the global clock networks and for power and ground tie-off tracks.

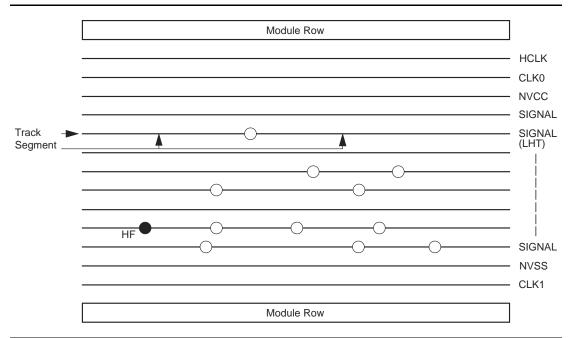


Figure 2-7 • Horizontal Routing Tracks and Segments

Vertical Routing

Other tracks run vertically through the modules. Vertical tracks are of three types: input, output, and long. Vertical tracks are also divided into one or more segments. Each segment in an input track is dedicated to the input of a particular module. Each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing. Each output segment spans four channels (two above and two below), except near the top and bottom of the array where edge effects occur. LVTs contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 2-8.

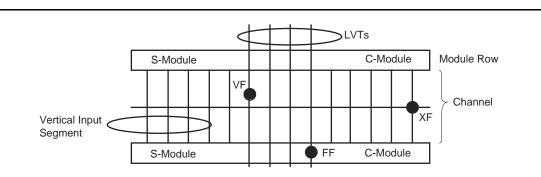


Figure 2-8 • Vertical Routing Tracks and Segments

Accelerator Series FPGAs – ACT 3 Family

Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used over a wide range of operating conditions. Equivalent capacitance values are shown in Figure 2-10.

Item	CEQ Value
Modules (C _{EQM})	6.7
Input Buffers (C _{EQI})	7.2
Output Buffers (C _{EQO})	10.4
Routed Array Clock Buffer Loads (C _{EQCR})	1.6
Dedicated Clock Buffer Loads (C _{EQCD})	0.7
I/O Clock Buffer Loads (C _{EQCI)}	0.9

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 5 shows a piece-wise linear summation over all components.

Power =VCC² * [(m * C_{EQM} * f_m)_{modules} + (n * C_{EQI} * f_n) inputs

+ ($p * (C_{EQO} + C_L) * f_p$)outputs

+ 0.5 * (q1 * C_{EQCR} * f_{q1})_{routed_Clk1} + (r1 * fq1)_{routed_Clk1}

+ 0.5 * (q2 * C_{EQCR} * fq2)_{routed_Clk2}

+ $(r_2 * f_{q2})_{routed_Clk2}$ + 0.5 * $(s_1 * C_{EQCD} * f_{s1})_{dedicated_Clk}$

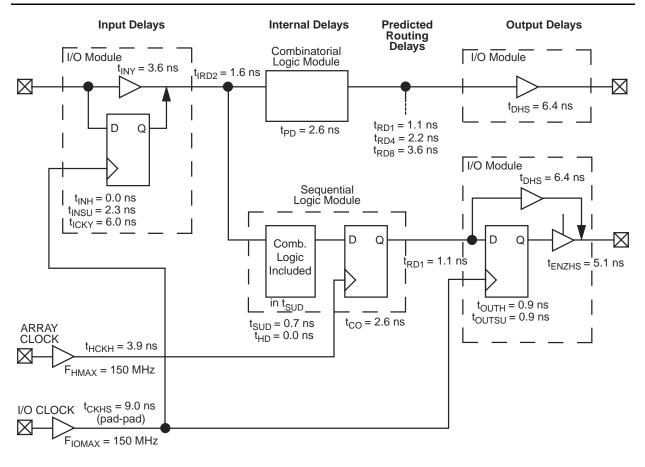
+ (s₂ * C_{EQCI} * f_{s2})_{IO_CIk}]

Where: m = Number of logic modules switching at fm n = Number of input buffers switching at fn p = Number of output buffers switching at f_p q1 = Number of clock loads on the first routed array clock q2 = Number of clock loads on the second routed array clock r_1 = Fixed capacitance due to first routed array clock r₂ = Fixed capacitance due to second routed array clock s₁ = Fixed number of clock loads on the dedicated array clock s2 = Fixed number of clock loads on the dedicated I/O clock C_{FOM} = Equivalent capacitance of logic modules in pF C_{EQI} = Equivalent capacitance of input buffers in pF C_{EOO} = Equivalent capacitance of output buffers in pF C_{EOCR} = Equivalent capacitance of routed array clock in pF C_{EQCD} = Equivalent capacitance of dedicated array clock in pF C_{EOCI} = Equivalent capacitance of dedicated I/O clock in pF C₁ = Output lead capacitance in pF f_m = Average logic module switching rate in MHz fn = Average input buffer switching rate in MHz f_p = Average output buffer switching rate in MHz f_{q1} = Average first routed array clock rate in MHz $f_{\alpha 2}$ = Average second routed array clock rate in MHz f_{s1} = Average dedicated array clock rate in MHz f_{s2} = Average dedicated I/O clock rate in MHz

EQ 5

Determining Average Switching Frequency

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are as follows:


Table 2-13 • Guidelines	for Predicting	Power Dissipation
	, ioi i ioaioaing	i enter Bioorpatient

Data	Value
Logic Modules (m)	80% of modules
Inputs switching (n)	# inputs/4
Outputs switching (p)	# output/4
First routed array clock loads (q1)	40% of sequential modules
Second routed array clock loads (q2)	40% of sequential modules
Load capacitance (CL)	35 pF
Average logic module switching rate (fm)	F/10
Average input switching rate (fn)	F/5
Average output switching rate (fp)	F/10
Average first routed array clock rate (fq1)	F/2
Average second routed array clock rate (fq2)	F/2
Average dedicated array clock rate (fs1)	F
Average dedicated I/O clock rate (fs2)	F

Detailed Specifications

ACT 3 Timing Model

Note: Values shown for A1425A –1 speed grade device.

Figure 2-10 • Timing Model

A1440A, A14V40A Timing Characteristics (continued)

Table 2-29 • A1440A.	A14V40A Worst-Case	Commercial Conditions.	VCC = 4.75 V, T _J = 70°C
	//////////////////////////////////////	•••••••••••••••••••••••••••••••••••••••	

Dedicated (hardwired) I/O Clock Network			-3 Speed ¹		–2 Speed ¹		peed	Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.0		2.3		2.6		3.0		3.5	ns
t _{IOPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{IPOWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	1.9		2.4		3.3		3.8		4.8		ns
t _{IOCKSW}	Maximum Skew		0.4		0.4		0.4		0.4		0.4	ns
t _{IOP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{IOMAX}	Maximum Frequency		250		200		150		125		100	MHz
Dedicate	d (hardwired) Array Clock	•						•	-			
^t нскн	Input Low to High (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{HPWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.3		0.3		0.3		0.3		0.3	ns
t _{HP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{HMAX}	Maximum Frequency		250		200		150		125		100	MHz
Routed A	rray Clock Networks	•						•	-			
t _{RCKH}	Input Low to High (FO = 64)		3.7		4.1		4.7		5.5		9.0	ns
t _{RCKL}	Input High to Low (FO = 64)		4.0		4.5		5.1		6.0		9.0	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RCKSW}	Maximum Skew (FO = 128)		0.7		0.8		0.9		1.0		1.0	ns
t _{RP}	Minimum Period (FO = 64)	6.8		8.0		8.7		10.0		13.4		ns
f _{RMAX}	Maximum Frequency (FO = 64)		150		125		115		100		75	MHz
Clock-to-	Clock Skews	•						•	-			
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	1.7	0.0	1.8	0.0	2.0	0.0	2.2	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 144)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	3.0 3.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 144)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes:

1. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

2. Delays based on 35 pF loading.

Detailed Specifications

A1460A, A14V60A Timing Characteristics

Table 2-30 • A1460A, A14V60A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C¹

Logic Module Propagation Delays ²			-3 Speed ³		beed ³	-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Nodule Sequential Timing											
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _A	Flip-Flop Clock Input Period	5.0		6.8		8.0		10.0		13.4		ns
f _{MAX}	Flip-Flop Clock Frequency		200		150		125		100		75	MHz

Notes:

1. VCC = 3.0 V for 3.3 V specifications.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A1460A, A14V60A Timing Characteristics (continued)

I/O Mod	I/O Module Input Propagation Delays		beed ¹	-2 Sp	beed ¹	–1 S	-1 Speed Std. S			Speed 3.3 V Speed ¹		
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	lule Sequential Timing (wrt IOCLK	pad)										
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	1.3		1.5		1.8		2.0		2.0		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns

Notes:

5. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

6. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A1460A, A14V60A Timing Characteristics (continued)

Dedicate	d (hardwired) I/O Clock Network	-3 Speed ¹		–2 Speed ¹		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.3		2.6		3.0		3.5		4.5	ns
t _{IOPWH}	Minimum Pulse Width High	2.4		3.2		3.8		4.8		6.5		ns
t _{IPOWL}	Minimum Pulse Width Low	2.4		3.2		3.8		4.8		6.5		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _{IOCKSW}	Maximum Skew		0.6		0.6		0.6		0.6		0.6	ns
t _{IOP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{IOMAX}	Maximum Frequency		200		150		125		100		75	MHz
Dedicate	d (hardwired) Array Clock					-						
t _{HCKH}	Input Low to High (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HPWH}	Minimum Pulse Width High	2.4		3.2		3.8		4.8		6.5		ns
t _{HPWL}	Minimum Pulse Width Low	2.4		3.2		3.8		4.8		6.5		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.6		0.6		0.6		0.6		0.6	ns
t _{HP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{HMAX}	Maximum Frequency		200		150		125		100		75	MHz
Routed A	rray Clock Networks											
t _{RCKH}	Input Low to High (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RCKL}	Input High to Low (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RCKSW}	Maximum Skew (FO = 128)		1.2		1.4		1.6		1.8		1.8	ns
t _{RP}	Minimum Period (FO = 64)	8.3		9.3		11.1		12.5		16.7		ns
f _{RMAX}	Maximum Frequency (FO = 64)		120		105		90		80		60	MHz
Clock-to-	Clock Skews											
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	2.6	0.0	2.7	0.0	2.9	0.0	3.0	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 216)	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	5.0 5.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 216)	0.0 0.0	1.3 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes:

1. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

2. Delays based on 35 pF loading.

Detailed Specifications

A14100A, A14V100A Timing Characteristics (continued)

Table 2-36 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Module – TTL Output Timing ¹		–3 Sj	beed ²	–2 Speed ²		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.5		9.5		10.5		12.0		15.6	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		12.8		12.8		15.3		17.0		22.1	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Moc	ule – CMOS Output Timing ¹				•							
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.0		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		10.4		10.4		12.4		13.8		17.9	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		14.5		14.5		17.4		19.3		25.1	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A14100A, A14V100A Timing Characteristics (continued)

Table 2-37 • A14100A, A14V100A Worst-Case Commercial Condition	ons, VCC = 4.75 V, T _J = 70°C
--	--

Dedicated (hardwired) I/O Clock Network		-3 Speed ¹		–2 Speed ¹		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.3		2.6		3.0		3.5		4.5	ns
t _{IOPWH}	Minimum Pulse Width High	2.4		3.3		3.8		4.8		6.5		ns
t _{IPOWL}	Minimum Pulse Width Low	2.4		3.3		3.8		4.8		6.5		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	2.4		3.3		3.8		4.8		6.5		ns
t _{IOCKSW}	Maximum Skew		0.6		0.6		0.7		0.8		0.6	ns
t _{IOP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{IOMAX}	Maximum Frequency		200		150		125		100		75	MHz
Dedicated	d (hardwired) Array Clock									-	-	
t _{HCKH}	Input Low to High (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HPWH}	Minimum Pulse Width High	2.4		3.3		3.8		4.8		6.5		ns
t _{HPWL}	Minimum Pulse Width Low	2.4		3.3		3.8		4.8		6.5		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.6		0.6		0.7		0.8		0.6	ns
t _{HP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{HMAX}	Maximum Frequency		200		150		125		100		75	MHz
Routed A	rray Clock Networks									-	-	
t _{RCKH}	Input Low to High (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RCKL}	Input High to Low (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RCKSW}	Maximum Skew (FO = 128)		1.2		1.4		1.6		1.8		1.8	ns
t _{RP}	Minimum Period (FO = 64)	8.3		9.3		11.1		12.5		16.7		ns
f _{RMAX}	Maximum Frequency (FO = 64)		120		105		90		80		60	MHz
Clock-to-	Clock Skews											
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	2.6	0.0	2.7	0.0	2.9	0.0	3.0	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 350)	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	5.0 5.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 350)	0.0 0.0	1.3 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes: *

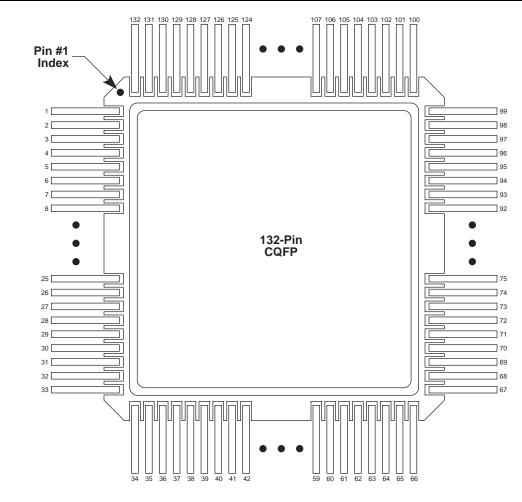
1. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

2. Delays based on 35 pF loading.

Microsemi

Accelerator Series FPGAs – ACT 3 Family

	TQ176		TQ176						
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function	Pin Number	A1440, A14V40 Function	A1460, A14V60 Function				
1	GND	GND	89	GND	GND				
2	SDI, I/O	SDI, I/O	98	VCC	VCC				
10	MODE	MODE	99	VCC	VCC				
11	VCC	VCC	108	GND	GND				
20	NC	I/O	109	VCC	VCC				
21	GND	GND	110	GND	GND				
22	VCC	VCC	119	NC	I/O				
23	GND	GND	121	NC	I/O				
32	VCC	VCC	122	VCC	VCC				
33	VCC	VCC	123	GND	GND				
44	GND	GND	124	VCC	VCC				
49	NC	I/O	132	IOCLK, I/O	IOCLK, I/O				
51	NC	I/O	133	GND	GND				
63	NC	I/O	138	NC	I/O				
64	PRB, I/O	PRB, I/O	152	CLKA, I/O	CLKA, I/O				
65	GND	GND	153	CLKB, I/O	CLKB, I/O				
66	VCC	VCC	154	VCC	VCC				
67	VCC	VCC	155	GND	GND				
69	HCLK, I/O	HCLK, I/O	156	VCC	VCC				
82	NC	I/O	157	PRA, I/O	PRA, I/O				
83	NC	I/O	158	NC	I/O				
87	SDO	SDO	170	NC	I/O				
88	IOPCL, I/O	IOPCL, I/O	176	DCLK, I/O	DCLK, I/O				

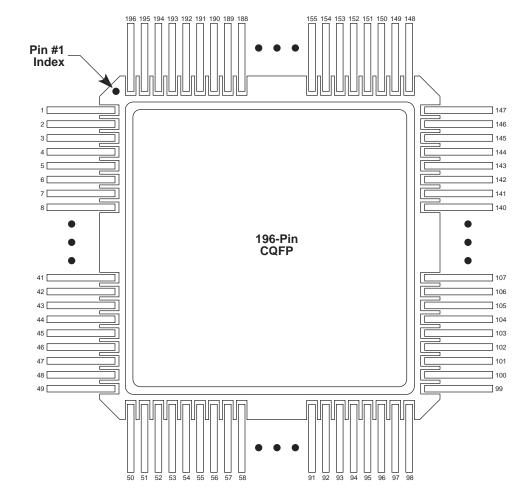

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

CQ132

Note: This is the top view


Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Package Pin Assignments

CQ196

Note: This is the top view.

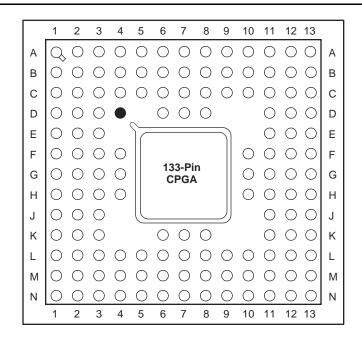
Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Microsemi

Accelerator Series FPGAs – ACT 3 Family

	PG100
A1415 Function	Location
CLKA or I/O	C7
CLKB or I/O	D6
DCLK or I/O	C4
GND	C3, C6, C9, E9, F3, F9, J3, J6, J8, J9
HCLK or I/O	H6
IOCLK or I/O	C10
IOPCL or I/O	К9
MODE	C2
PRA or I/O	A6
PRB or I/O	L3
SDI or I/O	B3
SDO	L9
VCC	B6, B10, E11, F2, F10, G2, K2, K6, K10


Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG100 package has been discontinued.

Package Pin Assignments

PG133

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Microsemi

Accelerator Series FPGAs – ACT 3 Family

	PG175					
A1440 Function	Location					
CLKA or I/O	C9					
CLKB or I/O	А9					
DCLK or I/O	D5					
GND	D4, D8, D11, D12, E4, E14, H4, H12, L4, L12, M4, M8, M12					
HCLK or I/O	R8					
IOCLK or I/O	E12					
IOPCL or I/O	P13					
MODE	F3					
NC	A1, A2, A15, B2, B3, P2, P14, R1, R2, R14, R15					
PRA or I/O	B8					
PRB or I/O	R7					
SDI or I/O	D3					
SDO	N12					
VCC	C3, C8, C13, E15, H3, H13, L1, L14, N3, N8, N13					

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG175 package has been discontinued.

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.