

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	310
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	100
Number of Gates	2500
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	132-BCQFP with Tie Bar
Supplier Device Package	132-CQFP (63.5x63.5)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1425a-1cq132m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Accelerator Series FPGAs - ACT 3 Family

		Speed	Grade ¹			cation ¹	on ¹	
Device/Package	Std.	-1	-2	-3	С	I	М	В
A14V40A Device	•	•	•	•	•	•		
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	-	_	_	✓	_	_	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	_	_	_	✓	_	_	_
160-Pin Plastic Quad Flatpack (PQFP)	1	_	_	_	1	-	-	_
176-Pin Thin Quad Flatpack (TQFP)	1	_	_	_	1	_	-	_
A1460A Device								
160-Pin Plastic Quad Flatpack (PQFP)	✓	✓	D	D	✓	✓	_	_
176-Pin Thin Quad Flatpack (TQFP)	✓	1	D	D	1	1	-	-
196-Pin Ceramic Quad Flatpack (CQFP)	1	1	_	-	1	-	1	✓
207-Pin Ceramic Pin Grid Array (CPGA)	✓	1	D	D	1	-	1	✓
208-Pin Plastic Quad Flatpack (PQFP)	✓	1	D	D	1	1	-	-
225-Pin Plastic Ball Grid Array (BGA)	D	D	D	D	D	-	-	-
A14V60A Device	•	•	•	•	•	•	•	
160-Pin Plastic Quad Flatpack (PQFP)	✓	_	_	_	1	_	-	_
176-Pin Thin Quad Flatpack (TQFP)	✓	_	_	-	1	-	-	_
208-Pin Plastic Quad Flatpack (PQFP)	✓	-	_	-	1	-	-	-
A14100A Device								
208-Pin Power Quad Flatpack (RQFP)	✓	1	D	D	1	✓	-	_
257-Pin Ceramic Pin Grid Array (CPGA)	✓	1	D	D	1	-	1	✓
313-Pin Plastic Ball Grid Array (BGA)	✓	1	D	D	1	-	-	_
256-Pin Ceramic Quad Flatpack (CQFP)	✓	✓	-	_	✓	_	1	✓
A14V100A Device	•		-			•	-	•
208-Pin Power Quad Flatpack (RQFP)	✓	-	_	-	✓	_	-	_
313-Pin Plastic Ball Grid Array (BGA)	1	_	_	_	1	_	_	_

Notes:

1. Applications: C = CommercialI = Industrial
M = Military
Commercial only

Availability: ✓ = Available P = Planned -= Not planned D = Discontinued Speed Grade:

-1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std. -3 = Approx. 35% faster than Std. (-2 and -3 speed grades have been discontinued.)

١٧ Revision 3

1 – ACT 3 Family Overview

General Description

Microsemi's ACT 3 Accelerator Series of FPGAs offers the industry's fastest high-capacity programmable logic device. ACT 3 FPGAs offer a high performance, PCI compliant programmable solution capable of 186 MHz on-chip performance and 9.0 nanosecond clock-to-output (–1 speed grade), with capacities spanning from 1,500 to 10,000 gate array equivalent gates.

The ACT 3 family builds on the proven two-module architecture consisting of combinatorial and sequential logic modules used in Microsemi's 3200DX and 1200XL families. In addition, the ACT 3 I/O modules contain registers which deliver 9.0 nanosecond clock-to-out times (–1 speed grade). The devices contain four clock distribution networks, including dedicated array and I/O clocks, supporting very fast synchronous and asynchronous designs. In addition, routed clocks can be used to drive high fanout signals such as flip-flop resets and output.

The ACT 3 family is supported by Microsemi's Designer Series Development System which offers automatic placement and routing (with automatic or fixed pin assignments), static timing analysis, user programming, and debug and diagnostic probe capabilities.

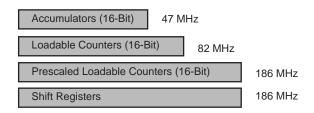
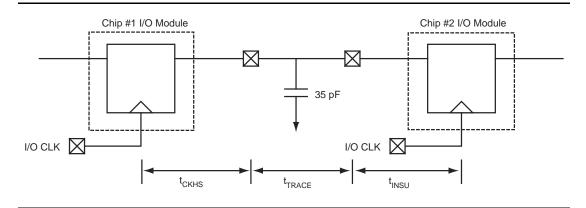



Figure 1-1 • Predictable Performance (worst-case commercial, -1 speed grade)

System Performance Model

ACT 3 Family Overview

Table 1-1 • Chip-to-Chip Performance (worst-case commercial)

Device and Speed Grade	t _{CKHS} (ns)	t _{TRACE} (ns)	t _{INSU} (ns)	Total (ns)	MHz
A1425A -3	7.5	1.0	1.8	10.3	97
A1460A -3	9.0	1.0	1.3	11.3	88
A1425A -2	7.5	1.0	2.0	10.5	95
A1460A -2	9.0	1.0	1.5	11.5	87
A1425A -1	9.0	1.0	2.3	12.3	81
A1460A -1	10.0	1.0	1.8	12.8	78
A1425A STD	10.0	1.0	2.7	13.7	73
A1460A STD	11.5	1.0	2.0	14.5	69

Note: The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

1-2 Revision 3

The S-module contains a full implementation of the C-module plus a clearable sequential element that can either implement a latch or flip-flop function. The S-module can therefore implement any function implemented by the C-module. This allows complex combinatorial-sequential functions to be implemented with no delay penalty. The Designer Series Development System will automatically combine any C-module macro driving an S-module macro into the S-module, thereby freeing up a logic module and eliminating a module delay.

The clear input CLR is accessible from the routing channel. In addition, the clock input may be connected to one of three clock networks: CLKA, CLKB, or HCLK. The C-module and S-module functional descriptions are shown in Figure 2-2 and Figure 2-3 on page 2-2. The clock selection is determined by a multiplexer select at the clock input to the S-module.

I/Os

I/O Modules

I/O modules provide an interface between the array and the I/O Pad Drivers. I/O modules are located in the array and access the routing channels in a similar fashion to logic modules. The I/O module schematic is shown in Figure 4. The signals DataIn and DataOut connect to the I/O pad driver.

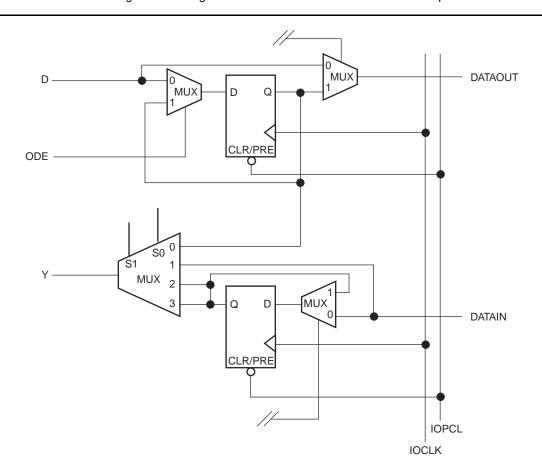


Figure 2-4 • Functional Diagram for I/O Module

Each I/O module contains two D-type flip-flops. Each flip-flop is connected to the dedicated I/O clock (IOCLK). Each flip-flop can be bypassed by nonsequential I/Os. In addition, each flip-flop contains a data enable input that can be accessed from the routing channels (ODE and IDE). The asynchronous preset/clear input is driven by the dedicated preset/clear network (IOPCL). Either preset or clear can be selected individually on an I/O module by I/O module basis.

Antifuse Connections

An antifuse is a "normally open" structure as opposed to the normally closed fuse structure used in PROMs or PALs. The use of antifuses to implement a programmable logic device results in highly testable structures as well as an efficient programming architecture. The structure is highly testable because there are no preexisting connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed as well as isolate individual circuit structures to be tested. This can be done both before and after programming. For example, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified.

Four types of antifuse connections are used in the routing structure of the ACT 3 array. (The physical structure of the antifuse is identical in each case; only the usage differs.)

Table 2-1 shows four types of antifuses.

Table 2-1 • Antifuse Types

Туре	Description
XF	Horizontal-to-vertical connection
HF	Horizontal-to-horizontal connection
VF	Vertical-to-vertical connection
FF	"Fast" vertical connection

Examples of all four types of connections are shown in Figure 2-7 on page 2-6 and Figure 2-8 on page 2-6.

Module Interface

Connections to Logic and I/O modules are made through vertical segments that connect to the module inputs and outputs. These vertical segments lie on vertical tracks that span the entire height of the array.

Module Input Connections

The tracks dedicated to module inputs are segmented by pass transistors in each module row. During normal user operation, the pass transistors are inactive, which isolates the inputs of a module from the inputs of the module directly above or below it. During certain test modes, the pass transistors are active to verify the continuity of the metal tracks. Vertical input segments span only the channel above or the channel below. The logic modules are arranged such that half of the inputs are connected to the channel above and half of the inputs to segments in the channel below, as shown in Figure 2-9.

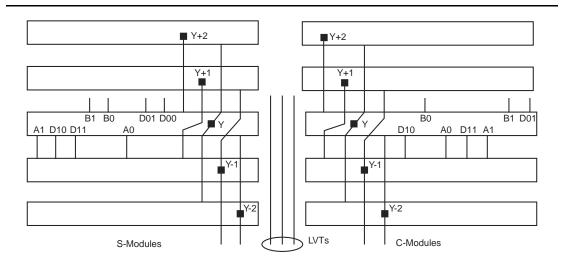


Figure 2-9 • Logic Module Routing Interface

Detailed Specifications

3.3 V Operating Conditions

Table 2-5 • Absolute Maximum Ratings¹, Free Air Temperature Range

Symbol	Parameter	Limits	Units
VCC	DC supply voltage	−0.5 to +7.0	V
VI	Input voltage	-0.5 to VCC + 0.5	V
VO	Output voltage	-0.5 to VCC + 0.5	V
IIO	I/O source sink current ²	±20	mA
T _{STG}	Storage temperature	-65 to +150	°C

Notes:

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions.
- 2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND -0.5 V, the internal protection diodes will forward bias and can draw excessive current.

Table 2-6 • Recommended Operating Conditions

Parameter	Commercial	Units
Temperature range*	0 to +70	°C
Power supply tolerance	3.0 to 3.6	V

Note: *Ambient temperature (T_A) is used for commercial.

Table 2-7 • Electrical Specifications

		С	ommercial	
Parameter		Min.	Max.	Units
VOH ¹	IOH = -4 mA	2.15	_	V
	IOH = −3.2 mA	2.4		V
VOL ¹	IOL = 6 mA		0.4	V
VIL		-0.3	0.8	V
VIH		2.0	VCC + 0.3	V
Input transition time t _R , t _F ²	VI = VCC or GND	-10	+10	μA
C _{IO} I/O Capacitance ^{2,3}			10	pF
Standby current, ICC ⁴ (typical =	0.3 mA)		0.75 m.	
Leakage current ⁵		-10	10	μA

- 1. Only one output tested at a time. VCC = minimum.
- 2. Not tested; for information only.
- 3. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f 1 MHz.
- 4. Typical standby current = 0.3 mA. All outputs unloaded. All inputs = VCC or GND.
- 5. VO, VIN = VCC or GND

2-10 Revision 3

Determining Average Switching Frequency

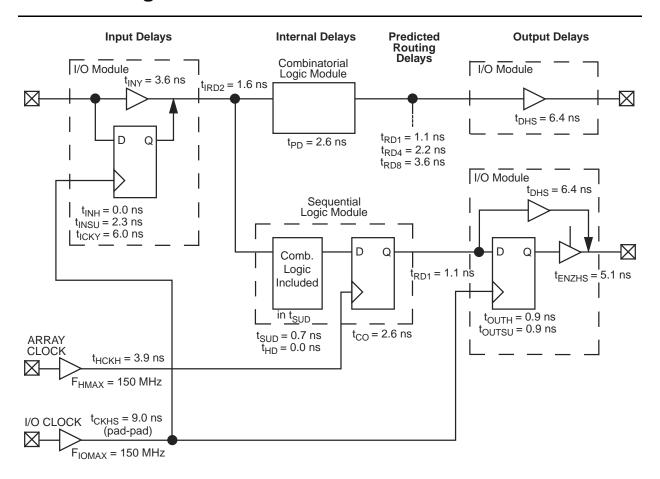

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are as follows:

Table 2-13 • Guidelines for Predicting Power Dissipation

Data	Value
Logic Modules (m)	80% of modules
Inputs switching (n)	# inputs/4
Outputs switching (p)	# output/4
First routed array clock loads (q1)	40% of sequential modules
Second routed array clock loads (q2)	40% of sequential modules
Load capacitance (CL)	35 pF
Average logic module switching rate (fm)	F/10
Average input switching rate (fn)	F/5
Average output switching rate (fp)	F/10
Average first routed array clock rate (fq1)	F/2
Average second routed array clock rate (fq2)	F/2
Average dedicated array clock rate (fs1)	F
Average dedicated I/O clock rate (fs2)	F

ACT 3 Timing Model

Note: Values shown for A1425A -1 speed grade device.

Figure 2-10 • Timing Model

2-16 Revision 3

Tightest Delay Distributions

Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases.

From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer lengths of routing track. The ACT 3 family delivers the tightest fanout delay distribution of any FPGA. This tight distribution is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path.

Microsemi's patented PLICE antifuse offers a very low resistive/capacitive interconnect. The ACT 3 family's antifuses, fabricated in 0.8 micron m lithography, offer nominal levels of 200Ω resistance and 6 femtofarad (fF) capacitance per antifuse. The ACT 3 fanout distribution is also tighter than alternative devices due to the low number of antifuses required per interconnect path. The ACT 3 family's proprietary architecture limits the number of antifuses per path to only four, with 90% of interconnects using only two antifuses.

The ACT 3 family's tight fanout delay distribution offers an FPGA design environment in which fanout can be traded for the increased performance of reduced logic level designs. This also simplifies performance estimates when designing with ACT 3 devices.

Speed Grade	FO = 1	FO = 2	FO = 3	FO = 4	FO = 8						
ACT 3 –3	2.9	3.2	3.4	3.7	4.8						
ACT 3 –2	3.3	3.7	3.9	4.2	5.5						
ACT 3 –1	3.7	4.2	4.4	4.8	6.2						
ACT 3 STD	4.3	4.8	5.1	5.5	7.2						

Table 2-14 • Logic Module and Routing Delay by Fanout (ns); Worst-Case Commercial Conditions

Notes:

- Obtained by added t_{RD(X=FO)} to t_{PD} from the Logic Module Timing Characteristics Tables found in this datasheet.
- 2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

Timing Characteristics

Timing characteristics for ACT 3 devices fall into three categories: family dependent, device dependent, and design dependent. The input and output buffer characteristics are common to all ACT 3 family members. Internal routing delays are device dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the ALS Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections. This increases capacitance and resistance, result ng in longer net delays for macros connected to long tracks. Typically up to 6% of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 14 ns delay. This additional delay is represented statistically in higher fanout (FO=8) routing delays in the datasheet specifications section.

2-20 Revision 3

A1415A, A14V15A Timing Characteristics (continued)

Table 2-19 • A1415A, A14V15A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	dule Input Propagation Delays	-3 S _I	peed ¹	-2 Sp	peed ¹	-1 S	peed	Std.	Speed	3.3 V	Speed ²	Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	dule Sequential Timing (wrt IOCLK	pad)	•			•						
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	2.0		2.3		2.5		3.0		3.0		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns
Notos:	1											

Notes:

1. The -2 and -3 speed grades have been discontinued. Please refer to the Product Discontinuation Notices (PDNs) listed below:

PDN March 2001

PDN 0104

PDN 0203

PDN 0604

PDN 1004

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Detailed Specifications

A1425A, A14V25A Timing Characteristics

Table 2-22 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C¹

Logic Module Propagation Delays ²		−3 S	peed ³	-2 S _l	peed ³	eed ³ -1 Speed			Speed	3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Module Sequential Timing											•
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _A	Flip-Flop Clock Input Period	4.0		5.0		6.8		8.0		10.0		ns
f _{MAX}	Flip-Flop Clock Frequency		250		200		150		125		100	MHz

Notes:

- 1. VCC = 3.0 V for 3.3 V specifications.
- 2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.
- 3. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
- 4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

2-26 Revision 3

Detailed Specifications

A1425A, A14V25A Timing Characteristics (continued)

Table 2-24 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Module – TTL Output Timing ¹		-3 Sp	peed ²	-2 Sp	peed ²	-1 S	peed	Std.	Speed	3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		7.5		7.5		9.0		10.0		13.0	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.7		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.7		7.5		9.0		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.9		8.9		10.7		11.8		15.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d_TLHHS	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

2-28 Revision 3

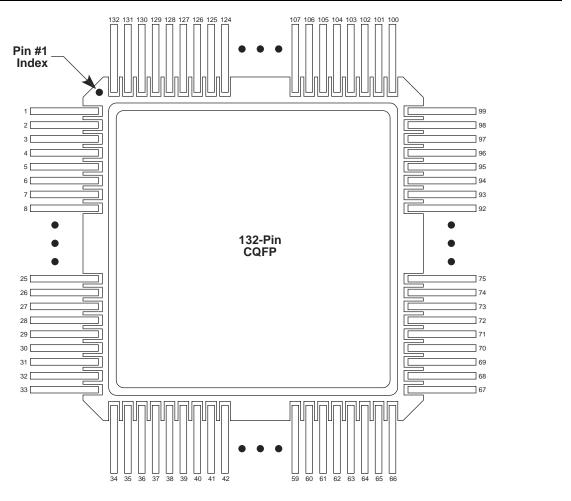
^{1.} Delays based on 35 pF loading.

^{2.} The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1425A, A14V25A Timing Characteristics (continued)

Table 2-25 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C

Dedicated (hardwired) I/O Clock Network		-3 Speed ¹		-2 Speed ¹		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.0		2.3		2.6		3.0		3.5	ns
t _{IOPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{IPOWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	1.9		2.4		3.3		3.8		4.8		ns
t _{IOCKSW}	Maximum Skew		0.4		0.4		0.4		0.4		0.4	ns
t _{IOP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{IOMAX}	Maximum Frequency		250		200		150		125		100	MHz
Dedicate	d (hardwired) Array Clock											
t _{HCKH}	Input Low to High (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{HPWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.3		0.3		0.3		0.3		0.3	ns
t _{HP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{HMAX}	Maximum Frequency		250		200		150		125		100	MHz
Routed A	rray Clock Networks											
t _{RCKH}	Input Low to High (FO = 64)		3.7		4.1		4.7		5.5		9.0	ns
t _{RCKL}	Input High to Low (FO = 64)		4.0		4.5		5.1		6.0		9.0	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RCKSW}	Maximum Skew (FO = 128)		0.7		0.8		0.9		1.0		1.0	ns
t _{RP}	Minimum Period (FO = 64)	6.8		8.0		8.7		10.0		13.4		ns
f _{RMAX}	Maximum Frequency (FO = 64)		150		125		115		100		75	MHz
Clock-to-	Clock Skews											
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	1.7	0.0	1.8	0.0	2.0	0.0	2.2	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 80)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	3.0 3.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 80)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns


Notes:

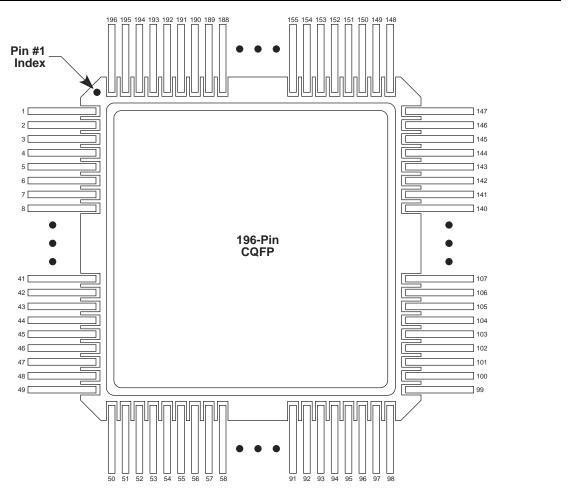
^{1.} The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

^{2.} Delays based on 35 pF loading.

Package Pin Assignments

CQ132

Note: This is the top view


Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-14 Revision 3

Package Pin Assignments

CQ196

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-16 Revision 3

Accelerator Series FPGAs – ACT 3 Family

CQ196				
Pin Number	A1460 Function			
1	GND			
2	SDI, I/O			
11	MODE			
12	VCC			
13	GND			
37	GND			
38	VCC			
39	VCC			
51	GND			
52	GND			
59	VCC			
64	GND			
77	HCLK, I/O			
79	PRB, I/O			
86	GND			
94	VCC			
98	GND			
99	SDO			
100	IOPCL, I/O			

CQ196				
Pin Number	A1460 Function			
101	GND			
110	VCC			
111	VCC			
112	GND			
137	VCC			
138	GND			
139	GND			
140	VCC			
148	IOCLK, I/O			
149	GND			
155	VCC			
162	GND			
172	CLKA, I/O			
173	CLKB, I/O			
174	PRA, I/O			
183	GND			
189	VCC			
193	GND			
196	DCLK, I/O			

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs – ACT 3 Family

CQ256				
Pin Number	A14100 Function			
1	GND			
2	SDI, I/O			
11	MODE			
28	VCC			
29	GND			
30	VCC			
31	GND			
46	VCC			
59	GND			
90	PRB, I/O			
91	GND			
92	VCC			
93	GND			
94	VCC			
96	HCLK, I/O			
110	GND			
126	SDO			
127	IOPCL, I/O			
128	GND			

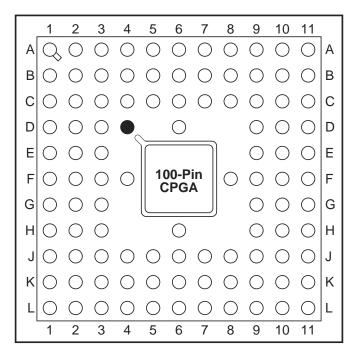
CQ256				
Pin Number	A14100 Function			
141	VCC			
158	GND			
159	VCC			
160	GND			
161	VCC			
174	VCC			
175	GND			
176	GND			
188	IOCLK, I/O			
189	GND			
219	CLKA, I/O			
220	CLKB, I/O			
221	VCC			
222	GND			
223	VCC			
224	GND			
225	PRA, I/O			
240	GND			
256	DCLK, I/O			

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs – ACT 3 Family

BG225		
A1460 Function	Location	
CLKA or I/O	C8	
CLKB or I/O	B8	
DCLK or I/O	B2	
GND	A1, A15, D15, F8, G7, G8, G9, H6, H7, H8, H9, H10, J7, J8, J9, K8, P2, R15	
HCLK or I/O	P9	
IOCLK or I/O	B14	
IOPCL or I/O	P14	
MODE	D1	
NC	A11, B5, B7, D8, D12, F6, F11, H1, H12, H14, K11, L1, L13, N8, P5, R1, R8, R11, R14	
PRA or I/O	A7	
PRB or I/O	L7	
SDI or I/O	D4	
SDO	N13	
VCC	A8, B12, D5, D14, E3, E8, E13, H2, H3, H11, H15, K4, L2, L12, M8, M15, P4, P8, R13	


Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The BG225 package has been discontinued.

Package Pin Assignments

PG100

Orientation Pin

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-24 Revision 3

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.