

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	310
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	80
Number of Gates	2500
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1425a-1pq100i

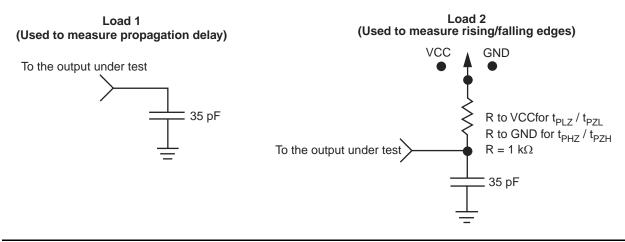
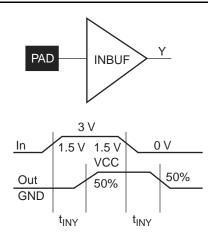
Email: info@E-XFL.COM

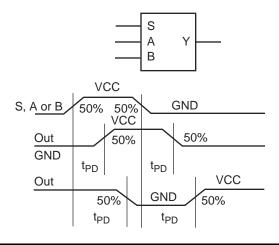
E·XFI

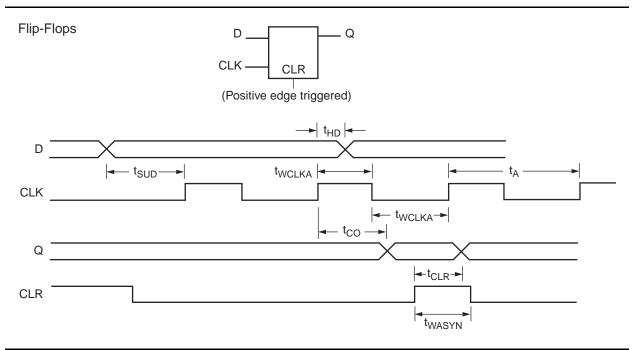
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

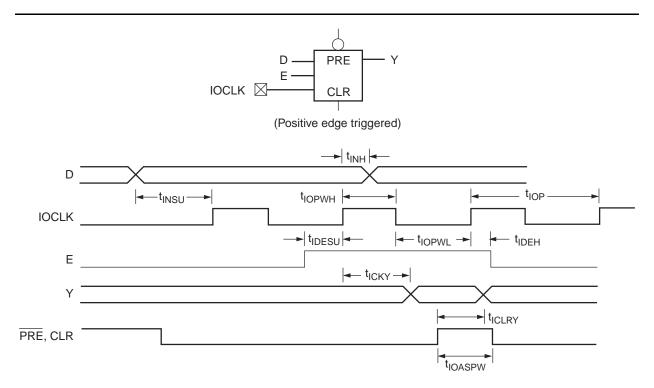
Accelerator Series FPGAs – ACT 3 Family

Figure 2-11 • Output Buffers


Figure 2-12 • AC Test Loads


Figure 2-13 • Input Buffer Delays



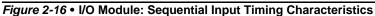

Figure 2-14 • Module Delays

Figure 2-15 • Sequential Module Timing Characteristics

Accelerator Series FPGAs – ACT 3 Family

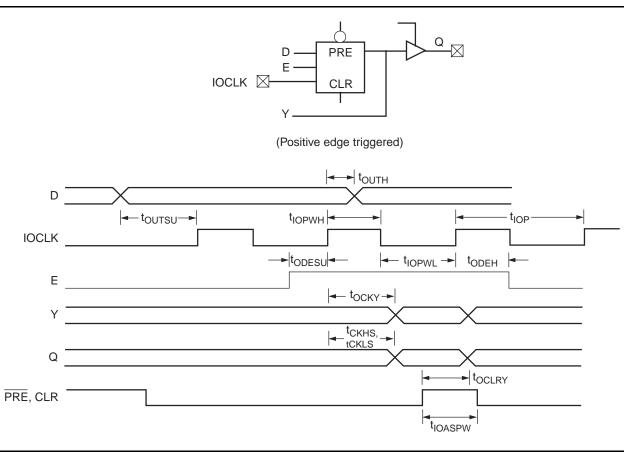


Figure 2-17 • I/O Module: Sequential Output Timing Characteristics

A1415A, A14V15A Timing Characteristics (continued)

Table 2-19 • A1415A.	A14V15A Worst-Case Co	ommercial Conditions.	VCC = 4.75 V, T _J = 70°C

I/O Moc	dule Input Propagation Delays	-3 Sp	beed ¹	-2 Sp	beed ¹	-1 Speed		Std. Speed		3.3 V Speed ²		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Moc	dule Sequential Timing (wrt IOCLK	pad)										
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	2.0		2.3		2.5		3.0		3.0		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns

Notes:

1. The –2 and –3 speed grades have been discontinued. Please refer to the Product Discontinuation Notices (PDNs) listed below:

PDN March 2001 PDN 0104 PDN 0203 PDN 0604 PDN 1004

 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Detailed Specifications

A1440A, A14V40A Timing Characteristics

Table 2-26 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C¹

Logic N	Iodule Propagation Delays ²	-3 Sp	beed ³	-2 S	peed ³	-1 S	peed	Std. S	Speed	3.3 V	Speed ¹	Units
Parame	Parameter/Description		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴										1	
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Nodule Sequential Timing											
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _A	Flip-Flop Clock Input Period	4.0		5.0		6.8		8.0		10.0		ns
f _{MAX}	Flip-Flop Clock Frequency		250		200		150		125		100	MHz

Notes:

1. VCC = 3.0 V for 3.3 V specifications.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Detailed Specifications

A14100A, A14V100A Timing Characteristics (continued)

Table 2-36 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Moo	I/O Module – TTL Output Timing ¹			–2 Sp	beed ²	–1 S	peed	Std.	Speed	3.3 V	Speed ¹	Units
Parame	arameter/Description		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.5		9.5		10.5		12.0		15.6	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		12.8		12.8		15.3		17.0		22.1	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Moo	dule – CMOS Output Timing ¹				•		•					
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.0		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		10.4		10.4		12.4		13.8		17.9	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		14.5		14.5		17.4		19.3		25.1	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A14100A, A14V100A Timing Characteristics (continued)

Dedicate	d (hardwired) I/O Clock Network	-3 Sp	beed ¹	–2 Speed ¹		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.3		2.6		3.0		3.5		4.5	ns
t _{IOPWH}	Minimum Pulse Width High	2.4		3.3		3.8		4.8		6.5		ns
t _{IPOWL}	Minimum Pulse Width Low	2.4		3.3		3.8		4.8		6.5		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	2.4		3.3		3.8		4.8		6.5		ns
t _{IOCKSW}	Maximum Skew		0.6		0.6		0.7		0.8		0.6	ns
t _{IOP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{IOMAX}	Maximum Frequency		200		150		125		100		75	MHz
Dedicated	d (hardwired) Array Clock	•						•				
t _{HCKH}	Input Low to High (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HPWH}	Minimum Pulse Width High	2.4		3.3		3.8		4.8		6.5		ns
t _{HPWL}	Minimum Pulse Width Low	2.4		3.3		3.8		4.8		6.5		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.6		0.6		0.7		0.8		0.6	ns
t _{HP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{HMAX}	Maximum Frequency		200		150		125		100		75	MHz
Routed A	rray Clock Networks									-	-	
t _{RCKH}	Input Low to High (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RCKL}	Input High to Low (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RCKSW}	Maximum Skew (FO = 128)		1.2		1.4		1.6		1.8		1.8	ns
t _{RP}	Minimum Period (FO = 64)	8.3		9.3		11.1		12.5		16.7		ns
f _{RMAX}	Maximum Frequency (FO = 64)		120		105		90		80		60	MHz
Clock-to-	Clock Skews									-	-	
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	2.6	0.0	2.7	0.0	2.9	0.0	3.0	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 350)	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	5.0 5.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 350)	0.0 0.0	1.3 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes: *

1. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

2. Delays based on 35 pF loading.

Detailed Specifications

Pin Descriptions

CLKA Clock A (Input)

Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKB Clock B (Input)

Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

GND Ground

LOW supply voltage.

HCLK Dedicated (Hard-wired) Array Clock (Input)

Clock input for sequential modules. This input is directly wired to each S-Module and offers clock speeds independent of the number of S-Modules being driven. This pin can also be used as an I/O.

I/O Input/Output (Input, Output)

The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are tristated by the Designer Series software.

IOCLK Dedicated (Hard-wired) I/O Clock (Input)

Clock input for I/O modules. This input is directly wired to each I/O module and offers clock speeds independent of the number of I/O modules being driven. This pin can also be used as an I/O.

IOPCL Dedicated (Hard-wired) I/O Preset/Clear (Input)

Input for I/O preset or clear. This global input is directly wired to the preset and clear inputs of all I/O registers. This pin functions as an I/O when no I/O preset or clear macros are used.

MODE Mode (Input)

The MODE pin controls the use of diagnostic pins (DCLK, PRA, PRB, SDI). When the MODE pin is HIGH, the special functions are active. When the MODE pin is LOW, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled high when required.

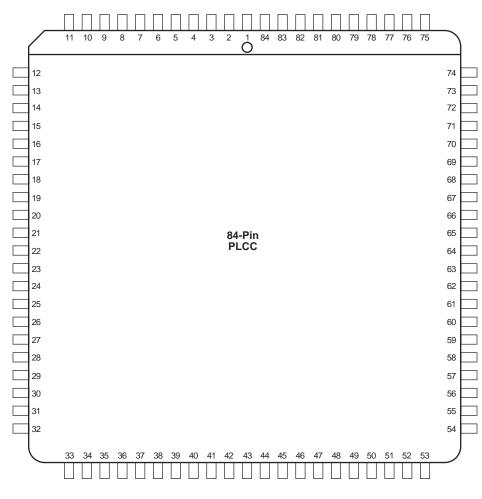
NC No Connection

This pin is not connected to circuitry within the device.

PRA Probe A (Output)

The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

PRB Probe B (Output)


The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

SDI Serial Data Input (Input)

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

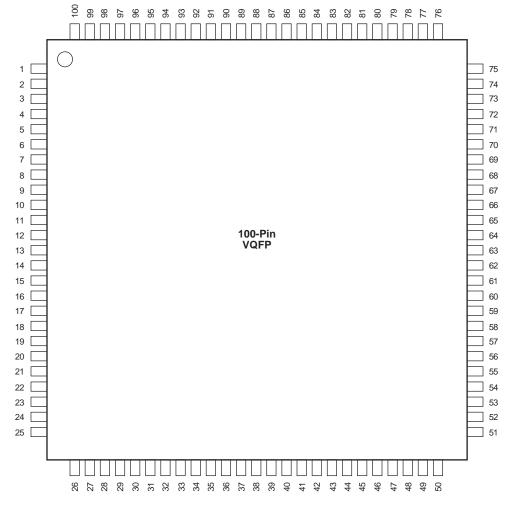
3 – Package Pin Assignments

PL84

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.


Package Pin Assignments

PQ160							
Pin Number	A1425, A14V25 Function	A1440, A14V40 Function	A1460, A14V60 Function				
1	GND	GND	GND				
2	SDI, I/O	SDI, I/O	SDI, I/O				
5	NC	I/O	I/O				
9	MODE	MODE	MODE				
10	VCC	VCC	VCC				
14	NC	I/O	I/O				
15	GND	GND	GND				
18	VCC	VCC	VCC				
19	GND	GND	GND				
20	NC	I/O	I/O				
24	NC	I/O	I/O				
27	NC	I/O	I/O				
28	VCC	VCC	VCC				
29	VCC	VCC	VCC				
40	GND	GND	GND				
41	NC	I/O	I/O				
43	NC	I/O	I/O				
45	NC	I/O	I/O				
46	VCC	VCC	VCC				
47	NC	I/O	I/O				
49	NC	I/O	I/O				
51	NC	I/O	I/O				
53	NC	I/O	I/O				
58	PRB, I/O	PRB, I/O	PRB, I/O				
59	GND	GND	GND				
60	VCC	VCC	VCC				
62	HCLK, I/O	HCLK, I/O	HCLK, I/O				
63	GND	GND	GND				
74	NC	I/O	I/O				
75	VCC	VCC	VCC				
76	NC	I/O	I/O				
77	NC	I/O	I/O				
78	NC	I/O	I/O				
79	SDO	SDO	SDO				
80	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O				
81	GND	GND	GND				
90	VCC	VCC	VCC				
91	VCC	VCC	VCC				

Package Pin Assignments

VQ100

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Accelerator Series FPGAs – ACT 3 Family

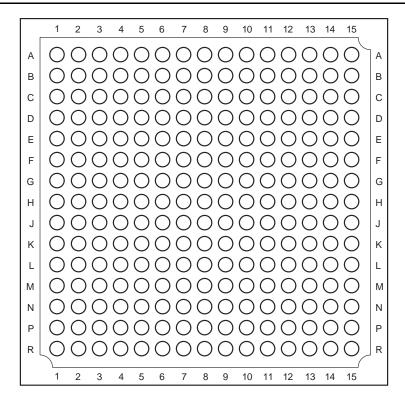
VQ100								
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function					
1	GND	GND	GND					
2	SDI, I/O	SDI, I/O	SDI, I/O					
7	MODE	MODE	MODE					
8	VCC	VCC	VCC					
9	GND	GND	GND					
20	VCC	VCC	VCC					
21	NC	I/O	I/O					
34	PRB, I/O	PRB, I/O	PRB, I/O					
35	VCC	VCC	VCC					
36	GND	GND	GND					
37	VCC	VCC	VCC					
39	HCLK, I/O	HCLK, I/O	HCLK, I/O					
49	SDO	SDO	SDO					
50	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O					
51	GND	GND	GND					
57	VCC	VCC	VCC					
58	VCC	VCC	VCC					
67	VCC	VCC	VCC					
68	GND	GND	GND					
69	GND	GND	GND					
74	NC	I/O	I/O					
75	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O					
87	CLKA, I/O	CLKA, I/O	CLKA, I/O					
88	CLKB, I/O	CLKB, I/O	CLKB, I/O					
89	VCC	VCC	VCC					
90	VCC	VCC	VCC					
91	GND	GND	GND					
92	PRA, I/O	PRA, I/O	PRA, I/O					
93	NC	I/O	I/O					
100	DCLK, I/O	DCLK, I/O	DCLK, I/O					

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs - ACT 3 Family

	CQ132		CQ132
Pin Number	A1425 Function	Pin Number	A1425 Function
1	NC	67	NC
2	GND	74	GND
3	SDI, I/O	75	VCC
9	MODE	78	VCC
10	GND	89	VCC
11	VCC	90	GND
22	VCC	91	VCC
26	GND	92	GND
27	VCC	98	IOCLK, I/O
34	NC	99	NC
36	GND	100	NC
42	GND	101	GND
43	VCC	106	GND
48	PRB, I/O	107	VCC
50	HCLK, I/O	116	CLKA, I/O
58	GND	117	CLKB, I/O
59	VCC	118	PRA, I/O
63	SDO	122	GND
64	IOPCL, I/O	123	VCC
65	GND	131	DCLK, I/O
66	NC	132	NC

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.


Accelerator Series FPGAs - ACT 3 Family

	CQ196		CQ196		
Pin Number	A1460 Function	Pin Number	A1460 Function		
1	GND	101	GND		
2	SDI, I/O	110	VCC		
11	MODE	111	VCC		
12	VCC	112	GND		
13	GND	137	VCC		
37	GND	138	GND		
38	VCC	139	GND		
39	VCC	140	VCC		
51	GND	148	IOCLK, I/O		
52	GND	149	GND		
59	VCC	155	VCC		
64	GND	162	GND		
77	HCLK, I/O	172	CLKA, I/O		
79	PRB, I/O	173	CLKB, I/O		
86	GND	174	PRA, I/O		
94	VCC	183	GND		
98	GND	189	VCC		
99	SDO	193	GND		
100	IOPCL, I/O	196	DCLK, I/O		

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

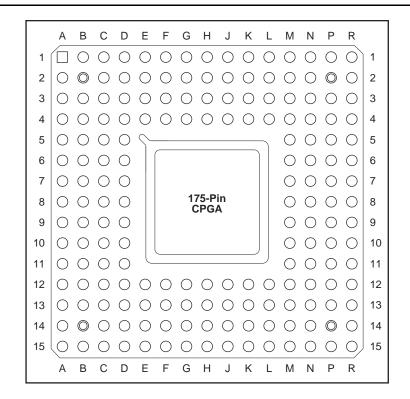
BG225

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Accelerator Series FPGAs – ACT 3 Family


	PG100
A1415 Function	Location
CLKA or I/O	C7
CLKB or I/O	D6
DCLK or I/O	C4
GND	C3, C6, C9, E9, F3, F9, J3, J6, J8, J9
HCLK or I/O	H6
IOCLK or I/O	C10
IOPCL or I/O	К9
MODE	C2
PRA or I/O	A6
PRB or I/O	L3
SDI or I/O	B3
SDO	L9
VCC	B6, B10, E11, F2, F10, G2, K2, K6, K10

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG100 package has been discontinued.

Package Pin Assignments

PG175

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Accelerator Series FPGAs – ACT 3 Family

	PG175	
A1440 Function	Location	
CLKA or I/O	C9	
CLKB or I/O	А9	
DCLK or I/O	D5	
GND	D4, D8, D11, D12, E4, E14, H4, H12, L4, L12, M4, M8, M12	
HCLK or I/O	R8	
IOCLK or I/O	E12	
IOPCL or I/O	P13	
MODE	F3	
NC	A1, A2, A15, B2, B3, P2, P14, R1, R2, R14, R15	
PRA or I/O	B8	
PRB or I/O	R7	
SDI or I/O	D3	
SDO	N12	
VCC	C3, C8, C13, E15, H3, H13, L1, L14, N3, N8, N13	

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG175 package has been discontinued.

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.