

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	310
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	80
Number of Gates	2500
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1425a-1pqg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Plan

	Speed Grade ¹				Applic	ation ¹				
Device/Package	Std.	-1	-2	-3	С	I	М	В		
A1415A Device										
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	✓	D	D	✓	1	1	_		
100-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	✓	✓	-		
100-Pin Very Thin Quad Flatpack (VQFP)	1	✓	D	D	✓	1	✓	-		
100-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	_	_	-		
A14V15A Device										
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	-	_	_	✓	_	-	_		
100-Pin Very Thin Quad Flatpack (VQFP)	✓	-	-	_	✓	-	-	_		
A1425A Device							•	•		
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	✓	D	D	✓	1				
100-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	1	-	-		
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	✓	✓	-	_		
132-Pin Ceramic Quad Flatpack (CQFP)	✓	✓	-	_	✓	-	✓	1		
133-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	_	D	D		
160-Pin Plastic Quad Flatpack (PQFP)	✓	✓	D	D	✓	1	-	_		
A14V25A Device										
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	-	_	_	✓	_	_	-		
100-Pin Very Thin Quad Flatpack (VQFP)	1	-	-	_	✓	-	-	-		
160-Pin Plastic Quad Flatpack (PQFP)	1	-	_	_	✓	-	-	-		
A1440A Device		.•								
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	✓	D	D	✓	1	_	_		
100-Pin Very Thin Quad Flatpack (VQFP)	✓	1	D	D	✓	✓	-	-		
160-Pin Plastic Quad Flatpack (PQFP)	1	1	D	D	✓	✓	-	-		
175-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	-	-		
176-Pin Thin Quad Flatpack (TQFP)	1	✓	D	D	✓	1	-	-		

Notes:

1. Applications: C = Commercial I = Industrial M = Military

2. Commercial only

Availability: **√** = Available P = Planned-= Not planned D = Discontinued

Speed Grade:

-1 = Approx. 15% faster than Std.

-2 = Approx. 25% faster than Std.

-3 = Approx. 35% faster than Std.

(-2 and -3 speed grades have been discontinued.)

Revision 3 Ш

2 - Detailed Specifications

This section of the datasheet is meant to familiarize the user with the architecture of the ACT 3 family of FPGA devices. A generic description of the family will be presented first, followed by a detailed description of the logic blocks, the routing structure, the antifuses, and the special function circuits. The on-chip circuitry required to program the devices is not covered.

Topology

The ACT 3 family architecture is composed of six key elements: Logic modules, I/O modules, I/O Pad Drivers, Routing Tracks, Clock Networks, and Programming and Test Circuits. The basic structure is similar for all devices in the family, differing only in the number of rows, columns, and I/Os. The array itself consists of alternating rows of modules and channels. The logic modules and channels are in the center of the array; the I/O modules are located along the array periphery. A simplified floor plan is depicted in Figure 2-1.

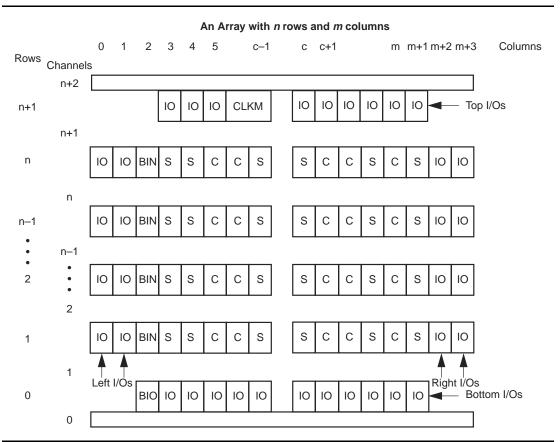


Figure 2-1 • Generalized Floor Plan of ACT 3 Device

Horizontal Routing

Horizontal channels are located between the rows of modules and are composed of several routing tracks. The horizontal routing tracks within the channel are divided into one or more segments. The minimum horizontal segment length is the width of a module-pair, and the maximum horizontal segment length is the full length of the channel. Any segment that spans more than one-third the row length is considered a long horizontal segment. A typical channel is shown in Figure 2-7. Undedicated horizontal routing tracks are used to route signal nets. Dedicated routing tracks are used for the global clock networks and for power and ground tie-off tracks.

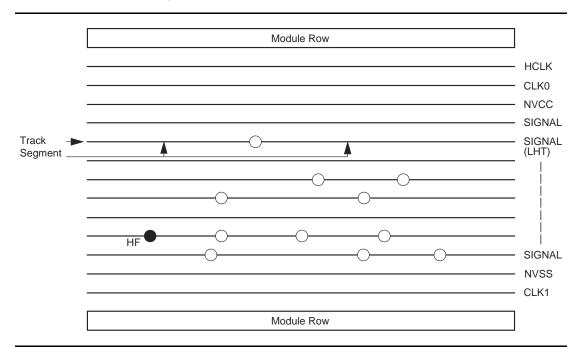


Figure 2-7 • Horizontal Routing Tracks and Segments

Vertical Routing

Other tracks run vertically through the modules. Vertical tracks are of three types: input, output, and long. Vertical tracks are also divided into one or more segments. Each segment in an input track is dedicated to the input of a particular module. Each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing. Each output segment spans four channels (two above and two below), except near the top and bottom of the array where edge effects occur. LVTs contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 2-8.

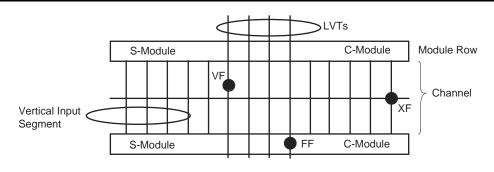


Figure 2-8 • Vertical Routing Tracks and Segments

2-6 Revision 3

Package Thermal Characteristics

The device junction to case thermal characteristic is θ jc, and the junction to ambient air characteristic is θ ja. The thermal characteristics for θ ja are shown with two different air flow rates.

Maximum junction temperature is 150°C.

A sample calculation of the absolute maximum power dissipation allowed for a CPGA 175-pin package at commercial temperature and still air is as follows:

$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}\text{°C/W}} \,=\, \frac{150\text{°C} - 70\text{°C}}{25\text{°C/W}} \,=\, 3.2 \text{ W}$$

EQ2

Table 2-8 • Package Thermal Characteristics

Package Type∗	Pin Count	θjc	θ _{ja} Still Air	$_{ m ja}^{ m heta_{ m ja}}$ 300 ft./min.	Units
Ceramic Pin Grid Array	100	20	35	17	°C/W
	133	20	30	15	°C/W
	175	20	25	14	°C/W
	207	20	22	13	°C/W
	257	20	15	8	°C/W
Ceramic Quad Flatpack	132	13	55	30	°C/W
	196	13	36	24	°C/W
	256	13	30	18	°C/W
Plastic Quad Flatpack	100	13	51	40	°C/W
	160	10	33	26	°C/W
	208	10	33	26	°C/W
Very Thin Quad Flatpack	100	12	43	35	°C/W
Thin Quad Flatpack	176	11	32	25	°C/W
Power Quad Flatpack	208	0.4	17	13	°C/W
Plastic Leaded Chip Carrier	84	12	37	28	°C/W
Plastic Ball Grid Array	225	10	25	19	°C/W
	313	10	23	17	°C/W

Note: Maximum power dissipation in still air:

PQ160 = 2.4 W

PQ208 = 2.4 W

PQ100 = 1.6 W

VQ100 = 1.9 W

TQ176 = 2.5 W

PL84 = 2.2 W

RQ208 = 4.7 W

BG225 = 3.2 W

BG313 = 3.5 W

Determining Average Switching Frequency

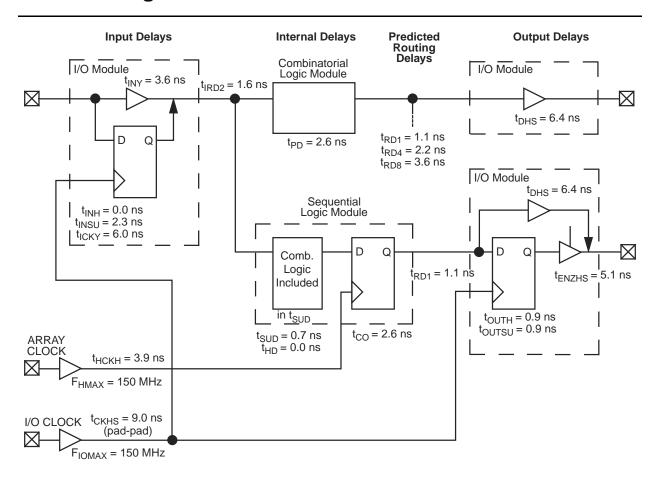

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are as follows:

Table 2-13 • Guidelines for Predicting Power Dissipation

Data	Value
Logic Modules (m)	80% of modules
Inputs switching (n)	# inputs/4
Outputs switching (p)	# output/4
First routed array clock loads (q1)	40% of sequential modules
Second routed array clock loads (q2)	40% of sequential modules
Load capacitance (CL)	35 pF
Average logic module switching rate (fm)	F/10
Average input switching rate (fn)	F/5
Average output switching rate (fp)	F/10
Average first routed array clock rate (fq1)	F/2
Average second routed array clock rate (fq2)	F/2
Average dedicated array clock rate (fs1)	F
Average dedicated I/O clock rate (fs2)	F

ACT 3 Timing Model

Note: Values shown for A1425A -1 speed grade device.

Figure 2-10 • Timing Model

2-16 Revision 3

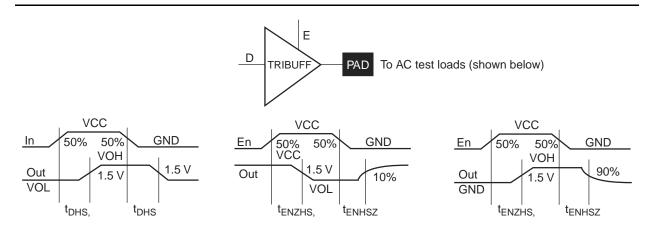


Figure 2-11 • Output Buffers

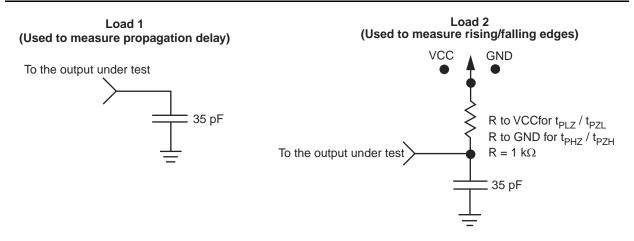


Figure 2-12 • AC Test Loads

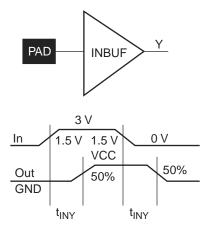


Figure 2-13 • Input Buffer Delays

Detailed Specifications

A1425A, A14V25A Timing Characteristics (continued)

Table 2-24 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	dule – TTL Output Timing ¹	-3 S _I	peed ²	-2 Sp	peed ²	-1 S	peed	Std.	Speed	3.3 V	Speed ¹	Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		7.5		7.5		9.0		10.0		13.0	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d_{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d_{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d_{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹	•	•			•		•				
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.7		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.7		7.5		9.0		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.9		8.9		10.7		11.8		15.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d_{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d_{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

2-28 Revision 3

^{1.} Delays based on 35 pF loading.

^{2.} The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1425A, A14V25A Timing Characteristics (continued)

Table 2-25 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C

Dedicate	d (hardwired) I/O Clock Network	–3 Sp	eed ¹	–2 Sp	oeed ¹	–1 S	peed	Std.	Speed	3.3 V	Speed ¹	Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.0		2.3		2.6		3.0		3.5	ns
t _{IOPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{IPOWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	1.9		2.4		3.3		3.8		4.8		ns
t _{IOCKSW}	Maximum Skew		0.4		0.4		0.4		0.4		0.4	ns
t _{IOP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{IOMAX}	Maximum Frequency		250		200		150		125		100	MHz
Dedicate	d (hardwired) Array Clock											
t _{HCKH}	Input Low to High (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{HPWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.3		0.3		0.3		0.3		0.3	ns
t _{HP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{HMAX}	Maximum Frequency		250		200		150		125		100	MHz
Routed A	rray Clock Networks											
t _{RCKH}	Input Low to High (FO = 64)		3.7		4.1		4.7		5.5		9.0	ns
t _{RCKL}	Input High to Low (FO = 64)		4.0		4.5		5.1		6.0		9.0	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RCKSW}	Maximum Skew (FO = 128)		0.7		0.8		0.9		1.0		1.0	ns
t _{RP}	Minimum Period (FO = 64)	6.8		8.0		8.7		10.0		13.4		ns
f _{RMAX}	Maximum Frequency (FO = 64)		150		125		115		100		75	MHz
Clock-to-	Clock Skews											
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	1.7	0.0	1.8	0.0	2.0	0.0	2.2	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 80)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	3.0 3.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 80)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes:

^{1.} The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

^{2.} Delays based on 35 pF loading.

Detailed Specifications

A14100A, A14V100A Timing Characteristics (continued)

Table 2-36 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	dule – TTL Output Timing ¹	-3 S _I	peed ²	-2 Sp	peed ²	-1 S	peed	Std.	Speed	3.3 V	Speed ¹	Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.5		9.5		10.5		12.0		15.6	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		12.8		12.8		15.3		17.0		22.1	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.0		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		10.4		10.4		12.4		13.8		17.9	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		14.5		14.5		17.4		19.3		25.1	ns
d_TLHHS	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

2-40 Revision 3

^{1.} Delays based on 35 pF loading.

^{2.} The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

Accelerator Series FPGAs – ACT 3 Family

SDO Serial Data Output (Output)

Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

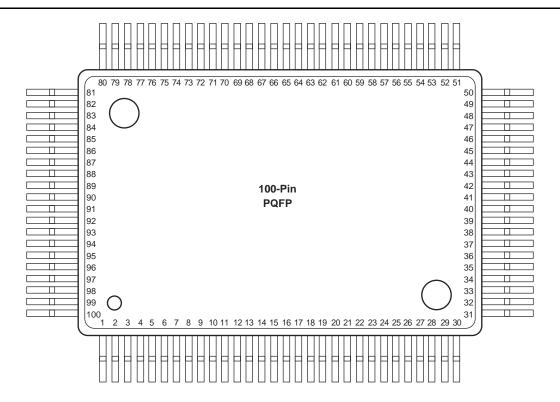
DCLK Diagnostic Clock (Input)

Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

VCC 5 V Supply Voltage

HIGH supply voltage.

Package Pin Assignments


PL84								
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function					
1	VCC	VCC	VCC					
2	GND	GND	GND					
3	VCC	VCC	VCC					
4	PRA, I/O	PRA, I/O	PRA, I/O					
11	DCLK, I/O	DCLK, I/O	DCLK, I/O					
12	SDI, I/O	SDI, I/O	SDI, I/O					
16	MODE	MODE	MODE					
27	GND	GND	GND					
28	VCC	VCC	VCC					
40	PRB, I/O	PRB, I/O	PRB, I/O					
41	VCC	VCC	VCC					
42	GND	GND	GND					
43	VCC	VCC	VCC					
45	HCLK, I/O	HCLK, I/O	HCLK, I/O					
52	SDO	SDO	SDO					
53	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O					
59	VCC	VCC	VCC					
60	VCC	VCC	VCC					
61	GND	GND	GND					
68	VCC	VCC	VCC					
69	GND	GND	GND					
74	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O					
83	CLKA, I/O	CLKA, I/O	CLKA, I/O					
84	CLKB, I/O	CLKB, I/O	CLKB, I/O					

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-2 Revision 3

PQ100

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Package Pin Assignments

PQ100							
Pin Number	A1415 Function	A1425 Function					
2	IOCLK, I/O	IOCLK, I/O					
14	CLKA, I/O	CLKA, I/O					
15	CLKB, I/O	CLKB, I/O					
16	VCC	VCC					
17	GND	GND					
18	VCC	VCC					
19	GND	GND					
20	PRA, I/O	PRA, I/O					
27	DCLK, I/O	DCLK, I/O					
28	GND	GND					
29	SDI, I/O	SDI, I/O					
34	MODE	MODE					
35	VCC	VCC					
36	GND	GND					
47	GND	GND					
48	VCC	VCC					
61	PRB, I/O	PRB, I/O					
62	GND	GND					
63	VCC	VCC					
64	GND	GND					
65	VCC	VCC					
67	HCLK, I/O	HCLK, I/O					
77	SDO	SDO					
78	IOPCL, I/O	IOPCL, I/O					
79	GND	GND					
85	VCC	VCC					
86	VCC	VCC					
87	GND	GND					
96	VCC	VCC					
97	GND	GND					

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-4 Revision 3

TQ176							
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function					
1	GND	GND					
2	SDI, I/O	SDI, I/O					
10	MODE	MODE					
11	VCC	VCC					
20	NC	I/O					
21	GND	GND					
22	VCC	VCC					
23	GND	GND					
32	VCC	VCC					
33	VCC	VCC					
44	GND	GND					
49	NC	I/O					
51	NC	I/O					
63	NC	I/O					
64	PRB, I/O	PRB, I/O					
65	GND	GND					
66	VCC	VCC					
67	VCC	VCC					
69	HCLK, I/O	HCLK, I/O					
82	NC	I/O					
83	NC	I/O					
87	SDO	SDO					
88	IOPCL, I/O	IOPCL, I/O					

TQ176							
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function					
89	GND	GND					
98	VCC	VCC					
99	VCC	VCC					
108	GND	GND					
109	VCC	VCC					
110	GND	GND					
119	NC	I/O					
121	NC	I/O					
122	VCC	VCC					
123	GND	GND					
124	VCC	VCC					
132	IOCLK, I/O	IOCLK, I/O					
133	GND	GND					
138	NC	I/O					
152	CLKA, I/O	CLKA, I/O					
153	CLKB, I/O	CLKB, I/O					
154	VCC	VCC					
155	GND	GND					
156	VCC	VCC					
157	PRA, I/O	PRA, I/O					
158	NC	I/O					
170	NC	I/O					
176	DCLK, I/O	DCLK, I/O					

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs – ACT 3 Family

	CQ196					
Pin Number	A1460 Function					
1	GND					
2	SDI, I/O					
11	MODE					
12	VCC					
13	GND					
37	GND					
38	VCC					
39	VCC					
51	GND					
52	GND					
59	VCC					
64	GND					
77	HCLK, I/O					
79	PRB, I/O					
86	GND					
94	VCC					
98	GND					
99	SDO					
100	IOPCL, I/O					

CQ196				
Pin Number	A1460 Function			
101	GND			
110	VCC			
111	VCC			
112	GND			
137	VCC			
138	GND			
139	GND			
140	VCC			
148	IOCLK, I/O			
149	GND			
155	VCC			
162	GND			
172	CLKA, I/O			
173	CLKB, I/O			
174	PRA, I/O			
183	GND			
189	VCC			
193	GND			
196	DCLK, I/O			

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs – ACT 3 Family

PG100				
A1415 Function	Location			
CLKA or I/O	C7			
CLKB or I/O	D6			
DCLK or I/O	C4			
GND	C3, C6, C9, E9, F3, F9, J3, J6, J8, J9			
HCLK or I/O	H6			
IOCLK or I/O	C10			
IOPCL or I/O	К9			
MODE	C2			
PRA or I/O	A6			
PRB or I/O	L3			
SDI or I/O	B3			
SDO	L9			
VCC	B6, B10, E11, F2, F10, G2, K2, K6, K10			

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG100 package has been discontinued.

PG133				
A1425 Function	Location			
CLKA or I/O	D7			
CLKB or I/O	B6			
DCLK or I/O	D4			
GND	A2, C3, C7, C11, C12, F10, G3, G11, L3, L7, L11, M3, N12			
HCLK or I/O	K7			
IOCLK or I/O	C10			
IOPCL or I/O	L10			
MODE	E3			
NC	A1, A7, A13, G1, G13, N1, N7, N13			
PRA or I/O	A6			
PRB or I/O	L6			
SDI or I/O	C2			
SDO	M11			
VCC	B2, B7, B12, E11, G2, G12, J2, J12, M2, M7, M12			

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG133 package has been discontinued.

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.