E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	310
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	83
Number of Gates	2500
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1425a-1vqg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ACT 3 Family Overview

General Description	1-1
Detailed Specifications	
Topology	2-1
Logic Modules	2-2
//Os	2-3

1/03		 	 	 	 	 • • • • •	
Clock Networks		 	 	 	 	 	 2-4
Routing Structure		 	 	 	 	 	 2-5
5 V Operating Conditions		 	 	 	 	 	 2-9
3.3 V Operating Conditions		 	 	 	 	 	 2-10
Package Thermal Characteristic	cs	 	 	 	 	 	 2-11
ACT 3 Timing Model		 	 	 	 	 	 2-16
Pin Descriptions		 	 	 	 	 	 2-42

Package Pin Assignments

PL84	
PQ100	
PQ160	3-5
PQ208, RQ208	
VQ100	3-12
CQ132	
CQ196	
CQ256	
BG225	3-20
BG313	
PG100	3-24
PG133	
PG175	3-28
PG207	
PG257	3-32

Datasheet Information

List of Changes	4-1
Datasheet Categories	4-3
Safety Critical, Life Support, and High-Reliability Applications Policy	4-3

2 – Detailed Specifications

This section of the datasheet is meant to familiarize the user with the architecture of the ACT 3 family of FPGA devices. A generic description of the family will be presented first, followed by a detailed description of the logic blocks, the routing structure, the antifuses, and the special function circuits. The on-chip circuitry required to program the devices is not covered.

Topology

The ACT 3 family architecture is composed of six key elements: Logic modules, I/O modules, I/O Pad Drivers, Routing Tracks, Clock Networks, and Programming and Test Circuits. The basic structure is similar for all devices in the family, differing only in the number of rows, columns, and I/Os. The array itself consists of alternating rows of modules and channels. The logic modules and channels are in the center of the array; the I/O modules are located along the array periphery. A simplified floor plan is depicted in Figure 2-1.

Figure 2-1 • Generalized Floor Plan of ACT 3 Device

Dedicated Clocks

Dedicated clock networks support high performance by providing sub-nanosecond skew and guaranteed performance. Dedicated clock networks contain no programming elements in the path from the I/O Pad Driver to the input of S-modules or I/O modules. There are two dedicated clock networks: one for the array registers (HCLK), and one for the I/O registers (IOCLK). The clock networks are accessed by special I/Os.

Figure 2-6 • Clock Networks

The routed clock networks are referred to as CLK0 and CLK1. Each network is connected to a clock module (CLKMOD) that selects the source of the clock signal and may be driven as follows (Figure 2-6):

- Externally from the CLKA pad
- Externally from the CLKB pad
- Internally from the CLKINA input
- Internally from the CLKINB input

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel. The function of the clock module is determined by the selection of clock macros from the macro library. The macro CLKBUF is used to connect one of the two external clock pins to a clock network, and the macro CLKINT is used to connect an internally generated clock signal to a clock network. Since both clock networks are identical, the user does not care whether CLK0 or CLK1 is being used. Routed clocks can also be used to drive high fanout nets like resets, output enables, or data enables. This saves logic modules and results in performance increases in some cases.

Routing Structure

The ACT 3 architecture uses vertical and horizontal routing tracks to connect the various logic and I/O modules. These routing tracks are metal interconnects that may either be of continuous length or broken into segments. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track.

Antifuse Connections

An antifuse is a "normally open" structure as opposed to the normally closed fuse structure used in PROMs or PALs. The use of antifuses to implement a programmable logic device results in highly testable structures as well as an efficient programming architecture. The structure is highly testable because there are no preexisting connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed as well as isolate individual circuit structures to be tested. This can be done both before and after programming. For example, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified.

Four types of antifuse connections are used in the routing structure of the ACT 3 array. (The physical structure of the antifuse is identical in each case; only the usage differs.)

Table 2-1 shows four types of antifuses.

Table 2-1 •	Antifuse	Types
-------------	----------	-------

Туре	Description
XF	Horizontal-to-vertical connection
HF	Horizontal-to-horizontal connection
VF	Vertical-to-vertical connection
FF	"Fast" vertical connection

Examples of all four types of connections are shown in Figure 2-7 on page 2-6 and Figure 2-8 on page 2-6.

Module Interface

Connections to Logic and I/O modules are made through vertical segments that connect to the module inputs and outputs. These vertical segments lie on vertical tracks that span the entire height of the array.

Module Input Connections

The tracks dedicated to module inputs are segmented by pass transistors in each module row. During normal user operation, the pass transistors are inactive, which isolates the inputs of a module from the inputs of the module directly above or below it. During certain test modes, the pass transistors are active to verify the continuity of the metal tracks. Vertical input segments span only the channel above or the channel below. The logic modules are arranged such that half of the inputs are connected to the channel above and half of the inputs to segments in the channel below, as shown in Figure 2-9.

Figure 2-9 • Logic Module Routing Interface

A1415A, A14V15A Timing Characteristics (continued)

Table 2-21 • A1415A, A14V15A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}C$

Dedicate	d (hardwired) I/O Clock Network	-3 Speed		-2 Speed		-1 Speed		Std. Speed		I 3.3 V Speed ¹		Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.0		2.3		2.6		3.0		3.5	ns
t _{IOPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{IPOWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	1.9		2.4		3.3		3.8		4.8		ns
t _{IOCKSW}	Maximum Skew		0.4		0.4		0.4		0.4		0.4	ns
t _{IOP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{IOMAX}	Maximum Frequency		250		200		150		125		100	MHz
Dedicate	d (hardwired) Array Clock											
^t нскн	Input Low to High (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{HPWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.3		0.3		0.3		0.3		0.3	ns
t _{HP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{HMAX}	Maximum Frequency		250		200		150		125		100	MHz
Routed A	rray Clock Networks			•	•				-			
t _{RCKH}	Input Low to High (FO = 64)		3.7		4.1		4.7		5.5		9.0	ns
t _{RCKL}	Input High to Low (FO = 64)		4.0		4.5		5.1		6.0		9.0	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RCKSW}	Maximum Skew (FO = 128)		0.7		0.8		0.9		1.0		1.0	ns
t _{RP}	Minimum Period (FO = 64)	6.8		8.0		8.7		10.0		13.4		ns
f _{RMAX}	Maximum Frequency (FO = 64)		150		125		115		100		75	MHz
Clock-to-	Clock Skews			•					-			
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	1.7	0.0	1.8	0.0	2.0	0.0	2.2	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64)	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0	3.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 50% maximum)	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0 0.0	3.0 3.0	ns

Notes:

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1440A, A14V40A Timing Characteristics (continued)

Table 2-28 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Moo	dule – TTL Output Timing ¹	-3 Sp	beed ²	-2 Sp	beed ²	–1 S	peed	Std.	Speed	I 3.3 V Speed ¹		Units
Parameter/Description			Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.5		8.5		9.5		11.0		14.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Moo	dule – CMOS Output Timing ¹	•			•							
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.0		9.0		10.1		11.8		14.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes:

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1460A, A14V60A Timing Characteristics

Table 2-30 • A1460A	, A14V60A Worst-Case Commercial	Conditions	$VCC = 4.75 V_{1} T_{1} = 70^{\circ}C^{1}$
		oonantiono	

Logic Module Propagation Delays ²			-3 Speed ³		-2 Speed ³		-1 Speed		Speed	3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Nodule Sequential Timing											
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _A	Flip-Flop Clock Input Period	5.0		6.8		8.0		10.0		13.4		ns
f _{MAX}	Flip-Flop Clock Frequency		200		150		125		100		75	MHz

Notes:

1. VCC = 3.0 V for 3.3 V specifications.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A1460A, A14V60A Timing Characteristics (continued)

Table 2-31 • A1460A	A14V60A Worst-Case	Commercial Conditions	, VCC = 4.75 V, T _J = 70°C
Table 2-31 • A 1400A,	A 14VOUA WUISI-Case	Commercial Conditions	, VCC = 4.75 V, Ij = 70 C

I/O Module Input Propagation Delays			beed ¹	-2 Sp	beed ¹	-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²						•					
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	ule Sequential Timing (wrt IOCLK	pad)					•					
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	1.3		1.5		1.8		2.0		2.0		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns

Notes:

5. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

6. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A1460A, A14V60A Timing Characteristics (continued)

Table 2-32 • A1460A, A14V60A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Moo	dule – TTL Output Timing ¹	–3 Sj	beed ²	-2 Sp	beed ²	–1 S	-1 Speed Std. Speed			3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.8		8.7		9.9		11.6		15.1	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.0		9.0		10.0		11.5		15.0	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		12.8		12.8		15.3		17.0		22.1	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Moo	dule – CMOS Output Timing ¹	•			•		•					
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		10.4		10.4		12.1		13.8		17.9	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		14.5		14.5		17.4		19.3		25.1	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes:

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A14100A, A14V100A Timing Characteristics (continued)

Table 2-35 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Module Input Propagation Delays			beed ¹	-2 Sp	beed ¹	-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	ule Sequential Timing (wrt IOCLK	pad)										
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	1.2		1.4		1.5		1.8		1.8		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		1.0		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		1.0		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.5		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		2.0		2.0		2.0		ns

Notes: *

1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Pin Descriptions

CLKA Clock A (Input)

Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKB Clock B (Input)

Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

GND Ground

LOW supply voltage.

HCLK Dedicated (Hard-wired) Array Clock (Input)

Clock input for sequential modules. This input is directly wired to each S-Module and offers clock speeds independent of the number of S-Modules being driven. This pin can also be used as an I/O.

I/O Input/Output (Input, Output)

The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are tristated by the Designer Series software.

IOCLK Dedicated (Hard-wired) I/O Clock (Input)

Clock input for I/O modules. This input is directly wired to each I/O module and offers clock speeds independent of the number of I/O modules being driven. This pin can also be used as an I/O.

IOPCL Dedicated (Hard-wired) I/O Preset/Clear (Input)

Input for I/O preset or clear. This global input is directly wired to the preset and clear inputs of all I/O registers. This pin functions as an I/O when no I/O preset or clear macros are used.

MODE Mode (Input)

The MODE pin controls the use of diagnostic pins (DCLK, PRA, PRB, SDI). When the MODE pin is HIGH, the special functions are active. When the MODE pin is LOW, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled high when required.

NC No Connection

This pin is not connected to circuitry within the device.

PRA Probe A (Output)

The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

PRB Probe B (Output)

The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

SDI Serial Data Input (Input)

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

SDO Serial Data Output (Output)

Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

DCLK Diagnostic Clock (Input)

Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

VCC 5 V Supply Voltage

HIGH supply voltage.

PL84						
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function			
1	VCC	VCC	VCC			
2	GND	GND	GND			
3	VCC	VCC	VCC			
4	PRA, I/O	PRA, I/O	PRA, I/O			
11	DCLK, I/O	DCLK, I/O	DCLK, I/O			
12	SDI, I/O	SDI, I/O	SDI, I/O			
16	MODE	MODE	MODE			
27	GND	GND	GND			
28	VCC	VCC	VCC			
40	PRB, I/O	PRB, I/O	PRB, I/O			
41	VCC	VCC	VCC			
42	GND	GND	GND			
43	VCC	VCC	VCC			
45	HCLK, I/O	HCLK, I/O	HCLK, I/O			
52	SDO	SDO	SDO			
53	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O			
59	VCC	VCC	VCC			
60	VCC	VCC	VCC			
61	GND	GND	GND			
68	VCC	VCC	VCC			
69	GND	GND	GND			
74	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O			
83	CLKA, I/O	CLKA, I/O	CLKA, I/O			
84	CLKB, I/O	CLKB, I/O	CLKB, I/O			

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PQ100

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

	TQ176		TQ176						
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function	Pin Number	A1440, A14V40 Function	A1460, A14V60 Function				
1	GND	GND	89	GND	GND				
2	SDI, I/O	SDI, I/O	98	VCC	VCC				
10	MODE	MODE	99	VCC	VCC				
11	VCC	VCC	108	GND	GND				
20	NC	I/O	109	VCC	VCC				
21	GND	GND	110	GND	GND				
22	VCC	VCC	119	NC	I/O				
23	GND	GND	121	NC	I/O				
32	VCC	VCC	122	VCC	VCC				
33	VCC	VCC	123	GND	GND				
44	GND	GND	124	VCC	VCC				
49	NC	I/O	132	IOCLK, I/O	IOCLK, I/O				
51	NC	I/O	133	GND	GND				
63	NC	I/O	138	NC	I/O				
64	PRB, I/O	PRB, I/O	152	CLKA, I/O	CLKA, I/O				
65	GND	GND	153	CLKB, I/O	CLKB, I/O				
66	VCC	VCC	154	VCC	VCC				
67	VCC	VCC	155	GND	GND				
69	HCLK, I/O	HCLK, I/O	156	VCC	VCC				
82	NC	I/O	157	PRA, I/O	PRA, I/O				
83	NC	I/O	158	NC	I/O				
87	SDO	SDO	170	NC	I/O				
88	IOPCL, I/O	IOPCL, I/O	176	DCLK, I/O	DCLK, I/O				

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

CQ132

Note: This is the top view

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

PG100

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

	PG175						
A1440 Function	Location						
CLKA or I/O	C9						
CLKB or I/O	А9						
DCLK or I/O	D5						
GND	D4, D8, D11, D12, E4, E14, H4, H12, L4, L12, M4, M8, M12						
HCLK or I/O	R8						
IOCLK or I/O	E12						
IOPCL or I/O	P13						
MODE	F3						
NC	A1, A2, A15, B2, B3, P2, P14, R1, R2, R14, R15						
PRA or I/O	B8						
PRB or I/O	R7						
SDI or I/O	D3						
SDO	N12						
VCC	C3, C8, C13, E15, H3, H13, L1, L14, N3, N8, N13						

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG175 package has been discontinued.

Revision	Changes	Page
Revision 2 (continued)	In the "Package Pin Assignments" section, notes were added to the pin tables for the following packages, stating that they are discontinued:	
	"BG225"	3-20
	"PG100"	3-24
	"PG133"	3-26
	"PG175"	3-28
Revision 1 (June 2006)	RoHS compliant information was added to the "Ordering Information" section.	II

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.