

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	310
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	70
Number of Gates	2500
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1425a-pl84i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Accelerator Series FPGAs - ACT 3 Family

		Speed Grade ¹				Applic	Application ¹			
Device/Package	Std.	-1	-2	-3	С	I	М	В		
A14V40A Device	•	•	•	•	•	•				
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	-	_	_	✓	_	_	-		
100-Pin Very Thin Quad Flatpack (VQFP)	1	_	_	_	✓	_	_	_		
160-Pin Plastic Quad Flatpack (PQFP)	1	_	_	_	1	-	-	_		
176-Pin Thin Quad Flatpack (TQFP)	1	_	_	_	1	_	-	_		
A1460A Device										
160-Pin Plastic Quad Flatpack (PQFP)	√	✓	D	D	✓	✓	_	_		
176-Pin Thin Quad Flatpack (TQFP)	✓	1	D	D	1	1	-	-		
196-Pin Ceramic Quad Flatpack (CQFP)	1	1	_	-	1	_	1	✓		
207-Pin Ceramic Pin Grid Array (CPGA)	✓	1	D	D	1	-	1	✓		
208-Pin Plastic Quad Flatpack (PQFP)	✓	1	D	D	1	1	-	-		
225-Pin Plastic Ball Grid Array (BGA)	D	D	D	D	D	-	-	-		
A14V60A Device	•	•	•	•	•	•	•			
160-Pin Plastic Quad Flatpack (PQFP)	✓	_	_	_	1	_	-	_		
176-Pin Thin Quad Flatpack (TQFP)	✓	_	_	-	1	-	-	_		
208-Pin Plastic Quad Flatpack (PQFP)	✓	-	_	-	1	-	-	-		
A14100A Device										
208-Pin Power Quad Flatpack (RQFP)	✓	1	D	D	1	✓	-	_		
257-Pin Ceramic Pin Grid Array (CPGA)	✓	1	D	D	1	-	1	✓		
313-Pin Plastic Ball Grid Array (BGA)	✓	1	D	D	1	-	-	_		
256-Pin Ceramic Quad Flatpack (CQFP)	✓	✓	-	_	✓	_	1	✓		
A14V100A Device	•		-			•	-	•		
208-Pin Power Quad Flatpack (RQFP)	✓	-	_	-	✓	_	-	_		
313-Pin Plastic Ball Grid Array (BGA)	1	_	_	_	1	_	_	_		

Notes:

1. Applications: C = CommercialI = Industrial
M = Military
Commercial only

Availability: ✓ = Available P = Planned -= Not planned D = Discontinued Speed Grade:

-1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std. -3 = Approx. 35% faster than Std. (-2 and -3 speed grades have been discontinued.)

١٧ Revision 3

1 – ACT 3 Family Overview

General Description

Microsemi's ACT 3 Accelerator Series of FPGAs offers the industry's fastest high-capacity programmable logic device. ACT 3 FPGAs offer a high performance, PCI compliant programmable solution capable of 186 MHz on-chip performance and 9.0 nanosecond clock-to-output (–1 speed grade), with capacities spanning from 1,500 to 10,000 gate array equivalent gates.

The ACT 3 family builds on the proven two-module architecture consisting of combinatorial and sequential logic modules used in Microsemi's 3200DX and 1200XL families. In addition, the ACT 3 I/O modules contain registers which deliver 9.0 nanosecond clock-to-out times (–1 speed grade). The devices contain four clock distribution networks, including dedicated array and I/O clocks, supporting very fast synchronous and asynchronous designs. In addition, routed clocks can be used to drive high fanout signals such as flip-flop resets and output.

The ACT 3 family is supported by Microsemi's Designer Series Development System which offers automatic placement and routing (with automatic or fixed pin assignments), static timing analysis, user programming, and debug and diagnostic probe capabilities.

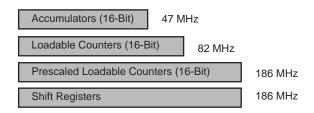
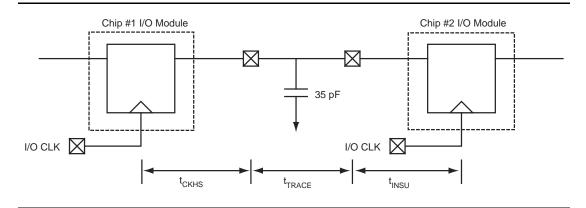



Figure 1-1 • Predictable Performance (worst-case commercial, -1 speed grade)

System Performance Model

Detailed Specifications

Module Output Connections

Module outputs have dedicated output segments. Output segments extend vertically two channels above and two channels below, except at the top or bottom of the array. Output segments twist, as shown in Figure 10, so that only four vertical tracks are required.

LVT Connections

Outputs may also connect to nondedicated segments called Long Vertical Tracks (LVTs). Each module pair in the array shares four LVTs that span the length of the column. Any module in the column pair can connect to one of the LVTs in the column using an FF connection. The FF connection uses antifuses connected directly to the driver stage of the module output, bypassing the isolation transistor. FF antifuses are programmed at a higher current level than HF, VF, or XF antifuses to produce a lower resistance value.

Antifuse Connections

In general every intersection of a vertical segment and a horizontal segment contains an unprogrammed antifuse (XF-type). One exception is in the case of the clock networks.

Clock Connections

To minimize loading on the clock networks, a subset of inputs has antifuses on the clock tracks. Only a few of the C-module and S-module inputs can be connected to the clock networks. To further reduce loading on the clock network, only a subset of the horizontal routing tracks can connect to the clock inputs of the S-module.

Programming and Test Circuits

The array of logic and I/O modules is surrounded by test and programming circuits controlled by the temporary special I/O pins MODE, SDI, and DCLK. The function of these pins is similar to all ACT family devices. The ACT 3 family also includes support for two Actionprobe[®] circuits, allowing complete observability of any logic or I/O module in the array using the temporary special I/O pins, PRA and PRB.

2-8 Revision 3

Package Thermal Characteristics

The device junction to case thermal characteristic is θ jc, and the junction to ambient air characteristic is θ ja. The thermal characteristics for θ ja are shown with two different air flow rates.

Maximum junction temperature is 150°C.

A sample calculation of the absolute maximum power dissipation allowed for a CPGA 175-pin package at commercial temperature and still air is as follows:

$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}\text{°C/W}} \,=\, \frac{150\text{°C} - 70\text{°C}}{25\text{°C/W}} \,=\, 3.2 \text{ W}$$

EQ2

Table 2-8 • Package Thermal Characteristics

Package Type∗	Pin Count	θjc	θ _{ja} Still Air	$_{ m ja}^{ m heta_{ m ja}}$ 300 ft./min.	Units
Ceramic Pin Grid Array	100	20	35	17	°C/W
	133	20	30	15	°C/W
	175	20	25	14	°C/W
	207	20	22	13	°C/W
	257	20	15	8	°C/W
Ceramic Quad Flatpack	132	13	55	30	°C/W
	196	13	36	24	°C/W
	256	13	30	18	°C/W
Plastic Quad Flatpack	100	13	51	40	°C/W
	160	10	33	26	°C/W
	208	10	33	26	°C/W
Very Thin Quad Flatpack	100	12	43	35	°C/W
Thin Quad Flatpack	176	11	32	25	°C/W
Power Quad Flatpack	208	0.4	17	13	°C/W
Plastic Leaded Chip Carrier	84	12	37	28	°C/W
Plastic Ball Grid Array	225	10	25	19	°C/W
	313	10	23	17	°C/W

Note: Maximum power dissipation in still air:

PQ160 = 2.4 W

PQ208 = 2.4 W

PQ100 = 1.6 W

VQ100 = 1.9 W

TQ176 = 2.5 W

PL84 = 2.2 W

RQ208 = 4.7 W

BG225 = 3.2 W

BG313 = 3.5 W

Tightest Delay Distributions

Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases.

From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer lengths of routing track. The ACT 3 family delivers the tightest fanout delay distribution of any FPGA. This tight distribution is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path.

Microsemi's patented PLICE antifuse offers a very low resistive/capacitive interconnect. The ACT 3 family's antifuses, fabricated in 0.8 micron m lithography, offer nominal levels of 200Ω resistance and 6 femtofarad (fF) capacitance per antifuse. The ACT 3 fanout distribution is also tighter than alternative devices due to the low number of antifuses required per interconnect path. The ACT 3 family's proprietary architecture limits the number of antifuses per path to only four, with 90% of interconnects using only two antifuses.

The ACT 3 family's tight fanout delay distribution offers an FPGA design environment in which fanout can be traded for the increased performance of reduced logic level designs. This also simplifies performance estimates when designing with ACT 3 devices.

Speed Grade	FO = 1	FO = 2	FO = 3	FO = 4	FO = 8		
ACT 3 –3	2.9	3.2	3.4	3.7	4.8		
ACT 3 –2	3.3	3.7	3.9	4.2	5.5		
ACT 3 –1	3.7	4.2	4.4	4.8	6.2		
ACT 3 STD	4.3	4.8	5.1	5.5	7.2		

Table 2-14 • Logic Module and Routing Delay by Fanout (ns); Worst-Case Commercial Conditions

Notes:

- Obtained by added t_{RD(X=FO)} to t_{PD} from the Logic Module Timing Characteristics Tables found in this datasheet.
- 2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

Timing Characteristics

Timing characteristics for ACT 3 devices fall into three categories: family dependent, device dependent, and design dependent. The input and output buffer characteristics are common to all ACT 3 family members. Internal routing delays are device dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the ALS Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections. This increases capacitance and resistance, result ng in longer net delays for macros connected to long tracks. Typically up to 6% of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 14 ns delay. This additional delay is represented statistically in higher fanout (FO=8) routing delays in the datasheet specifications section.

2-20 Revision 3

A1460A, A14V60A Timing Characteristics (continued)

Table 2-33 • A1460A, A14V60A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

Dedicate	d (hardwired) I/O Clock Network	–3 Sp	eed ¹	–2 Sp	oeed ¹	–1 S	peed	Std.	Speed	3.3 V	Speed ¹	Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.3		2.6		3.0		3.5		4.5	ns
t _{IOPWH}	Minimum Pulse Width High	2.4		3.2		3.8		4.8		6.5		ns
t _{IPOWL}	Minimum Pulse Width Low	2.4		3.2		3.8		4.8		6.5		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _{iocksw}	Maximum Skew		0.6		0.6		0.6		0.6		0.6	ns
t _{IOP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{IOMAX}	Maximum Frequency		200		150		125		100		75	MHz
Dedicate	d (hardwired) Array Clock											
t _{HCKH}	Input Low to High (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HPWH}	Minimum Pulse Width High	2.4		3.2		3.8		4.8		6.5		ns
t _{HPWL}	Minimum Pulse Width Low	2.4		3.2		3.8		4.8		6.5		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.6		0.6		0.6		0.6		0.6	ns
t _{HP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{HMAX}	Maximum Frequency		200		150		125		100		75	MHz
Routed A	rray Clock Networks	•					•			•		•
t _{RCKH}	Input Low to High (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RCKL}	Input High to Low (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RCKSW}	Maximum Skew (FO = 128)		1.2		1.4		1.6		1.8		1.8	ns
t _{RP}	Minimum Period (FO = 64)	8.3		9.3		11.1		12.5		16.7		ns
f _{RMAX}	Maximum Frequency (FO = 64)		120		105		90		80		60	MHz
Clock-to-	Clock Skews											
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	2.6	0.0	2.7	0.0	2.9	0.0	3.0	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 216)	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	5.0 5.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 216)	0.0 0.0	1.3 3.0	0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes:

^{1.} The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

^{2.} Delays based on 35 pF loading.

Detailed Specifications

A14100A, A14V100A Timing Characteristics

Table 2-34 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C¹

Logic N	Module Propagation Delays ²	−3 S	peed ³	–2 Sp	eed ³	-1 S	peed	Std. S	Speed	3.3 V	Speed ¹	Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴						•					
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Module Sequential Timing											•
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.8		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.5		0.5		0.5		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.8		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.5		0.5		0.5		ns
t _{WASYN}	Asynchronous Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _A	Flip-Flop Clock Input Period	5.0		6.8		8.0		10.0		13.4		ns
f _{MAX}	Flip-Flop Clock Frequency		200		150		125		100		75	MHz

Notes:

- 1. VCC = 3.0 V for 3.3 V specifications.
- 2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.
- 3. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
- 4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

2-38 Revision 3

Detailed Specifications

A14100A, A14V100A Timing Characteristics (continued)

Table 2-36 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	dule – TTL Output Timing ¹	-3 S _I	peed ²	-2 S _I	peed ²	-1 S	peed	Std.	Speed	3.3 V	Speed ¹	Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.5		9.5		10.5		12.0		15.6	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		12.8		12.8		15.3		17.0		22.1	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.0		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		10.4		10.4		12.4		13.8		17.9	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		14.5		14.5		17.4		19.3		25.1	ns
d_TLHHS	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

2-40 Revision 3

^{1.} Delays based on 35 pF loading.

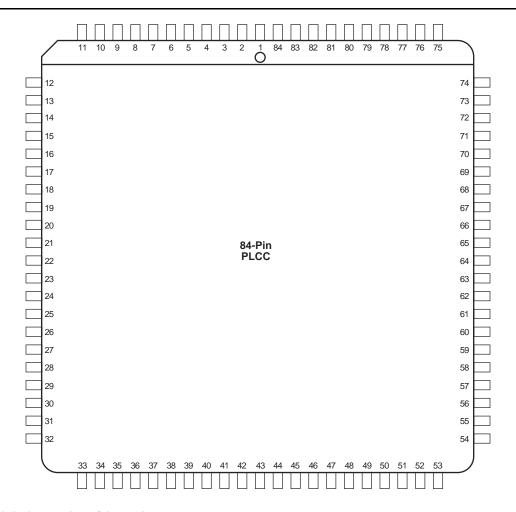
^{2.} The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A14100A, A14V100A Timing Characteristics (continued)

Table 2-37 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

Dedicate	d (hardwired) I/O Clock Network	–3 Sp	eed ¹	-2 Sp	oeed ¹	-1 S	peed	Std. Speed		3.3 V Speed ¹		Units
Paramete	er/Description	Min.	Max.	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.3		2.6		3.0		3.5		4.5	ns
t _{IOPWH}	Minimum Pulse Width High	2.4		3.3		3.8		4.8		6.5		ns
t _{IPOWL}	Minimum Pulse Width Low	2.4		3.3		3.8		4.8		6.5		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	2.4		3.3		3.8		4.8		6.5		ns
t _{IOCKSW}	Maximum Skew		0.6		0.6		0.7		0.8		0.6	ns
t _{IOP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{IOMAX}	Maximum Frequency		200		150		125		100		75	MHz
Dedicate	d (hardwired) Array Clock											
t _{HCKH}	Input Low to High (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HPWH}	Minimum Pulse Width High	2.4		3.3		3.8		4.8		6.5		ns
t _{HPWL}	Minimum Pulse Width Low	2.4		3.3		3.8		4.8		6.5		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.6		0.6		0.7		0.8		0.6	ns
t _{HP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{HMAX}	Maximum Frequency		200		150		125		100		75	MHz
Routed A	rray Clock Networks									J.		
t _{RCKH}	Input Low to High (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RCKL}	Input High to Low (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RCKSW}	Maximum Skew (FO = 128)		1.2		1.4		1.6		1.8		1.8	ns
t _{RP}	Minimum Period (FO = 64)	8.3		9.3		11.1		12.5		16.7		ns
f _{RMAX}	Maximum Frequency (FO = 64)		120		105		90		80		60	MHz
Clock-to-	Clock Skews											
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	2.6	0.0	2.7	0.0	2.9	0.0	3.0	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 350)	0.0 0.0	1.7 5.0	0.0	1.7 5.0	0.0	1.7 5.0	0.0	1.7 5.0	0.0 0.0	5.0 5.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 350)	0.0 0.0	1.3 3.0	0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes: *


^{1.} The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

^{2.} Delays based on 35 pF loading.

3 – Package Pin Assignments

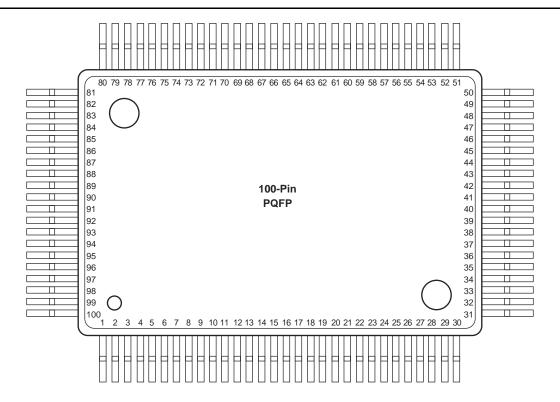
PL84

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Package Pin Assignments


		PL84	
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function
1	VCC	VCC	VCC
2	GND	GND	GND
3	VCC	VCC	VCC
4	PRA, I/O	PRA, I/O	PRA, I/O
11	DCLK, I/O	DCLK, I/O	DCLK, I/O
12	SDI, I/O	SDI, I/O	SDI, I/O
16	MODE	MODE	MODE
27	GND	GND	GND
28	VCC	VCC	VCC
40	PRB, I/O	PRB, I/O	PRB, I/O
41	VCC	VCC	VCC
42	GND	GND	GND
43	VCC	VCC	VCC
45	HCLK, I/O	HCLK, I/O	HCLK, I/O
52	SDO	SDO	SDO
53	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O
59	VCC	VCC	VCC
60	VCC	VCC	VCC
61	GND	GND	GND
68	VCC	VCC	VCC
69	GND	GND	GND
74	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O
83	CLKA, I/O	CLKA, I/O	CLKA, I/O
84	CLKB, I/O	CLKB, I/O	CLKB, I/O

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-2 Revision 3

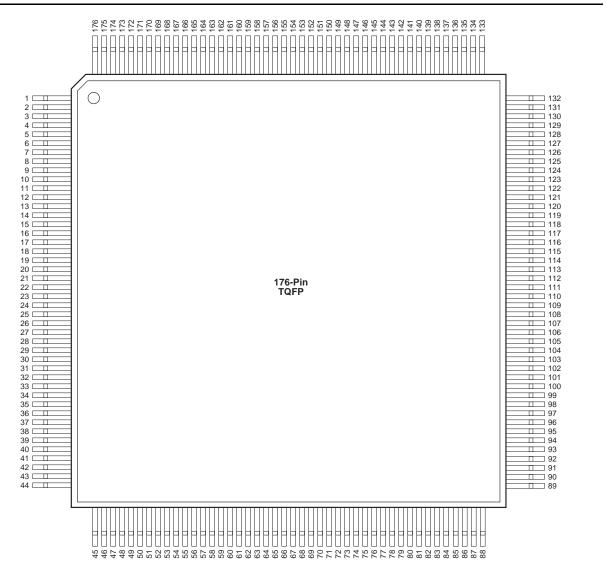
PQ100

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

		PQ160	
Pin Number	A1425, A14V25 Function	A1440, A14V40 Function	A1460, A14V60 Function
92	NC	I/O	I/O
93	NC	I/O	I/O
98	GND	GND	GND
99	VCC	VCC	VCC
100	NC	I/O	I/O
103	GND	GND	GND
107	NC	I/O	I/O
109	NC	I/O	I/O
110	VCC	VCC	VCC
111	GND	GND	GND
112	VCC	VCC	VCC
113	NC	I/O	I/O
119	NC	I/O	I/O
120	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O
121	GND	GND	GND
124	NC	I/O	I/O
127	NC	I/O	I/O
136	CLKA, I/O	CLKA, I/O	CLKA, I/O
137	CLKB, I/O	CLKB, I/O	CLKB, I/O
138	VCC	VCC	VCC
139	GND	GND	GND
140	VCC	VCC	VCC
141	GND	GND	GND
142	PRA, I/O	PRA, I/O	PRA, I/O
143	NC	I/O	I/O
145	NC	I/O	I/O
147	NC	I/O	I/O
149	NC	I/O	I/O
151	NC	I/O	I/O
153	NC	I/O	I/O
154	VCC	VCC	VCC
160	DCLK, I/O	DCLK, I/O	DCLK, I/O


Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

TQ176

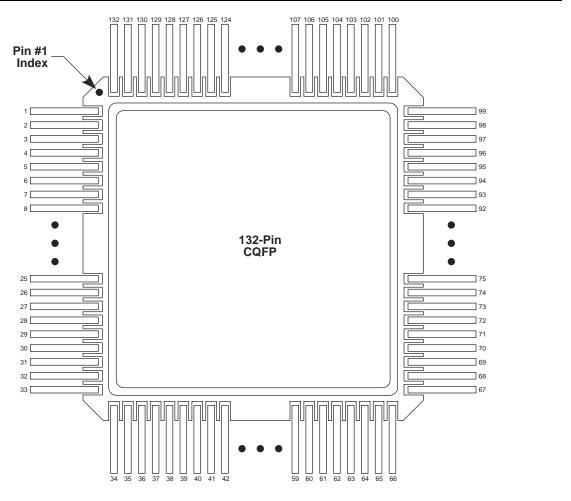
Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-10 Revision 3

	TQ176	
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function
1	GND	GND
2	SDI, I/O	SDI, I/O
10	MODE	MODE
11	VCC	VCC
20	NC	I/O
21	GND	GND
22	VCC	VCC
23	GND	GND
32	VCC	VCC
33	VCC	VCC
44	GND	GND
49	NC	I/O
51	NC	I/O
63	NC	I/O
64	PRB, I/O	PRB, I/O
65	GND	GND
66	VCC	VCC
67	VCC	VCC
69	HCLK, I/O	HCLK, I/O
82	NC	I/O
83	NC	I/O
87	SDO	SDO
88	IOPCL, I/O	IOPCL, I/O


	TQ176	
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function
89	GND	GND
98	VCC	VCC
99	VCC	VCC
108	GND	GND
109	VCC	VCC
110	GND	GND
119	NC	I/O
121	NC	I/O
122	VCC	VCC
123	GND	GND
124	VCC	VCC
132	IOCLK, I/O	IOCLK, I/O
133	GND	GND
138	NC	I/O
152	CLKA, I/O	CLKA, I/O
153	CLKB, I/O	CLKB, I/O
154	VCC	VCC
155	GND	GND
156	VCC	VCC
157	PRA, I/O	PRA, I/O
158	NC	I/O
170	NC	I/O
176	DCLK, I/O	DCLK, I/O

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

CQ132

Note: This is the top view

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-14 Revision 3

Accelerator Series FPGAs – ACT 3 Family

CQ132	
Pin Number	A1425 Function
1	NC
2	GND
3	SDI, I/O
9	MODE
10	GND
11	VCC
22	VCC
26	GND
27	VCC
34	NC
36	GND
42	GND
43	VCC
48	PRB, I/O
50	HCLK, I/O
58	GND
59	VCC
63	SDO
64	IOPCL, I/O
65	GND
66	NC

CQ132		
Pin Number	A1425 Function	
67	NC	
74	GND	
75	VCC	
78	VCC	
89	VCC	
90	GND	
91	VCC	
92	GND	
98	IOCLK, I/O	
99	NC	
100	NC	
101	GND	
106	GND	
107	VCC	
116	CLKA, I/O	
117	CLKB, I/O	
118	PRA, I/O	
122	GND	
123	VCC	
131	DCLK, I/O	
132	NC	

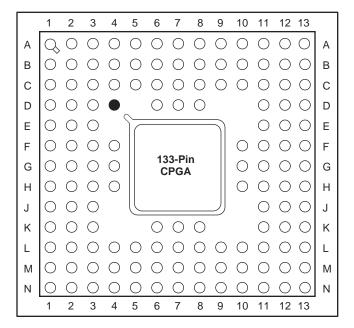
Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs – ACT 3 Family

CQ256	
Pin Number	A14100 Function
1	GND
2	SDI, I/O
11	MODE
28	VCC
29	GND
30	VCC
31	GND
46	VCC
59	GND
90	PRB, I/O
91	GND
92	VCC
93	GND
94	VCC
96	HCLK, I/O
110	GND
126	SDO
127	IOPCL, I/O
128	GND

CQ256		
Pin Number	A14100 Function	
141	VCC	
158	GND	
159	VCC	
160	GND	
161	VCC	
174	VCC	
175	GND	
176	GND	
188	IOCLK, I/O	
189	GND	
219	CLKA, I/O	
220	CLKB, I/O	
221	VCC	
222	GND	
223	VCC	
224	GND	
225	PRA, I/O	
240	GND	
256	DCLK, I/O	


Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

PG133

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-26 Revision 3

Accelerator Series FPGAs - ACT 3 Family

	PG175		
A1440 Function	Location		
CLKA or I/O	C9		
CLKB or I/O	A9		
DCLK or I/O	D5		
GND	D4, D8, D11, D12, E4, E14, H4, H12, L4, L12, M4, M8, M12		
HCLK or I/O	R8		
IOCLK or I/O	E12		
IOPCL or I/O	P13		
MODE	F3		
NC	A1, A2, A15, B2, B3, P2, P14, R1, R2, R14, R15		
PRA or I/O	B8		
PRB or I/O	R7		
SDI or I/O	D3		
SDO	N12		
VCC	C3, C8, C13, E15, H3, H13, L1, L14, N3, N8, N13		

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG175 package has been discontinued.