

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	310
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	70
Number of Gates	2500
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1425a-plg84i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Detailed Specifications

Logic Modules

ACT 3 logic modules are enhanced versions of the 1200XL family logic modules. As in the 1200XL family, there are two types of modules: C-modules and S-modules (Figure 2-2 and Figure 2-3). The C-module is functionally equivalent to the 1200XL C-module and implements high fanin combinatorial macros, such as 5-input AND, 5-input OR, and so on. It is available for use as the CM8 hard macro. The S-module is designed to implement high-speed sequential functions within a single module.

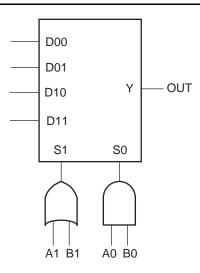


Figure 2-2 • C-Module Diagram

Figure 2-3 • S-Module Diagram

S-modules consist of a full C-module driving a flip-flop, which allows an additional level of logic to be implemented without additional propagation delay. It is available for use as the DFM8A/B and DLM8A/B hard macros. C-modules and S-modules are arranged in pairs called module-pairs. Module-pairs are arranged in alternating patterns and make up the bulk of the array. This arrangement allows the placement software to support two-module macros of four types (CC, CS, SC, and SS). The C-module implements the following function:

EQ 1

where: S0 = A0 * B0 and S1 = A1 + B1

2-2 Revision 3

Dedicated Clocks

Dedicated clock networks support high performance by providing sub-nanosecond skew and guaranteed performance. Dedicated clock networks contain no programming elements in the path from the I/O Pad Driver to the input of S-modules or I/O modules. There are two dedicated clock networks: one for the array registers (HCLK), and one for the I/O registers (IOCLK). The clock networks are accessed by special I/Os.



Figure 2-6 • Clock Networks

The routed clock networks are referred to as CLK0 and CLK1. Each network is connected to a clock module (CLKMOD) that selects the source of the clock signal and may be driven as follows (Figure 2-6):

- · Externally from the CLKA pad
- Externally from the CLKB pad
- · Internally from the CLKINA input
- · Internally from the CLKINB input

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel. The function of the clock module is determined by the selection of clock macros from the macro library. The macro CLKBUF is used to connect one of the two external clock pins to a clock network, and the macro CLKINT is used to connect an internally generated clock signal to a clock network. Since both clock networks are identical, the user does not care whether CLK0 or CLK1 is being used. Routed clocks can also be used to drive high fanout nets like resets, output enables, or data enables. This saves logic modules and results in performance increases in some cases.

Routing Structure

The ACT 3 architecture uses vertical and horizontal routing tracks to connect the various logic and I/O modules. These routing tracks are metal interconnects that may either be of continuous length or broken into segments. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track.

Detailed Specifications

Module Output Connections

Module outputs have dedicated output segments. Output segments extend vertically two channels above and two channels below, except at the top or bottom of the array. Output segments twist, as shown in Figure 10, so that only four vertical tracks are required.

LVT Connections

Outputs may also connect to nondedicated segments called Long Vertical Tracks (LVTs). Each module pair in the array shares four LVTs that span the length of the column. Any module in the column pair can connect to one of the LVTs in the column using an FF connection. The FF connection uses antifuses connected directly to the driver stage of the module output, bypassing the isolation transistor. FF antifuses are programmed at a higher current level than HF, VF, or XF antifuses to produce a lower resistance value.

Antifuse Connections

In general every intersection of a vertical segment and a horizontal segment contains an unprogrammed antifuse (XF-type). One exception is in the case of the clock networks.

Clock Connections

To minimize loading on the clock networks, a subset of inputs has antifuses on the clock tracks. Only a few of the C-module and S-module inputs can be connected to the clock networks. To further reduce loading on the clock network, only a subset of the horizontal routing tracks can connect to the clock inputs of the S-module.

Programming and Test Circuits

The array of logic and I/O modules is surrounded by test and programming circuits controlled by the temporary special I/O pins MODE, SDI, and DCLK. The function of these pins is similar to all ACT family devices. The ACT 3 family also includes support for two Actionprobe[®] circuits, allowing complete observability of any logic or I/O module in the array using the temporary special I/O pins, PRA and PRB.

2-8 Revision 3

Package Thermal Characteristics

The device junction to case thermal characteristic is θ jc, and the junction to ambient air characteristic is θ ja. The thermal characteristics for θ ja are shown with two different air flow rates.

Maximum junction temperature is 150°C.

A sample calculation of the absolute maximum power dissipation allowed for a CPGA 175-pin package at commercial temperature and still air is as follows:

$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}\text{°C/W}} \,=\, \frac{150\text{°C} - 70\text{°C}}{25\text{°C/W}} \,=\, 3.2 \text{ W}$$

EQ2

Table 2-8 • Package Thermal Characteristics

Package Type∗	Pin Count	θjc	θ _{ja} Still Air	$_{ m ja}^{ m heta_{ m ja}}$ 300 ft./min.	Units
Ceramic Pin Grid Array	100	20	35	17	°C/W
	133	20	30	15	°C/W
	175	20	25	14	°C/W
	207	20	22	13	°C/W
	257	20	15	8	°C/W
Ceramic Quad Flatpack	132	13	55	30	°C/W
	196	13	36	24	°C/W
	256	13	30	18	°C/W
Plastic Quad Flatpack	100	13	51	40	°C/W
	160	10	33	26	°C/W
	208	10	33	26	°C/W
Very Thin Quad Flatpack	100	12	43	35	°C/W
Thin Quad Flatpack	176	11	32	25	°C/W
Power Quad Flatpack	208	0.4	17	13	°C/W
Plastic Leaded Chip Carrier	84	12	37	28	°C/W
Plastic Ball Grid Array	225	10	25	19	°C/W
	313	10	23	17	°C/W

Note: Maximum power dissipation in still air:

PQ160 = 2.4 W

PQ208 = 2.4 W

PQ100 = 1.6 W

VQ100 = 1.9 W

TQ176 = 2.5 W

PL84 = 2.2 W

RQ208 = 4.7 W

BG225 = 3.2 W

BG313 = 3.5 W

Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used over a wide range of operating conditions. Equivalent capacitance values are shown in Figure 2-10.

Table 2-10 • CEQ Values for Microsemi FPGAs

Item	CEQ Value
Modules (C _{EQM})	6.7
Input Buffers (C _{EQI})	7.2
Output Buffers (C _{EQO})	10.4
Routed Array Clock Buffer Loads (C _{EQCR})	1.6
Dedicated Clock Buffer Loads (C _{EQCD})	0.7
I/O Clock Buffer Loads (C _{EQCI)}	0.9

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 5 shows a piece-wise linear summation over all components.

$$\begin{split} & \text{Power =VCC2} * \text{[(m * C_{EQM} * f_m)_{modules} + (n * C_{EQI} * f_n)_{inputs} \\ & + (p * (C_{EQO} + C_L) * f_p)_{outputs} \\ & + 0.5 * (q1 * C_{EQCR} * f_{q1})_{routed_Clk1} + (r1 * fq1)_{routed_Clk1} \\ & + 0.5 * (q2 * C_{EQCR} * fq2)_{routed_Clk2} \\ & + (r_2 * f_{q2})_{routed_Clk2} + 0.5 * (s_1 * C_{EQCD} * f_{s1})_{dedicated_Clk} \\ & + (s_2 * C_{EQCI} * f_{s2})_{IO_Clk} \end{split}$$

EQ5

Where:

m = Number of logic modules switching at f_m

n = Number of input buffers switching at fn

p = Number of output buffers switching at f_p

q1 = Number of clock loads on the first routed array clock

q2 = Number of clock loads on the second routed array clock

r₁ = Fixed capacitance due to first routed array clock

r₂ = Fixed capacitance due to second routed array clock

s₁ = Fixed number of clock loads on the dedicated array clock

s₂ = Fixed number of clock loads on the dedicated I/O clock

C_{EQM} = Equivalent capacitance of logic modules in pF

 C_{EQI} = Equivalent capacitance of input buffers in pF

C_{EQO} = Equivalent capacitance of output buffers in pF

C_{EQCR} = Equivalent capacitance of routed array clock in pF

C_{EOCD} = Equivalent capacitance of dedicated array clock in pF

C_{FOCI} = Equivalent capacitance of dedicated I/O clock in pF

C_L = Output lead capacitance in pF

f_m = Average logic module switching rate in MHz

f_n = Average input buffer switching rate in MHz

f_n = Average output buffer switching rate in MHz

f_{q1} = Average first routed array clock rate in MHz

f_{q2} = Average second routed array clock rate in MHz

f_{s1} = Average dedicated array clock rate in MHz

f_{s2} = Average dedicated I/O clock rate in MHz

Tightest Delay Distributions

Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases.

From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer lengths of routing track. The ACT 3 family delivers the tightest fanout delay distribution of any FPGA. This tight distribution is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path.

Microsemi's patented PLICE antifuse offers a very low resistive/capacitive interconnect. The ACT 3 family's antifuses, fabricated in 0.8 micron m lithography, offer nominal levels of 200Ω resistance and 6 femtofarad (fF) capacitance per antifuse. The ACT 3 fanout distribution is also tighter than alternative devices due to the low number of antifuses required per interconnect path. The ACT 3 family's proprietary architecture limits the number of antifuses per path to only four, with 90% of interconnects using only two antifuses.

The ACT 3 family's tight fanout delay distribution offers an FPGA design environment in which fanout can be traded for the increased performance of reduced logic level designs. This also simplifies performance estimates when designing with ACT 3 devices.

Speed Grade	FO = 1	FO = 2	FO = 3	FO = 4	FO = 8	
ACT 3 –3	2.9	3.2	3.4	3.7	4.8	
ACT 3 –2	3.3	3.7	3.9	4.2	5.5	
ACT 3 –1	3.7	4.2	4.4	4.8	6.2	
ACT 3 STD	4.3	4.8	5.1	5.5	7.2	

Table 2-14 • Logic Module and Routing Delay by Fanout (ns); Worst-Case Commercial Conditions

Notes:

- Obtained by added t_{RD(X=FO)} to t_{PD} from the Logic Module Timing Characteristics Tables found in this datasheet.
- 2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

Timing Characteristics

Timing characteristics for ACT 3 devices fall into three categories: family dependent, device dependent, and design dependent. The input and output buffer characteristics are common to all ACT 3 family members. Internal routing delays are device dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the ALS Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections. This increases capacitance and resistance, result ng in longer net delays for macros connected to long tracks. Typically up to 6% of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 14 ns delay. This additional delay is represented statistically in higher fanout (FO=8) routing delays in the datasheet specifications section.

2-20 Revision 3

A1425A, A14V25A Timing Characteristics (continued)

Table 2-25 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C

Dedicated (hardwired) I/O Clock Network		-3 Speed ¹		-2 Speed ¹		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.0		2.3		2.6		3.0		3.5	ns
t _{IOPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{IPOWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	1.9		2.4		3.3		3.8		4.8		ns
t _{iocksw}	Maximum Skew		0.4		0.4		0.4		0.4		0.4	ns
t _{IOP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{IOMAX}	Maximum Frequency		250		200		150		125		100	MHz
Dedicate	d (hardwired) Array Clock											
t _{HCKH}	Input Low to High (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{HPWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.3		0.3		0.3		0.3		0.3	ns
t _{HP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{HMAX}	Maximum Frequency		250		200		150		125		100	MHz
Routed A	rray Clock Networks	•					•			•		
t _{RCKH}	Input Low to High (FO = 64)		3.7		4.1		4.7		5.5		9.0	ns
t _{RCKL}	Input High to Low (FO = 64)		4.0		4.5		5.1		6.0		9.0	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RCKSW}	Maximum Skew (FO = 128)		0.7		0.8		0.9		1.0		1.0	ns
t _{RP}	Minimum Period (FO = 64)	6.8		8.0		8.7		10.0		13.4		ns
f _{RMAX}	Maximum Frequency (FO = 64)		150		125		115		100		75	MHz
Clock-to-	Clock Skews											
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	1.7	0.0	1.8	0.0	2.0	0.0	2.2	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 80)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	3.0 3.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 80)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes:

^{1.} The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

^{2.} Delays based on 35 pF loading.

A1440A, A14V40A Timing Characteristics (continued)

Table 2-27 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Module Input Propagation Delays		-3 Speed ¹ -		-2 Speed ¹		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	dule Sequential Timing (wrt IOCLK	pad)										
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	1.8		1.7		2.0		2.3		2.3		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns
Motoo:												

Notes:

^{1.} The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

^{2.} Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Detailed Specifications

A14100A, A14V100A Timing Characteristics (continued)

Table 2-36 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Module – TTL Output Timing ¹		-3 S _I	peed ²	-2 Speed ²		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.5		9.5		10.5		12.0		15.6	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		12.8		12.8		15.3		17.0		22.1	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.0		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		10.4		10.4		12.4		13.8		17.9	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		14.5		14.5		17.4		19.3		25.1	ns
d_TLHHS	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

2-40 Revision 3

^{1.} Delays based on 35 pF loading.

^{2.} The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

SDO Serial Data Output (Output)

Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

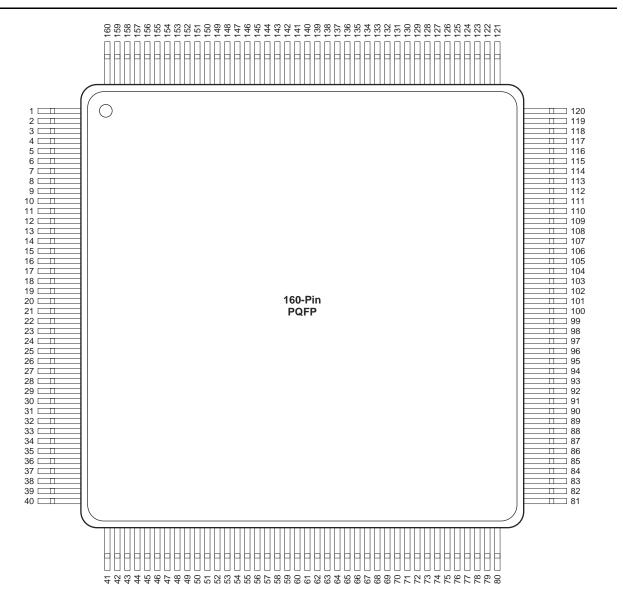
DCLK Diagnostic Clock (Input)

Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

VCC 5 V Supply Voltage

HIGH supply voltage.

Package Pin Assignments


		PL84	
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function
1	VCC	VCC	VCC
2	GND	GND	GND
3	VCC	VCC	VCC
4	PRA, I/O	PRA, I/O	PRA, I/O
11	DCLK, I/O	DCLK, I/O	DCLK, I/O
12	SDI, I/O	SDI, I/O	SDI, I/O
16	MODE	MODE	MODE
27	GND	GND	GND
28	VCC	VCC	VCC
40	PRB, I/O	PRB, I/O	PRB, I/O
41	VCC	VCC	VCC
42	GND	GND	GND
43	VCC	VCC	VCC
45	HCLK, I/O	HCLK, I/O	HCLK, I/O
52	SDO	SDO	SDO
53	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O
59	VCC	VCC	VCC
60	VCC	VCC	VCC
61	GND	GND	GND
68	VCC	VCC	VCC
69	GND	GND	GND
74	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O
83	CLKA, I/O	CLKA, I/O	CLKA, I/O
84	CLKB, I/O	CLKB, I/O	CLKB, I/O

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

3-2 Revision 3

PQ160

Note: This is the top view of the package

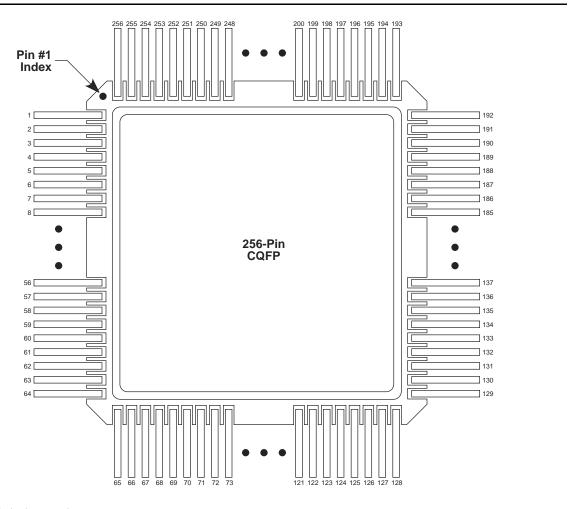
Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

	,	/Q100	
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function
1	GND	GND	GND
2	SDI, I/O	SDI, I/O	SDI, I/O
7	MODE	MODE	MODE
8	VCC	VCC	VCC
9	GND	GND	GND
20	VCC	VCC	VCC
21	NC	I/O	I/O
34	PRB, I/O	PRB, I/O	PRB, I/O
35	VCC	VCC	VCC
36	GND	GND	GND
37	VCC	VCC	VCC
39	HCLK, I/O	HCLK, I/O	HCLK, I/O
49	SDO	SDO	SDO
50	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O
51	GND	GND	GND
57	VCC	VCC	VCC
58	VCC	VCC	VCC
67	VCC	VCC	VCC
68	GND	GND	GND
69	GND	GND	GND
74	NC	I/O	I/O
75	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O
87	CLKA, I/O	CLKA, I/O	CLKA, I/O
88	CLKB, I/O	CLKB, I/O	CLKB, I/O
89	VCC	VCC	VCC
90	VCC	VCC	VCC
91	GND	GND	GND
92	PRA, I/O	PRA, I/O	PRA, I/O
93	NC	I/O	I/O
100	DCLK, I/O	DCLK, I/O	DCLK, I/O

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.


	CQ196
Pin Number	A1460 Function
1	GND
2	SDI, I/O
11	MODE
12	VCC
13	GND
37	GND
38	VCC
39	VCC
51	GND
52	GND
59	VCC
64	GND
77	HCLK, I/O
79	PRB, I/O
86	GND
94	VCC
98	GND
99	SDO
100	IOPCL, I/O

	CQ196
Pin Number	A1460 Function
101	GND
110	VCC
111	VCC
112	GND
137	VCC
138	GND
139	GND
140	VCC
148	IOCLK, I/O
149	GND
155	VCC
162	GND
172	CLKA, I/O
173	CLKB, I/O
174	PRA, I/O
183	GND
189	VCC
193	GND
196	DCLK, I/O

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

CQ256

Note: This is the top view.

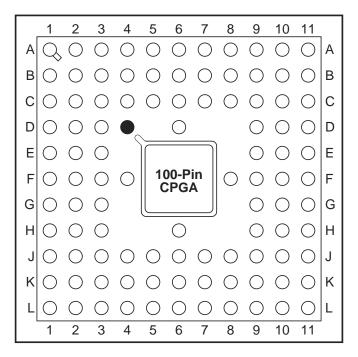
Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-18 Revision 3

	CQ256
Pin Number	A14100 Function
1	GND
2	SDI, I/O
11	MODE
28	VCC
29	GND
30	VCC
31	GND
46	VCC
59	GND
90	PRB, I/O
91	GND
92	VCC
93	GND
94	VCC
96	HCLK, I/O
110	GND
126	SDO
127	IOPCL, I/O
128	GND

CQ256		
Pin Number	A14100 Function	
141	VCC	
158	GND	
159	VCC	
160	GND	
161	VCC	
174	VCC	
175	GND	
176	GND	
188	IOCLK, I/O	
189	GND	
219	CLKA, I/O	
220	CLKB, I/O	
221	VCC	
222	GND	
223	VCC	
224	GND	
225	PRA, I/O	
240	GND	
256	DCLK, I/O	


Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

PG100

Orientation Pin

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-24 Revision 3

PG207	
A1460 Function	Location
CLKA or I/O	K1
CLKB or I/O	J3
DCLK or I/O	E4
GND	C14, D4, D5, D9, D14, J4, J14, P3, P4, P7, P9, P14, R15
HCLK or I/O	J15
IOCLK or I/O	P5
IOPCL or I/O	N14
MODE	D7
NC	A1, A2, A16, A17, B1, B17, C1, C2, S1, S3, S17, T1, T2, T16, T17
PRA or I/O	H1
PRB or I/O	K16
SDI or I/O	C3
SDO	P15
VCC	B2, B9, B16, D11, J2, J16, P12, S2, S9, S16, T5

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PG257	
A14100 Function	Location
CLKA or I/O	L4
CLKB or I/O	L5
DCLK or I/O	E4
GND	B16, C4, D4, D10, D16, E11, J5, K4, K16, L15, R4, T4, T10, T16, T17, X7
HCLK or I/O	J16
IOCLK or I/O	T5
IOPCL or I/O	R16
MODE	A5
NC	E5
PRA or I/O	J1
PRB or I/O	J17
SDI or I/O	B4
SDO	R17
VCC	C3, C10, C13, C17, K3, K17, V3, V7, V10, V17, X14

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.