

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	310
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	100
Number of Gates	2500
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	160-BQFP
Supplier Device Package	160-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1425a-pqg160i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Plan

	Speed Grade ¹				Application ¹					
Device/Package	Std.	-1	-2	-3	С	I	М	В		
A1415A Device										
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	✓	D	D	✓	1	1	_		
100-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	✓	✓	-		
100-Pin Very Thin Quad Flatpack (VQFP)	1	✓	D	D	✓	1	✓	-		
100-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	_	_	-		
A14V15A Device										
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	-	_	_	✓	_	-	_		
100-Pin Very Thin Quad Flatpack (VQFP)	✓	-	-	-	✓	-	-	_		
A1425A Device							•	•		
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	✓	D	D	✓	1				
100-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	1	-	-		
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	✓	✓	-	_		
132-Pin Ceramic Quad Flatpack (CQFP)	✓	✓	-	-	✓	-	✓	1		
133-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	_	D	D		
160-Pin Plastic Quad Flatpack (PQFP)	✓	✓	D	D	✓	1	-	_		
A14V25A Device										
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	-	_	_	✓	_	_	-		
100-Pin Very Thin Quad Flatpack (VQFP)	1	_	-	_	✓	-	-	-		
160-Pin Plastic Quad Flatpack (PQFP)	1	-	_	_	✓	-	-	-		
A1440A Device		.•								
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	✓	D	D	✓	1	_	_		
100-Pin Very Thin Quad Flatpack (VQFP)	✓	1	D	D	✓	✓	-	-		
160-Pin Plastic Quad Flatpack (PQFP)	1	1	D	D	✓	✓	-	-		
175-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	-	-		
176-Pin Thin Quad Flatpack (TQFP)	✓	✓	D	D	✓	1	-	-		

Notes:

1. Applications: C = Commercial I = Industrial M = Military

2. Commercial only

Availability: **√** = Available P = Planned-= Not planned D = Discontinued

Speed Grade:

-1 = Approx. 15% faster than Std.

-2 = Approx. 25% faster than Std.

-3 = Approx. 35% faster than Std.

(-2 and -3 speed grades have been discontinued.)

Revision 3 Ш

Dedicated Clocks

Dedicated clock networks support high performance by providing sub-nanosecond skew and guaranteed performance. Dedicated clock networks contain no programming elements in the path from the I/O Pad Driver to the input of S-modules or I/O modules. There are two dedicated clock networks: one for the array registers (HCLK), and one for the I/O registers (IOCLK). The clock networks are accessed by special I/Os.

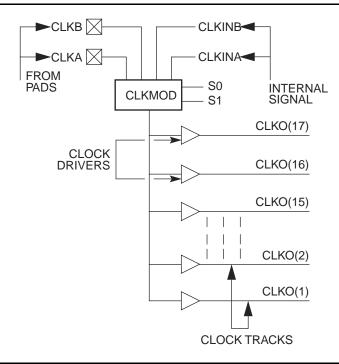


Figure 2-6 • Clock Networks

The routed clock networks are referred to as CLK0 and CLK1. Each network is connected to a clock module (CLKMOD) that selects the source of the clock signal and may be driven as follows (Figure 2-6):

- · Externally from the CLKA pad
- Externally from the CLKB pad
- · Internally from the CLKINA input
- · Internally from the CLKINB input

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel. The function of the clock module is determined by the selection of clock macros from the macro library. The macro CLKBUF is used to connect one of the two external clock pins to a clock network, and the macro CLKINT is used to connect an internally generated clock signal to a clock network. Since both clock networks are identical, the user does not care whether CLK0 or CLK1 is being used. Routed clocks can also be used to drive high fanout nets like resets, output enables, or data enables. This saves logic modules and results in performance increases in some cases.

Routing Structure

The ACT 3 architecture uses vertical and horizontal routing tracks to connect the various logic and I/O modules. These routing tracks are metal interconnects that may either be of continuous length or broken into segments. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track.

Horizontal Routing

Horizontal channels are located between the rows of modules and are composed of several routing tracks. The horizontal routing tracks within the channel are divided into one or more segments. The minimum horizontal segment length is the width of a module-pair, and the maximum horizontal segment length is the full length of the channel. Any segment that spans more than one-third the row length is considered a long horizontal segment. A typical channel is shown in Figure 2-7. Undedicated horizontal routing tracks are used to route signal nets. Dedicated routing tracks are used for the global clock networks and for power and ground tie-off tracks.

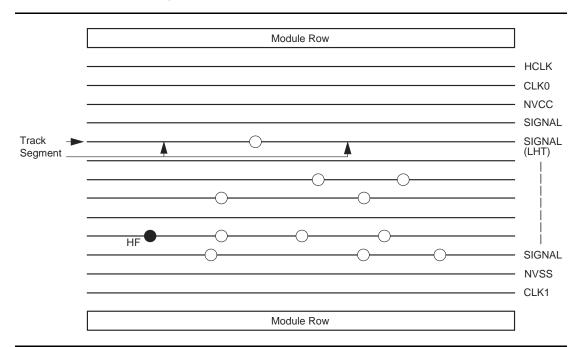


Figure 2-7 • Horizontal Routing Tracks and Segments

Vertical Routing

Other tracks run vertically through the modules. Vertical tracks are of three types: input, output, and long. Vertical tracks are also divided into one or more segments. Each segment in an input track is dedicated to the input of a particular module. Each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing. Each output segment spans four channels (two above and two below), except near the top and bottom of the array where edge effects occur. LVTs contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 2-8.

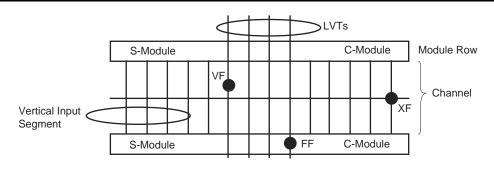


Figure 2-8 • Vertical Routing Tracks and Segments

2-6 Revision 3

Package Thermal Characteristics

The device junction to case thermal characteristic is θ jc, and the junction to ambient air characteristic is θ ja. The thermal characteristics for θ ja are shown with two different air flow rates.

Maximum junction temperature is 150°C.

A sample calculation of the absolute maximum power dissipation allowed for a CPGA 175-pin package at commercial temperature and still air is as follows:

$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}\text{°C/W}} \,=\, \frac{150\text{°C} - 70\text{°C}}{25\text{°C/W}} \,=\, 3.2 \text{ W}$$

EQ2

Table 2-8 • Package Thermal Characteristics

Package Type∗	Pin Count	θјс	θ _{ja} Still Air	$_{ m ja}^{ m heta_{ m ja}}$ 300 ft./min.	Units
Ceramic Pin Grid Array	100	20	35	17	°C/W
	133	20	30	15	°C/W
	175	20	25	14	°C/W
	207	20	22	13	°C/W
	257	20	15	8	°C/W
Ceramic Quad Flatpack	132	13	55	30	°C/W
	196	13	36	24	°C/W
	256	13	30	18	°C/W
Plastic Quad Flatpack	100	13	51	40	°C/W
	160	10	33	26	°C/W
	208	10	33	26	°C/W
Very Thin Quad Flatpack	100	12	43	35	°C/W
Thin Quad Flatpack	176	11	32	25	°C/W
Power Quad Flatpack	208	0.4	17	13	°C/W
Plastic Leaded Chip Carrier	84	12	37	28	°C/W
Plastic Ball Grid Array	225	10	25	19	°C/W
	313	10	23	17	°C/W

Note: Maximum power dissipation in still air:

PQ160 = 2.4 W

PQ208 = 2.4 W

PQ100 = 1.6 W

VQ100 = 1.9 W

TQ176 = 2.5 W

PL84 = 2.2 W

RQ208 = 4.7 W

BG225 = 3.2 W

BG313 = 3.5 W

Determining Average Switching Frequency

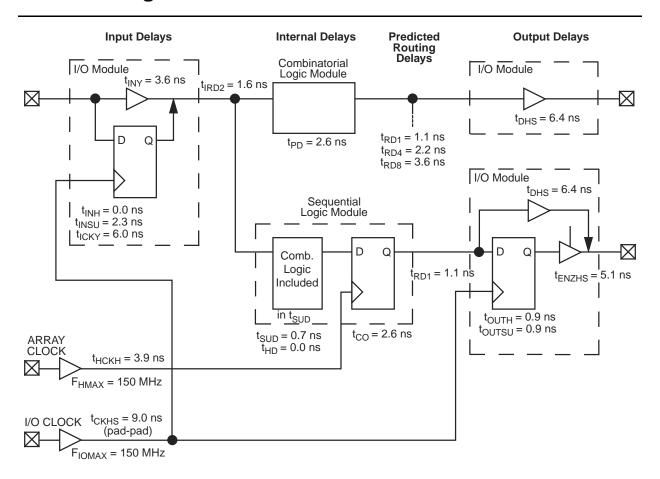

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are as follows:

Table 2-13 • Guidelines for Predicting Power Dissipation

Data	Value
Logic Modules (m)	80% of modules
Inputs switching (n)	# inputs/4
Outputs switching (p)	# output/4
First routed array clock loads (q1)	40% of sequential modules
Second routed array clock loads (q2)	40% of sequential modules
Load capacitance (CL)	35 pF
Average logic module switching rate (fm)	F/10
Average input switching rate (fn)	F/5
Average output switching rate (fp)	F/10
Average first routed array clock rate (fq1)	F/2
Average second routed array clock rate (fq2)	F/2
Average dedicated array clock rate (fs1)	F
Average dedicated I/O clock rate (fs2)	F

ACT 3 Timing Model

Note: Values shown for A1425A -1 speed grade device.

Figure 2-10 • Timing Model

2-16 Revision 3

Detailed Specifications

A1425A, A14V25A Timing Characteristics (continued)

Table 2-24 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	Module – TTL Output Timing ¹					Speed ¹	Units					
Parameter/Description			Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		7.5		7.5		9.0		10.0		13.0	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d_{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d_{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d_{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹	•	•			•		•				
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.7		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.7		7.5		9.0		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.9		8.9		10.7		11.8		15.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d_{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d_{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

2-28 Revision 3

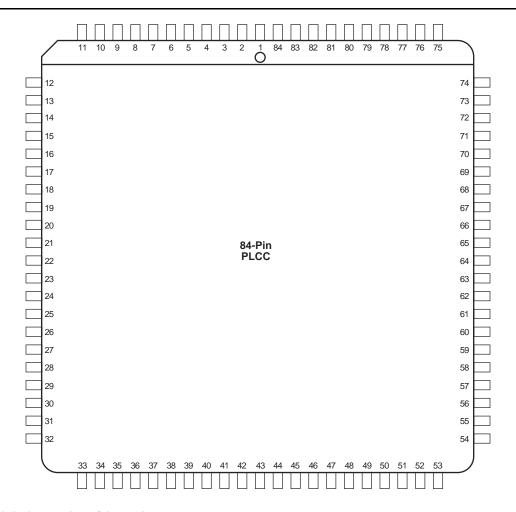
^{1.} Delays based on 35 pF loading.

^{2.} The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A14100A, A14V100A Timing Characteristics (continued)

Table 2-35 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

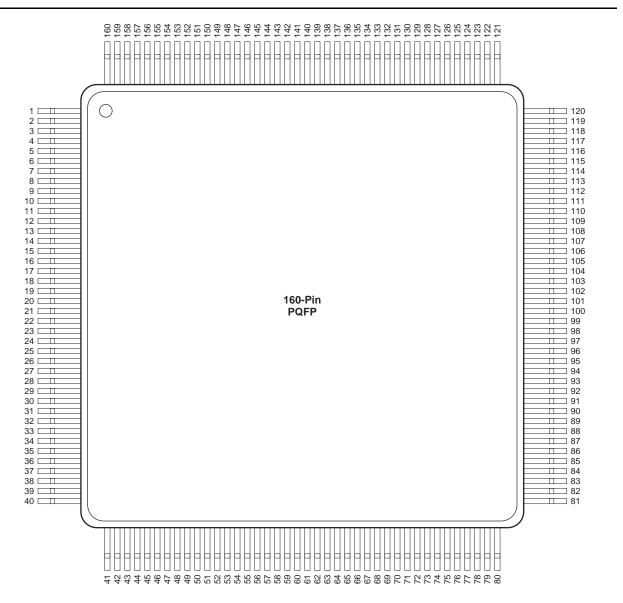
I/O Mod	dule Input Propagation Delays	-3 Sp	peed ¹	-2 Sp	2 Speed ¹ -1 Speed Std. Speed 3.3 V Spee				Speed ¹	Units		
Parame	Parameter/Description		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²										I	
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	dule Sequential Timing (wrt IOCLK	pad)	<u>u</u>			<u> </u>						
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	1.2		1.4		1.5		1.8		1.8		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		1.0		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		1.0		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.5		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		2.0		2.0		2.0		ns
Motoo:			-		-	-	•		•	•	•	


Notes: *

^{1.} The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.

PL84

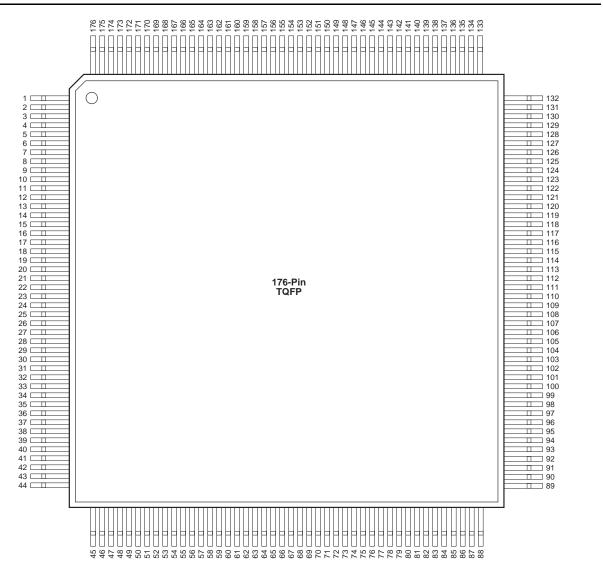


Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

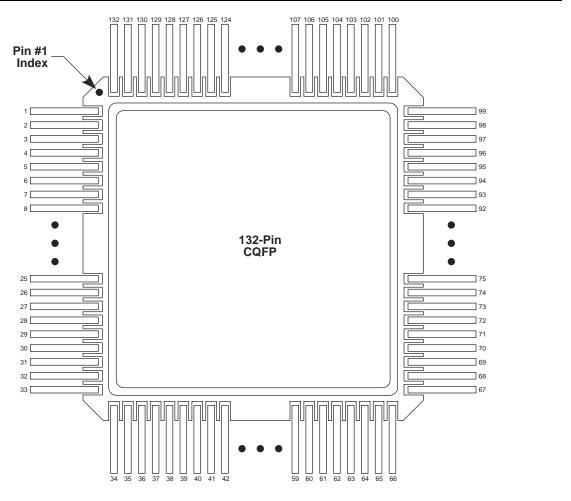
PQ160


Note: This is the top view of the package

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

TQ176

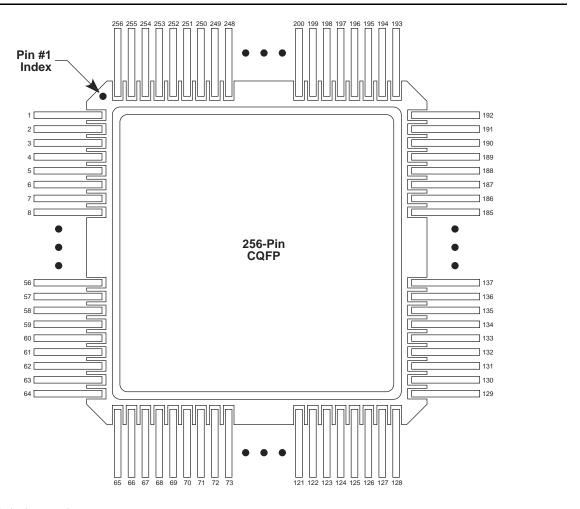

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-10 Revision 3

CQ132


Note: This is the top view

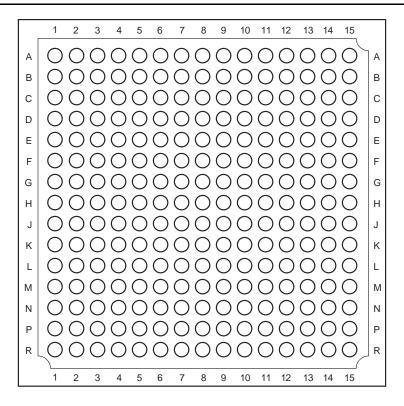
Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-14 Revision 3

CQ256

Note: This is the top view.

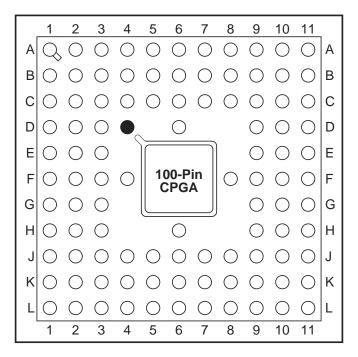

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-18 Revision 3

BG225

Note: This is the top view.


Note

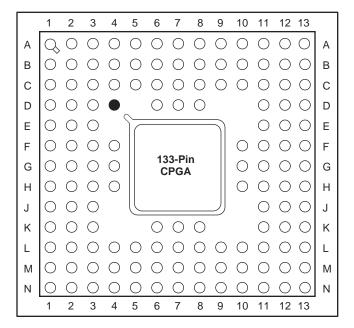
For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-20 Revision 3

PG100

Orientation Pin

Note: This is the top view.

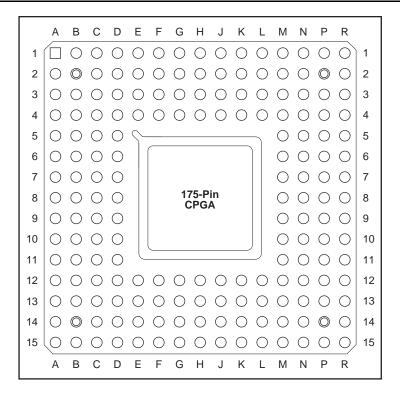

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-24 Revision 3

PG133

Note: This is the top view.


Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-26 Revision 3

PG175

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-28 Revision 3

Accelerator Series FPGAs – ACT 3 Family

	PG207						
A1460 Function	Location						
CLKA or I/O	K1						
CLKB or I/O	J3						
DCLK or I/O	E4						
GND	C14, D4, D5, D9, D14, J4, J14, P3, P4, P7, P9, P14, R15						
HCLK or I/O	J15						
IOCLK or I/O	P5						
IOPCL or I/O	N14						
MODE	D7						
NC	A1, A2, A16, A17, B1, B17, C1, C2, S1, S3, S17, T1, T2, T16, T17						
PRA or I/O	H1						
PRB or I/O	K16						
SDI or I/O	C3						
SDO	P15						
VCC	B2, B9, B16, D11, J2, J16, P12, S2, S9, S16, T5						

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.