E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	310
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	83
Number of Gates	2500
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1425a-vq100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Accelerator Series FPGAs – ACT 3 Family

	Speed Grade ¹				Application ¹			
Device/Package	Std.	-1	-2	-3	С	I	м	В
A14V40A Device		1	1			1	•	
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	-	-	-	✓	-	-	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	_	_	-	1	_	-	-
160-Pin Plastic Quad Flatpack (PQFP)	1	_	_	-	1	_	-	-
176-Pin Thin Quad Flatpack (TQFP)	1	_	-	-	1	-	-	-
A1460A Device		1	1					
160-Pin Plastic Quad Flatpack (PQFP)	1	 ✓ 	D	D	 ✓ 	1	-	-
176-Pin Thin Quad Flatpack (TQFP)	1	1	D	D	1	1	-	-
196-Pin Ceramic Quad Flatpack (CQFP)	1	1	_	-	1	_	1	1
207-Pin Ceramic Pin Grid Array (CPGA)	1	1	D	D	1	-	1	1
208-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	~	✓	-	-
225-Pin Plastic Ball Grid Array (BGA)	D	D	D	D	D	-	-	-
A14V60A Device		I	1			1	•	
160-Pin Plastic Quad Flatpack (PQFP)	✓	-	-	-	✓	_	-	-
176-Pin Thin Quad Flatpack (TQFP)	1	-	-	-	✓	_	-	-
208-Pin Plastic Quad Flatpack (PQFP)	1	-	-	-	✓	-	-	-
A14100A Device				•	•			
208-Pin Power Quad Flatpack (RQFP)	1	✓	D	D	✓	✓	-	-
257-Pin Ceramic Pin Grid Array (CPGA)	1	1	D	D	 ✓ 	_	1	1
313-Pin Plastic Ball Grid Array (BGA)	1	✓	D	D	✓	_	-	-
256-Pin Ceramic Quad Flatpack (CQFP)	1	1	-	-	1	_	~	1
A14V100A Device	•	•	•	•	•	•	-	
208-Pin Power Quad Flatpack (RQFP)	1	-	-	-	✓	_	-	-
313-Pin Plastic Ball Grid Array (BGA)	1	_	-	-	 ✓ 	-	-	-

Notes:

1. Applications: C = CommercialI = Industrial
M = Military
Commercial only

- Availability:
- ✓ = Available
- P = Planned- = Not planned
- D = Discontinued

Speed Grade:

-1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std. -3 = Approx. 35% faster than Std. (-2 and -3 speed grades have been discontinued.)

Plastic Device Resources

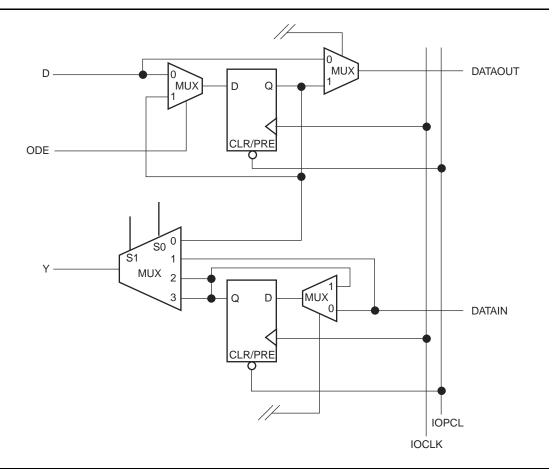
Device	Logic			User I/Os						
Series	Modules	Gates	PL84	PQ100	PQ160	PQ/RQ208	VQ100	TQ176	BG225*	BG313
A1415	200	1500	70	80	-	-	80	-	-	-
A1425	310	2500	70	80	100	-	83	-	-	-
A1440	564	4000	70	-	131	-	83	140	-	-
A1460	848	6000	-	-	131	167	-	151	168	-
A14100	1377	10000	-	-	-	175	-	-	-	228

Note: *Discontinued

Hermetic Device Resources

Device	Logic			User I/Os						
Series	Modules	Gates	PG100*	PG133*	PG175*	PG207	PG257	CQ132	CQ196	CQ256
A1415	200	1500	80	-	-	-	-	-	-	-
A1425	310	2500	-	100	-	-	-	100	-	-
A1440	564	4000	-	-	140	-	-	-	-	-
A1460	848	6000	-	-	-	168	-	-	168	-
A14100	1377	10000	-	-	-	-	228	-	-	228

Note: *Discontinued


Contact your local Microsemi SoC Products Group (formerly Actel) representative for device availability: http://www.microsemi.com/soc/contact/default.aspx. The S-module contains a full implementation of the C-module plus a clearable sequential element that can either implement a latch or flip-flop function. The S-module can therefore implement any function implemented by the C-module. This allows complex combinatorial-sequential functions to be implemented with no delay penalty. The Designer Series Development System will automatically combine any C-module macro driving an S-module macro into the S-module, thereby freeing up a logic module and eliminating a module delay.

The clear input CLR is accessible from the routing channel. In addition, the clock input may be connected to one of three clock networks: CLKA, CLKB, or HCLK. The C-module and S-module functional descriptions are shown in Figure 2-2 and Figure 2-3 on page 2-2. The clock selection is determined by a multiplexer select at the clock input to the S-module.

I/Os

I/O Modules

I/O modules provide an interface between the array and the I/O Pad Drivers. I/O modules are located in the array and access the routing channels in a similar fashion to logic modules. The I/O module schematic is shown in Figure 4. The signals DataIn and DataOut connect to the I/O pad driver.

Figure 2-4 • Functional Diagram for I/O Module

Each I/O module contains two D-type flip-flops. Each flip-flop is connected to the dedicated I/O clock (IOCLK). Each flip-flop can be bypassed by nonsequential I/Os. In addition, each flip-flop contains a data enable input that can be accessed from the routing channels (ODE and IDE). The asynchronous preset/clear input is driven by the dedicated preset/clear network (IOPCL). Either preset or clear can be selected individually on an I/O module by I/O module basis.

Dedicated Clocks

Dedicated clock networks support high performance by providing sub-nanosecond skew and guaranteed performance. Dedicated clock networks contain no programming elements in the path from the I/O Pad Driver to the input of S-modules or I/O modules. There are two dedicated clock networks: one for the array registers (HCLK), and one for the I/O registers (IOCLK). The clock networks are accessed by special I/Os.

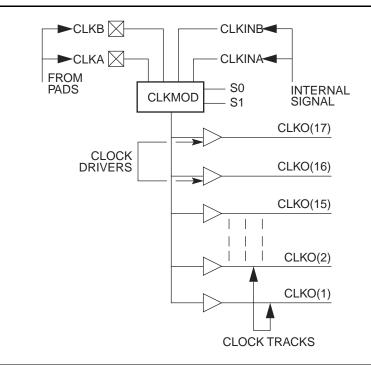


Figure 2-6 • Clock Networks

The routed clock networks are referred to as CLK0 and CLK1. Each network is connected to a clock module (CLKMOD) that selects the source of the clock signal and may be driven as follows (Figure 2-6):

- Externally from the CLKA pad
- Externally from the CLKB pad
- Internally from the CLKINA input
- Internally from the CLKINB input

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel. The function of the clock module is determined by the selection of clock macros from the macro library. The macro CLKBUF is used to connect one of the two external clock pins to a clock network, and the macro CLKINT is used to connect an internally generated clock signal to a clock network. Since both clock networks are identical, the user does not care whether CLK0 or CLK1 is being used. Routed clocks can also be used to drive high fanout nets like resets, output enables, or data enables. This saves logic modules and results in performance increases in some cases.

Routing Structure

The ACT 3 architecture uses vertical and horizontal routing tracks to connect the various logic and I/O modules. These routing tracks are metal interconnects that may either be of continuous length or broken into segments. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track.

Antifuse Connections

An antifuse is a "normally open" structure as opposed to the normally closed fuse structure used in PROMs or PALs. The use of antifuses to implement a programmable logic device results in highly testable structures as well as an efficient programming architecture. The structure is highly testable because there are no preexisting connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed as well as isolate individual circuit structures to be tested. This can be done both before and after programming. For example, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified.

Four types of antifuse connections are used in the routing structure of the ACT 3 array. (The physical structure of the antifuse is identical in each case; only the usage differs.)

Table 2-1 shows four types of antifuses.

Туре	Description
XF	Horizontal-to-vertical connection
HF	Horizontal-to-horizontal connection
VF	Vertical-to-vertical connection
FF	"Fast" vertical connection

Examples of all four types of connections are shown in Figure 2-7 on page 2-6 and Figure 2-8 on page 2-6.

Module Interface

Connections to Logic and I/O modules are made through vertical segments that connect to the module inputs and outputs. These vertical segments lie on vertical tracks that span the entire height of the array.

Module Input Connections

The tracks dedicated to module inputs are segmented by pass transistors in each module row. During normal user operation, the pass transistors are inactive, which isolates the inputs of a module from the inputs of the module directly above or below it. During certain test modes, the pass transistors are active to verify the continuity of the metal tracks. Vertical input segments span only the channel above or the channel below. The logic modules are arranged such that half of the inputs are connected to the channel above and half of the inputs to segments in the channel below, as shown in Figure 2-9.

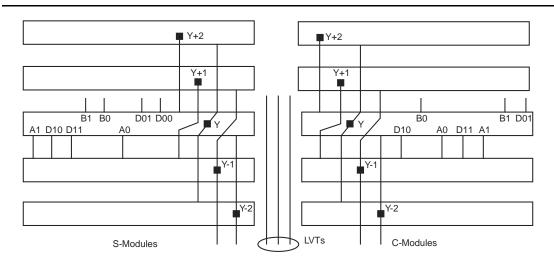


Figure 2-9 • Logic Module Routing Interface

Module Output Connections

Module outputs have dedicated output segments. Output segments extend vertically two channels above and two channels below, except at the top or bottom of the array. Output segments twist, as shown in Figure 10, so that only four vertical tracks are required.

LVT Connections

Outputs may also connect to nondedicated segments called Long Vertical Tracks (LVTs). Each module pair in the array shares four LVTs that span the length of the column. Any module in the column pair can connect to one of the LVTs in the column using an FF connection. The FF connection uses antifuses connected directly to the driver stage of the module output, bypassing the isolation transistor. FF antifuses are programmed at a higher current level than HF, VF, or XF antifuses to produce a lower resistance value.

Antifuse Connections

In general every intersection of a vertical segment and a horizontal segment contains an unprogrammed antifuse (XF-type). One exception is in the case of the clock networks.

Clock Connections

To minimize loading on the clock networks, a subset of inputs has antifuses on the clock tracks. Only a few of the C-module and S-module inputs can be connected to the clock networks. To further reduce loading on the clock network, only a subset of the horizontal routing tracks can connect to the clock inputs of the S-module.

Programming and Test Circuits

The array of logic and I/O modules is surrounded by test and programming circuits controlled by the temporary special I/O pins MODE, SDI, and DCLK. The function of these pins is similar to all ACT family devices. The ACT 3 family also includes support for two Actionprobe[®] circuits, allowing complete observability of any logic or I/O module in the array using the temporary special I/O pins, PRA and PRB.

3.3 V Operating Conditions

Symbol	Parameter	Limits	Units
VCC	DC supply voltage	-0.5 to +7.0	V
VI	Input voltage	-0.5 to VCC + 0.5	V
VO	Output voltage	-0.5 to VCC + 0.5	V
IIO	I/O source sink current ²	±20	mA
T _{STG}	Storage temperature	-65 to +150	°C

Notes:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions.

2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND –0.5 V, the internal protection diodes will forward bias and can draw excessive current.

Table 2-6 • Recommended Operating Conditions

Parameter	Commercial	Units
Temperature range*	0 to +70	°C
Power supply tolerance	3.0 to 3.6	V

Note: *Ambient temperature (T_A) is used for commercial.

	C			
Parameter		Min.	Max.	Units
VOH ¹	IOH = -4 mA	2.15	_	V
	IOH = -3.2 mA	2.4		V
VOL ¹	IOL = 6 mA		0.4	V
VIL		-0.3	0.8	V
VIH		2.0	VCC + 0.3	V
Input transition time t _R , t _F ²	VI = VCC or GND	-10	+10	μA
C _{IO} I/O Capacitance ^{2,3}			10	pF
Standby current, ICC ⁴ (typical =	0.3 mA)		0.75	mA
Leakage current ⁵		-10	10	μA

1. Only one output tested at a time. VCC = minimum.

2. Not tested; for information only.

3. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f - 1 MHz.

4. Typical standby current = 0.3 mA. All outputs unloaded. All inputs = VCC or GND.

5. VO, VIN = VCC or GND

Power Dissipation

P = [ICC standby + lactive] * VCC * IOL * VOL * N + IOH* (VCC - VOH) * M

where:

EQ 3

ICC standby is the current flowing when no inputs or outputs are changing

lactive is the current flowing due to CMOS switching.

IOL and IOH are TTL sink/source current.

VOL and VOH are TTL level output voltages.

N is the number of outputs driving TTL loads to VOL.

M equals the number of outputs driving TTL loads to VOH.

An accurate determination of N and M is problematical because their values depend on the design and on the system I/O. The power can be divided into two components: static and active.

Static Power Component

Microsemi FPGAs have small static power components that result in lower power dissipation than PALs or PLDs. By integrating multiple PALs/PLDs into one FPGA, an even greater reduction in board-level power dissipation can be achieved.

The power due to standby current is typically a small component of the overall power. Standby power is calculated in Table 2-9 for commercial, worst case conditions.

Table 2-9 • Standby Power Calculation

ICC	VCC	Power
2 mA	5.25 V	10.5 mW

The static power dissipated by TTL loads depends on the number of outputs driving high or low and the DC load current. Again, this value is typically small. For instance, a 32-bit bus sinking 4 mA at 0.33 V will generate 42 mW with all outputs driving low, and 140 mW with all outputs driving high. The actual dissipation will average somewhere between as I/Os switch states with time.

Active Power Component

Power dissipation in CMOS devices is usually dominated by the active (dynamic) power dissipation. This component is frequency dependent, a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitance due to PC board traces and load device inputs.

An additional component of the active power dissipation is the totem-pole current in CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

Equivalent Capacitance

The power dissipated by a CMOS circuit can be expressed by EQ 4.

Power (μ W) = C_{EQ} * VCC² * F

EQ 4

Where:

 C_{EQ} is the equivalent capacitance expressed in pF.

VCC is the power supply in volts.

F is the switching frequency in MHz.

A1440A, A14V40A Timing Characteristics (continued)

Table 2-28 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Module – TTL Output Timing ¹		-3 Speed ²		–2 Speed ²		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.5		8.5		9.5		11.0		14.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS} Delta Low to High, High Slew			0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS} Delta Low to High, Low Slew			0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS} Delta High to Low, Low Slew			0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Moo	dule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS} Enable to Pad, Z to H/L, Low Slew			8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ} Enable to Pad, H/L to Z, High Slew			7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ} Enable to Pad, H/L to Z, Low Slew			7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS} IOCLK Pad to Pad H/L, High Slew			9.0		9.0		10.1		11.8		14.3	ns
t _{CKLS} IOCLK Pad to Pad H/L, Low Slew			13.0		13.0		15.6		17.3		22.5	ns
d _{TLHHS} Delta Low to High, High Slew			0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes:

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A14100A, A14V100A Timing Characteristics

Logic Module Propagation Delays ²		-3 Speed ³		-2 Speed ³		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	Predicted Routing Delays ⁴											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Nodule Sequential Timing											
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.8		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.5		0.5		0.5		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.8		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.5		0.5		0.5		ns
t _{WASYN}	Asynchronous Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _A	Flip-Flop Clock Input Period	5.0		6.8		8.0		10.0		13.4		ns
f _{MAX}	Flip-Flop Clock Frequency		200		150		125		100		75	MHz

Notes:

1. VCC = 3.0 V for 3.3 V specifications.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

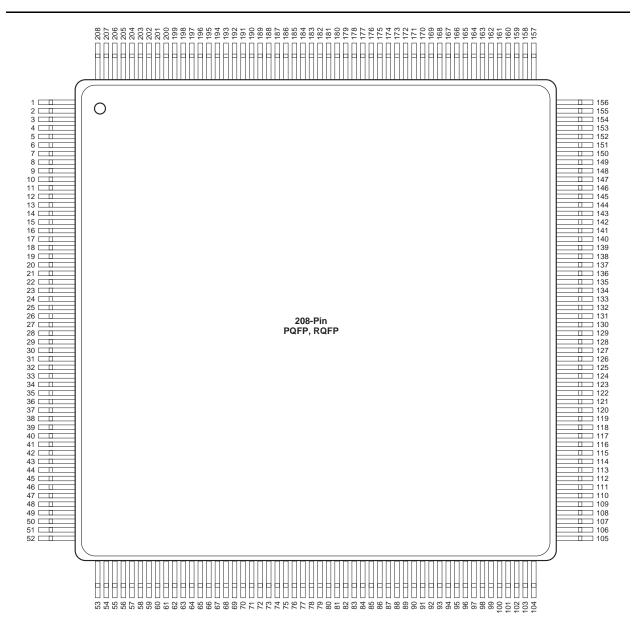
Accelerator Series FPGAs – ACT 3 Family

SDO Serial Data Output (Output)

Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

DCLK Diagnostic Clock (Input)

Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

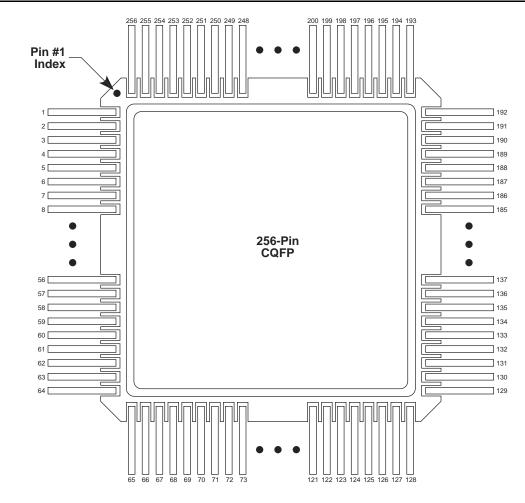

VCC 5 V Supply Voltage

HIGH supply voltage.

Package Pin Assignments

PQ208, RQ208

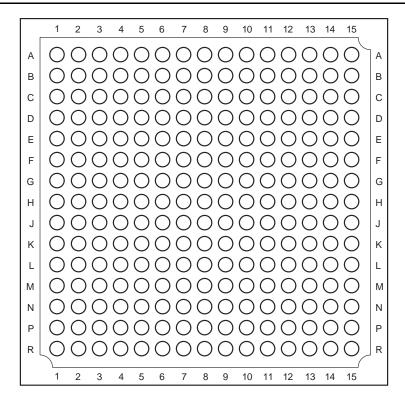
Note: This is the top view of the package


Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Package Pin Assignments

CQ256


Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Package Pin Assignments

BG225

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Accelerator Series FPGAs – ACT 3 Family

	BG225				
A1460 Function	Location				
CLKA or I/O	C8				
CLKB or I/O	B8				
DCLK or I/O	B2				
GND	A1, A15, D15, F8, G7, G8, G9, H6, H7, H8, H9, H10, J7, J8, J9, K8, P2, R15				
HCLK or I/O	P9				
IOCLK or I/O	B14				
IOPCL or I/O	P14				
MODE	D1				
NC	A11, B5, B7, D8, D12, F6, F11, H1, H12, H14, K11, L1, L13, N8, P5, R1, R8, R11, R14				
PRA or I/O	A7				
PRB or I/O	L7				
SDI or I/O	D4				
SDO	N13				
VCC	A8, B12, D5, D14, E3, E8, E13, H2, H3, H11, H15, K4, L2, L12, M8, M15, P4, P8, R13				

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The BG225 package has been discontinued.

Accelerator Series FPGAs – ACT 3 Family

	PG175					
A1440 Function	Location					
CLKA or I/O	C9					
CLKB or I/O	А9					
DCLK or I/O	D5					
GND	D4, D8, D11, D12, E4, E14, H4, H12, L4, L12, M4, M8, M12					
HCLK or I/O	R8					
IOCLK or I/O	E12					
IOPCL or I/O	P13					
MODE	F3					
NC	A1, A2, A15, B2, B3, P2, P14, R1, R2, R14, R15					
PRA or I/O	B8					
PRB or I/O	R7					
SDI or I/O	D3					
SDO	N12					
VCC	C3, C8, C13, E15, H3, H13, L1, L14, N3, N8, N13					

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG175 package has been discontinued.

Accelerator Series FPGAs – ACT 3 Family

	PG207					
A1460 Function	Location					
CLKA or I/O	К1					
CLKB or I/O	J3					
DCLK or I/O	E4					
GND	C14, D4, D5, D9, D14, J4, J14, P3, P4, P7, P9, P14, R15					
HCLK or I/O	J15					
IOCLK or I/O	P5					
IOPCL or I/O	N14					
MODE	D7					
NC	A1, A2, A16, A17, B1, B17, C1, C2, S1, S3, S17, T1, T2, T16, T17					
PRA or I/O	H1					
PRB or I/O	К16					
SDI or I/O	C3					
SDO	P15					
VCC	B2, B9, B16, D11, J2, J16, P12, S2, S9, S16, T5					

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.