

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	564
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	70
Number of Gates	4000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1440a-1pl84c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Plan

		Speed	Grade ¹	Application ¹				
Device/Package	Std.	-1	-2	-3	С	I	М	В
A1415A Device		1		1			•	
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	1	D	D	✓	1	1	-
100-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	1	1	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	1	1	1	-
100-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	-	-
A14V15A Device							•	
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	-	-	—	✓	-	-	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	-	-	-	1	-	-	-
A1425A Device	1	I		1			1	
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	✓	D	D	✓	1		
100-Pin Plastic Quad Flatpack (PQFP)	1	1	D	D	1	✓	-	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	1	1	-	-
132-Pin Ceramic Quad Flatpack (CQFP)	1	1	-	-	1	-	1	1
133-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	_	D	D
160-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	~	-	-
A14V25A Device	•		•			•		
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	-	-	—	✓	-	-	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	-	-	-	1	-	-	-
160-Pin Plastic Quad Flatpack (PQFP)	1	-	-	-	1	-	-	-
A1440A Device		1	L	1	J		1	
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	1	D	D	1	1	_	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	✓	✓	-	-
160-Pin Plastic Quad Flatpack (PQFP)	 ✓ 	1	D	D	1	1	-	-
175-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	-	-
176-Pin Thin Quad Flatpack (TQFP)	1	1	D	D	1	1	-	_

Notes:

 Applications:
 C = Commercial
 I = Industrial M = Military

Availability: $\checkmark = Available$ P = Planned

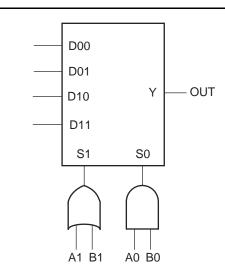
- = Not plannedD = Discontinued

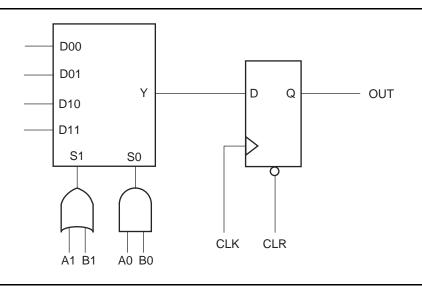
Speed Grade: -1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std. -3 = Approx. 35% faster than Std. (-2 and -3 speed grades have been discontinued.)

ACT 3 Family Overview

Device and Speed Grade	t _{CKHS} (ns)	t _{TRACE} (ns)	t _{INSU} (ns)	Total (ns)	MHz
A1425A -3	7.5	1.0	1.8	10.3	97
A1460A -3	9.0	1.0	1.3	11.3	88
A1425A -2	7.5	1.0	2.0	10.5	95
A1460A -2	9.0	1.0	1.5	11.5	87
A1425A -1	9.0	1.0	2.3	12.3	81
A1460A -1	10.0	1.0	1.8	12.8	78
A1425A STD	10.0	1.0	2.7	13.7	73
A1460A STD	11.5	1.0	2.0	14.5	69

Table 1-1 • Chip-to-Chip Performance (worst-case commercial)


Note: The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.


Detailed Specifications

Logic Modules

ACT 3 logic modules are enhanced versions of the 1200XL family logic modules. As in the 1200XL family, there are two types of modules: C-modules and S-modules (Figure 2-2 and Figure 2-3). The C-module is functionally equivalent to the 1200XL C-module and implements high fanin combinatorial macros, such as 5-input AND, 5-input OR, and so on. It is available for use as the CM8 hard macro. The S-module is designed to implement high-speed sequential functions within a single module.

Figure 2-3 • S-Module Diagram

S-modules consist of a full C-module driving a flip-flop, which allows an additional level of logic to be implemented without additional propagation delay. It is available for use as the DFM8A/B and DLM8A/B hard macros. C-modules and S-modules are arranged in pairs called module-pairs. Module-pairs are arranged in alternating patterns and make up the bulk of the array. This arrangement allows the placement software to support two-module macros of four types (CC, CS, SC, and SS). The C-module implements the following function:

EQ 1

where: S0 = A0 * B0 and S1 = A1 + B1

Package Thermal Characteristics

The device junction to case thermal characteristic is θ jc, and the junction to ambient air characteristic is θ ja. The thermal characteristics for θ ja are shown with two different air flow rates.

Maximum junction temperature is 150°C.

A sample calculation of the absolute maximum power dissipation allowed for a CPGA 175-pin package at commercial temperature and still air is as follows:

$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja} °C/W} = \frac{150°C - 70°C}{25°C/W} = 3.2 \text{ W}$$

EQ 2

Package Type∗	Pin Count	θ _{jc}	θ _{ja} Still Air	θ _{ja} 300 ft./min.	Units
Ceramic Pin Grid Array	100	20	35	17	°C/W
	133	20	30	15	°C/W
	175	20	25	14	°C/W
	207	20	22	13	°C/W
	257	20	15	8	°C/W
Ceramic Quad Flatpack	132	13	55	30	°C/W
	196	13	36	24	°C/W
	256	13	30	18	°C/W
Plastic Quad Flatpack	100	13	51	40	°C/W
	160	10	33	26	°C/W
	208	10	33	26	°C/W
Very Thin Quad Flatpack	100	12	43	35	°C/W
Thin Quad Flatpack	176	11	32	25	°C/W
Power Quad Flatpack	208	0.4	17	13	°C/W
Plastic Leaded Chip Carrier	84	12	37	28	°C/W
Plastic Ball Grid Array	225	10	25	19	°C/W
	313	10	23	17	°C/W

Table 2-8 • Package Thermal Characteristics

Note: Maximum power dissipation in still air:

PQ160 = 2.4 W PQ208 = 2.4 W PQ100 = 1.6 W VQ100 = 1.9 W TQ176 = 2.5 W PL84 = 2.2 W RQ208 = 4.7 W BG225 = 3.2 W BG313 = 3.5 W

Determining Average Switching Frequency

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are as follows:

Table 2-13 • Guidelines	for Predicting	Power Dissipation
	, ioi i ioaioaing	i enter Bioorpatient

Data	Value
Logic Modules (m)	80% of modules
Inputs switching (n)	# inputs/4
Outputs switching (p)	# output/4
First routed array clock loads (q1)	40% of sequential modules
Second routed array clock loads (q2)	40% of sequential modules
Load capacitance (CL)	35 pF
Average logic module switching rate (fm)	F/10
Average input switching rate (fn)	F/5
Average output switching rate (fp)	F/10
Average first routed array clock rate (fq1)	F/2
Average second routed array clock rate (fq2)	F/2
Average dedicated array clock rate (fs1)	F
Average dedicated I/O clock rate (fs2)	F

Tightest Delay Distributions

Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases.

From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer lengths of routing track. The ACT 3 family delivers the tightest fanout delay distribution of any FPGA. This tight distribution is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path.

Microsemi's patented PLICE antifuse offers a very low resistive/capacitive interconnect. The ACT 3 family's antifuses, fabricated in 0.8 micron m lithography, offer nominal levels of 200Ω resistance and 6 femtofarad (fF) capacitance per antifuse. The ACT 3 fanout distribution is also tighter than alternative devices due to the low number of antifuses required per interconnect path. The ACT 3 family's proprietary architecture limits the number of antifuses per path to only four, with 90% of interconnects using only two antifuses.

The ACT 3 family's tight fanout delay distribution offers an FPGA design environment in which fanout can be traded for the increased performance of reduced logic level designs. This also simplifies performance estimates when designing with ACT 3 devices.

Speed Grade	FO = 1	FO = 2	FO = 3	FO = 4	FO = 8
ACT 3 –3	2.9	3.2	3.4	3.7	4.8
ACT 3 –2	3.3	3.7	3.9	4.2	5.5
ACT 3 –1	3.7	4.2	4.4	4.8	6.2
ACT 3 STD	4.3	4.8	5.1	5.5	7.2

Table 2-14 • Logic Module and Routing Delay by Fanout (ns); Worst-Case Commercial Conditions

Notes:

- Obtained by added t_{RD(x=FO)} to t_{PD} from the Logic Module Timing Characteristics Tables found in this datasheet.
- 2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

Timing Characteristics

Timing characteristics for ACT 3 devices fall into three categories: family dependent, device dependent, and design dependent. The input and output buffer characteristics are common to all ACT 3 family members. Internal routing delays are device dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the ALS Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections. This increases capacitance and resistance, result ng in longer net delays for macros connected to long tracks. Typically up to 6% of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 14 ns delay. This additional delay is represented statistically in higher fanout (FO = 8) routing delays in the datasheet specifications section.

A1425A, A14V25A Timing Characteristics (continued)

I/O Module Input Propagation Delays		-3 S	beed ¹	-2 Sp	beed ¹	–1 S	-1 Speed		Speed	3.3 V Speed ¹		Units
Parame	eter/Description	ter/Description Min. Max. Min. Max. Min. Max		Max.	Min.	Max.	Min.	Max.				
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	ule Sequential Timing (wrt IOCLK	pad)										
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	1.8		2.0		2.3		2.7		3.0		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns

Notes: *

1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A1440A, A14V40A Timing Characteristics (continued)

Table 2-27 \bullet $\Lambda 1/10\Lambda$	A14V40A Worst-Case	Commercial Conditions	, VCC = 4.75 V, T _J = 70°C
<i>Table 2-27</i> • A 1440A,	A 14V4UA WUISI-Case	Commercial Conditions	, v = 4.75 v, 1 = 70 c

I/O Module Input Propagation Delays			-3 Speed ¹ -2 Speed ¹ -			–1 S	peed	Std.	Speed	3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	lule Sequential Timing (wrt IOCLK	pad)										
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	1.8		1.7		2.0		2.3		2.3		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns

Notes:

1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

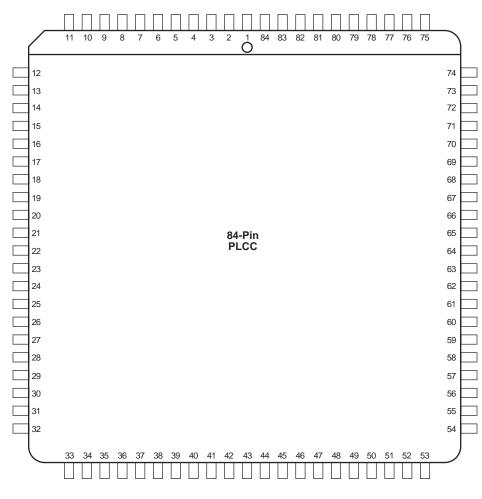
 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Accelerator Series FPGAs – ACT 3 Family

SDO Serial Data Output (Output)

Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

DCLK Diagnostic Clock (Input)


Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

VCC 5 V Supply Voltage

HIGH supply voltage.

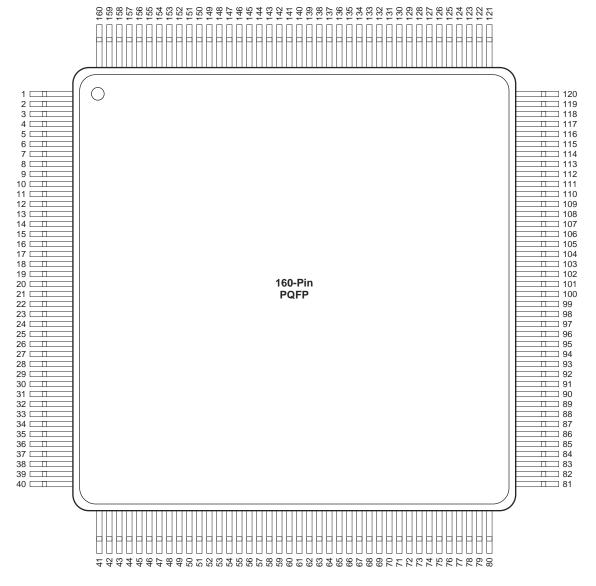
3 – Package Pin Assignments

PL84

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.



Package Pin Assignments

PL84								
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function					
1	VCC	VCC	VCC					
2	GND	GND	GND					
3	VCC	VCC	VCC					
4	PRA, I/O	PRA, I/O	PRA, I/O					
11	DCLK, I/O	DCLK, I/O	DCLK, I/O					
12	SDI, I/O	SDI, I/O	SDI, I/O					
16	MODE	MODE	MODE					
27	GND	GND	GND					
28	VCC	VCC	VCC					
40	PRB, I/O	PRB, I/O	PRB, I/O					
41	VCC	VCC	VCC					
42	GND	GND	GND					
43	VCC	VCC	VCC					
45	HCLK, I/O	HCLK, I/O	HCLK, I/O					
52	SDO	SDO	SDO					
53	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O					
59	VCC	VCC	VCC					
60	VCC	VCC	VCC					
61	GND	GND	GND					
68	VCC	VCC	VCC					
69	GND	GND	GND					
74	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O					
83	CLKA, I/O	CLKA, I/O	CLKA, I/O					
84	CLKB, I/O	CLKB, I/O	CLKB, I/O					

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PQ160

Note: This is the top view of the package

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Microsemi

Accelerator Series FPGAs – ACT 3 Family

PQ160						
Pin Number	A1425, A14V25 Function	A1440, A14V40 Function	A1460, A14V60 Function			
92	NC	I/O	I/O			
93	NC	I/O	I/O			
98	GND	GND	GND			
99	VCC	VCC	VCC			
100	NC	I/O	I/O			
103	GND	GND	GND			
107	NC	I/O	I/O			
109	NC	I/O	I/O			
110	VCC	VCC	VCC			
111	GND	GND	GND			
112	VCC	VCC	VCC			
113	NC	I/O	I/O			
119	NC	I/O	I/O			
120	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O			
121	GND	GND	GND			
124	NC	I/O	I/O			
127	NC	I/O	I/O			
136	CLKA, I/O	CLKA, I/O	CLKA, I/O			
137	CLKB, I/O	CLKB, I/O	CLKB, I/O			
138	VCC	VCC	VCC			
139	GND	GND	GND			
140	VCC	VCC	VCC			
141	GND	GND	GND			
142	PRA, I/O	PRA, I/O	PRA, I/O			
143	NC	I/O	I/O			
145	NC	I/O	I/O			
147	NC	I/O	I/O			
149	NC	I/O	I/O			
151	NC	I/O	I/O			
153	NC	I/O	I/O			
154	VCC	VCC	VCC			
160	DCLK, I/O	DCLK, I/O	DCLK, I/O			

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Microsemi

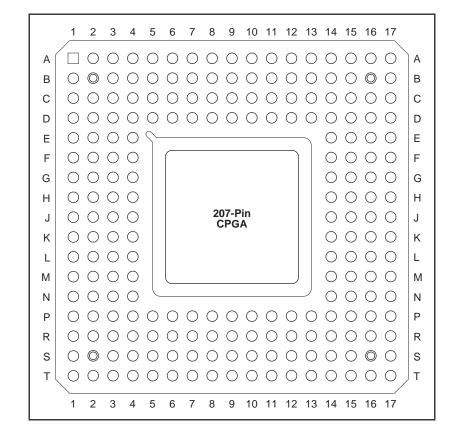
Accelerator Series FPGAs – ACT 3 Family

TQ176			TQ176		
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function	Pin Number	A1440, A14V40 Function	A1460, A14V60 Function
1	GND	GND	89	GND	GND
2	SDI, I/O	SDI, I/O	98	VCC	VCC
10	MODE	MODE	99	VCC	VCC
11	VCC	VCC	108	GND	GND
20	NC	I/O	109	VCC	VCC
21	GND	GND	110	GND	GND
22	VCC	VCC	119	NC	I/O
23	GND	GND	121	NC	I/O
32	VCC	VCC	122	VCC	VCC
33	VCC	VCC	123	GND	GND
44	GND	GND	124	VCC	VCC
49	NC	I/O	132	IOCLK, I/O	IOCLK, I/O
51	NC	I/O	133	GND	GND
63	NC	I/O	138	NC	I/O
64	PRB, I/O	PRB, I/O	152	CLKA, I/O	CLKA, I/O
65	GND	GND	153	CLKB, I/O	CLKB, I/O
66	VCC	VCC	154	VCC	VCC
67	VCC	VCC	155	GND	GND
69	HCLK, I/O	HCLK, I/O	156	VCC	VCC
82	NC	I/O	157	PRA, I/O	PRA, I/O
83	NC	I/O	158	NC	I/O
87	SDO	SDO	170	NC	I/O
88	IOPCL, I/O	IOPCL, I/O	176	DCLK, I/O	DCLK, I/O

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Microsemi

Accelerator Series FPGAs – ACT 3 Family


	VQ100						
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function				
1	GND	GND	GND				
2	SDI, I/O	SDI, I/O	SDI, I/O				
7	MODE	MODE	MODE				
8	VCC	VCC	VCC				
9	GND	GND	GND				
20	VCC	VCC	VCC				
21	NC	I/O	I/O				
34	PRB, I/O	PRB, I/O	PRB, I/O				
35	VCC	VCC	VCC				
36	GND	GND	GND				
37	VCC	VCC	VCC				
39	HCLK, I/O	HCLK, I/O	HCLK, I/O				
49	SDO	SDO	SDO				
50	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O				
51	GND	GND	GND				
57	VCC	VCC	VCC				
58	VCC	VCC	VCC				
67	VCC	VCC	VCC				
68	GND	GND	GND				
69	GND	GND	GND				
74	NC	I/O	I/O				
75	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O				
87	CLKA, I/O	CLKA, I/O	CLKA, I/O				
88	CLKB, I/O	CLKB, I/O	CLKB, I/O				
89	VCC	VCC	VCC				
90	VCC	VCC	VCC				
91	GND	GND	GND				
92	PRA, I/O	PRA, I/O	PRA, I/O				
93	NC	I/O	I/O				
100	DCLK, I/O	DCLK, I/O	DCLK, I/O				

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

PG207

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Datasheet Information

Revision	Changes		
Revision 2 (continued)	In the "Package Pin Assignments" section, notes were added to the pin tables for the following packages, stating that they are discontinued:		
	"BG225"	3-20	
	"PG100"	3-24	
	"PG133"	3-26	
	"PG175"	3-28	
Revision 1 (June 2006)	RoHS compliant information was added to the "Ordering Information" section.	II	

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.