

Welcome to <u>E-XFL.COM</u>

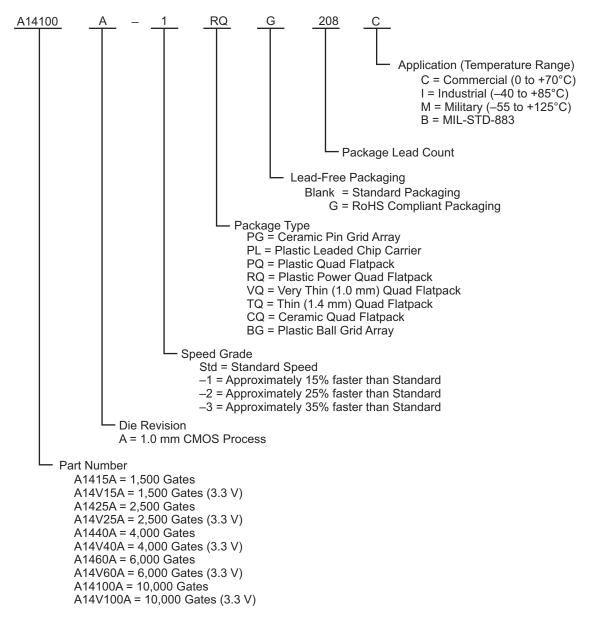
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


Details	
Product Status	Obsolete
Number of LABs/CLBs	564
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	140
Number of Gates	4000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	176-LQFP
Supplier Device Package	176-TQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1440a-1tq176i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Accelerator Series FPGAs - ACT 3 Family

Ordering Information

Notes:

- 1. The -2 and -3 speed grades have been discontinued.
- The Ceramic Pin Grid Array packages PG100, PG133, and PG175 have been discontinued in all device densities, speed grades, and temperature grades.
 The Plastic Ball Grid Array package BG225 has been discontinued in all device densities (specifically for A1460A), all speed
- 3. The Plastic Ball Grid Array package BG225 has been discontinued in all device densities (specifically for A1460A), all speed grades, and all temperature grades.
- 4. Military Grade devices are no longer available for the A1440A device.
- For more information about discontinued devices, refer to the Product Discontinuation Notices (PDNs) listed below, available on the Microsemi SoC Products Group website: PDN March 2001

PDN March 20 PDN 0104 PDN 0203 PDN 0604 PDN 1004

Accelerator Series FPGAs – ACT 3 Family

		Speed	Grade ¹	Application ¹				
Device/Package	Std.	-1	-2	-3	С	I	м	В
A14V40A Device		1	1			1	•	
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	-	-	-	✓	-	-	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	_	_	-	1	_	-	-
160-Pin Plastic Quad Flatpack (PQFP)	1	_	_	-	1	_	-	-
176-Pin Thin Quad Flatpack (TQFP)	1	_	-	-	1	-	-	-
A1460A Device		1	1					
160-Pin Plastic Quad Flatpack (PQFP)	1	 ✓ 	D	D	 ✓ 	1	-	-
176-Pin Thin Quad Flatpack (TQFP)	1	1	D	D	1	1	-	-
196-Pin Ceramic Quad Flatpack (CQFP)	1	1	_	-	1	_	1	1
207-Pin Ceramic Pin Grid Array (CPGA)	1	1	D	D	1	-	1	1
208-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	~	✓	-	-
225-Pin Plastic Ball Grid Array (BGA)	D	D	D	D	D	-	-	-
A14V60A Device		I	1			1	•	
160-Pin Plastic Quad Flatpack (PQFP)	✓	-	-	-	✓	_	-	-
176-Pin Thin Quad Flatpack (TQFP)	1	-	-	-	✓	_	-	-
208-Pin Plastic Quad Flatpack (PQFP)	1	-	-	-	✓	-	-	-
A14100A Device				•	•			
208-Pin Power Quad Flatpack (RQFP)	1	✓	D	D	✓	~	-	-
257-Pin Ceramic Pin Grid Array (CPGA)	1	1	D	D	 ✓ 	_	1	1
313-Pin Plastic Ball Grid Array (BGA)	1	✓	D	D	✓	_	-	-
256-Pin Ceramic Quad Flatpack (CQFP)	1	1	-	-	1	_	~	1
A14V100A Device	•	•	•	•	•	•	-	
208-Pin Power Quad Flatpack (RQFP)	1	-	-	-	✓	_	-	-
313-Pin Plastic Ball Grid Array (BGA)	1	_	-	-	1	-	-	-

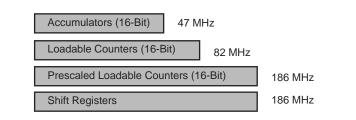
Notes:

1. Applications: C = CommercialI = Industrial
M = Military
Commercial only

- Availability:
- ✓ = Available
- P = Planned- = Not planned
- D = Discontinued

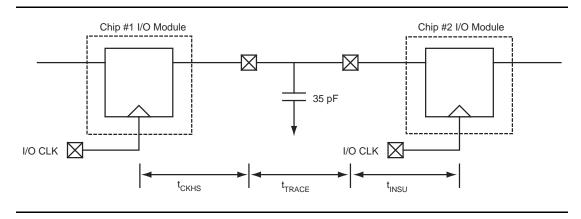
Speed Grade:

-1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std. -3 = Approx. 35% faster than Std. (-2 and -3 speed grades have been discontinued.)


1 – ACT 3 Family Overview

General Description

Microsemi's ACT 3 Accelerator Series of FPGAs offers the industry's fastest high-capacity programmable logic device. ACT 3 FPGAs offer a high performance, PCI compliant programmable solution capable of 186 MHz on-chip performance and 9.0 nanosecond clock-to-output (-1 speed grade), with capacities spanning from 1,500 to 10,000 gate array equivalent gates.


The ACT 3 family builds on the proven two-module architecture consisting of combinatorial and sequential logic modules used in Microsemi's 3200DX and 1200XL families. In addition, the ACT 3 I/O modules contain registers which deliver 9.0 nanosecond clock-to-out times (-1 speed grade). The devices contain four clock distribution networks, including dedicated array and I/O clocks, supporting very fast synchronous and asynchronous designs. In addition, routed clocks can be used to drive high fanout signals such as flip-flop resets and output.

The ACT 3 family is supported by Microsemi's Designer Series Development System which offers automatic placement and routing (with automatic or fixed pin assignments), static timing analysis, user programming, and debug and diagnostic probe capabilities.

Figure 1-1 • Predictable Performance (worst-case commercial, –1 speed grade)

System Performance Model

2 – Detailed Specifications

This section of the datasheet is meant to familiarize the user with the architecture of the ACT 3 family of FPGA devices. A generic description of the family will be presented first, followed by a detailed description of the logic blocks, the routing structure, the antifuses, and the special function circuits. The on-chip circuitry required to program the devices is not covered.

Topology

The ACT 3 family architecture is composed of six key elements: Logic modules, I/O modules, I/O Pad Drivers, Routing Tracks, Clock Networks, and Programming and Test Circuits. The basic structure is similar for all devices in the family, differing only in the number of rows, columns, and I/Os. The array itself consists of alternating rows of modules and channels. The logic modules and channels are in the center of the array; the I/O modules are located along the array periphery. A simplified floor plan is depicted in Figure 2-1.

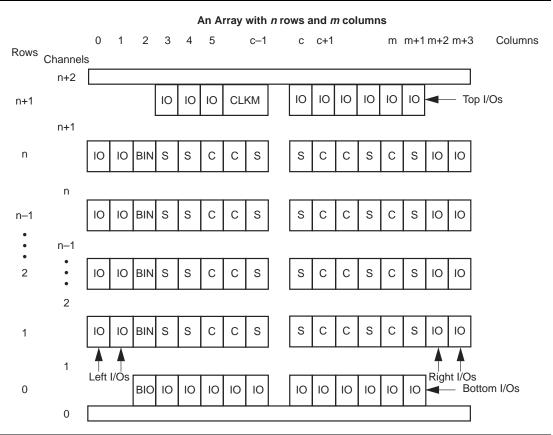


Figure 2-1 • Generalized Floor Plan of ACT 3 Device

Dedicated Clocks

Dedicated clock networks support high performance by providing sub-nanosecond skew and guaranteed performance. Dedicated clock networks contain no programming elements in the path from the I/O Pad Driver to the input of S-modules or I/O modules. There are two dedicated clock networks: one for the array registers (HCLK), and one for the I/O registers (IOCLK). The clock networks are accessed by special I/Os.

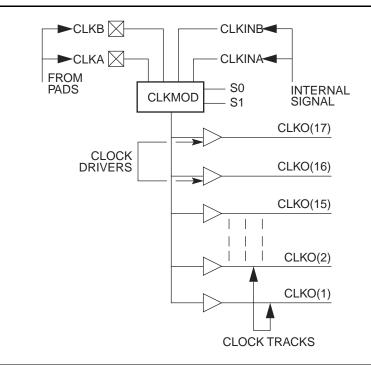


Figure 2-6 • Clock Networks

The routed clock networks are referred to as CLK0 and CLK1. Each network is connected to a clock module (CLKMOD) that selects the source of the clock signal and may be driven as follows (Figure 2-6):

- Externally from the CLKA pad
- Externally from the CLKB pad
- Internally from the CLKINA input
- Internally from the CLKINB input

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel. The function of the clock module is determined by the selection of clock macros from the macro library. The macro CLKBUF is used to connect one of the two external clock pins to a clock network, and the macro CLKINT is used to connect an internally generated clock signal to a clock network. Since both clock networks are identical, the user does not care whether CLK0 or CLK1 is being used. Routed clocks can also be used to drive high fanout nets like resets, output enables, or data enables. This saves logic modules and results in performance increases in some cases.

Routing Structure

The ACT 3 architecture uses vertical and horizontal routing tracks to connect the various logic and I/O modules. These routing tracks are metal interconnects that may either be of continuous length or broken into segments. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track.

Horizontal Routing

Horizontal channels are located between the rows of modules and are composed of several routing tracks. The horizontal routing tracks within the channel are divided into one or more segments. The minimum horizontal segment length is the width of a module-pair, and the maximum horizontal segment length is the full length of the channel. Any segment that spans more than one-third the row length is considered a long horizontal segment. A typical channel is shown in Figure 2-7. Undedicated horizontal routing tracks are used to route signal nets. Dedicated routing tracks are used for the global clock networks and for power and ground tie-off tracks.

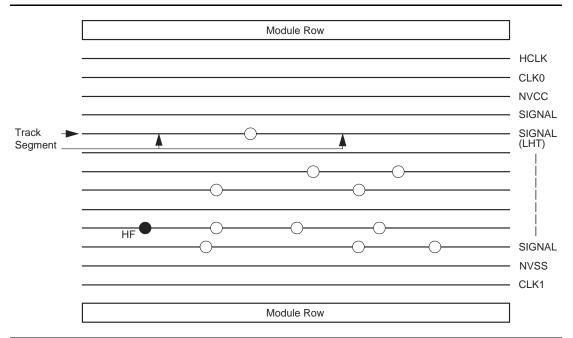


Figure 2-7 • Horizontal Routing Tracks and Segments

Vertical Routing

Other tracks run vertically through the modules. Vertical tracks are of three types: input, output, and long. Vertical tracks are also divided into one or more segments. Each segment in an input track is dedicated to the input of a particular module. Each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing. Each output segment spans four channels (two above and two below), except near the top and bottom of the array where edge effects occur. LVTs contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 2-8.

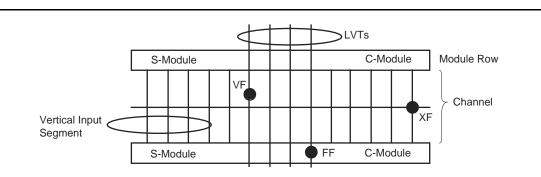


Figure 2-8 • Vertical Routing Tracks and Segments

Antifuse Connections

An antifuse is a "normally open" structure as opposed to the normally closed fuse structure used in PROMs or PALs. The use of antifuses to implement a programmable logic device results in highly testable structures as well as an efficient programming architecture. The structure is highly testable because there are no preexisting connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed as well as isolate individual circuit structures to be tested. This can be done both before and after programming. For example, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified.

Four types of antifuse connections are used in the routing structure of the ACT 3 array. (The physical structure of the antifuse is identical in each case; only the usage differs.)

Table 2-1 shows four types of antifuses.

Туре	Description							
XF	Horizontal-to-vertical connection							
HF	Horizontal-to-horizontal connection							
VF	Vertical-to-vertical connection							
FF	"Fast" vertical connection							

Examples of all four types of connections are shown in Figure 2-7 on page 2-6 and Figure 2-8 on page 2-6.

Module Interface

Connections to Logic and I/O modules are made through vertical segments that connect to the module inputs and outputs. These vertical segments lie on vertical tracks that span the entire height of the array.

Module Input Connections

The tracks dedicated to module inputs are segmented by pass transistors in each module row. During normal user operation, the pass transistors are inactive, which isolates the inputs of a module from the inputs of the module directly above or below it. During certain test modes, the pass transistors are active to verify the continuity of the metal tracks. Vertical input segments span only the channel above or the channel below. The logic modules are arranged such that half of the inputs are connected to the channel above and half of the inputs to segments in the channel below, as shown in Figure 2-9.

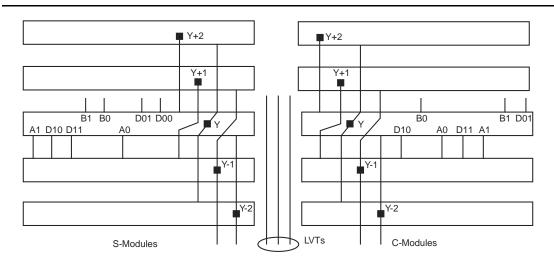


Figure 2-9 • Logic Module Routing Interface

Accelerator Series FPGAs – ACT 3 Family

Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used over a wide range of operating conditions. Equivalent capacitance values are shown in Figure 2-10.

Item	CEQ Value
Modules (C _{EQM})	6.7
Input Buffers (C _{EQI})	7.2
Output Buffers (C _{EQO})	10.4
Routed Array Clock Buffer Loads (C _{EQCR})	1.6
Dedicated Clock Buffer Loads (C _{EQCD})	0.7
I/O Clock Buffer Loads (C _{EQCI)}	0.9

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 5 shows a piece-wise linear summation over all components.

Power =VCC² * [(m * C_{EQM} * f_m)_{modules} + (n * C_{EQI} * f_n) inputs

+ ($p * (C_{EQO} + C_L) * f_p$)outputs

+ 0.5 * (q1 * C_{EQCR} * f_{q1})_{routed_Clk1} + (r1 * fq1)_{routed_Clk1}

+ 0.5 * (q2 * C_{EQCR} * fq2)_{routed_Clk2}

+ $(r_2 * f_{q2})_{routed_Clk2}$ + 0.5 * $(s_1 * C_{EQCD} * f_{s1})_{dedicated_Clk}$

+ (s₂ * C_{EQCI} * f_{s2})_{IO_CIk}]

Where: m = Number of logic modules switching at fm n = Number of input buffers switching at fn p = Number of output buffers switching at f_p q1 = Number of clock loads on the first routed array clock q2 = Number of clock loads on the second routed array clock r_1 = Fixed capacitance due to first routed array clock r₂ = Fixed capacitance due to second routed array clock s₁ = Fixed number of clock loads on the dedicated array clock s2 = Fixed number of clock loads on the dedicated I/O clock C_{FOM} = Equivalent capacitance of logic modules in pF C_{EQI} = Equivalent capacitance of input buffers in pF C_{EOO} = Equivalent capacitance of output buffers in pF C_{EOCR} = Equivalent capacitance of routed array clock in pF C_{EQCD} = Equivalent capacitance of dedicated array clock in pF C_{EOCI} = Equivalent capacitance of dedicated I/O clock in pF C₁ = Output lead capacitance in pF f_m = Average logic module switching rate in MHz fn = Average input buffer switching rate in MHz f_p = Average output buffer switching rate in MHz f_{q1} = Average first routed array clock rate in MHz $f_{\alpha 2}$ = Average second routed array clock rate in MHz f_{s1} = Average dedicated array clock rate in MHz f_{s2} = Average dedicated I/O clock rate in MHz

EQ 5

Detailed Specifications

Table 2-11 • Fixed Capacitance Values for Microsemi FPGAs

Device Type	r1, routed_Clk1	r2, routed_Clk2
A1415A	60	60
A14V15A	57	57
A1425A	75	75
A14V25A	72	72
A1440A	105	105
A14V40A	100	100
A1440B	105	105
A1460A	165	165
A14V60A	157	157
A1460B	165	165
A14100A	195	195
A14V100A	185	185
A14100B	195	195

Table 2-12 • Fixed Clock Loads (s1/s2)

Device Type	s1, Clock Loads on Dedicated Array Clock	s2, Clock Loads on Dedicated I/O Clock				
A1415A	104	80				
A14V15A	104	80				
A1425A	160	100				
A14V25A	160	100				
A1440A	288	140				
A14V40A	288	140				
A1440B	288	140				
A1460A	432	168				
A14V60A	432	168				
A1460B	432	168				
A14100A	697	228				
A14V100A	697	228				
A14100B	697	228				

Determining Average Switching Frequency

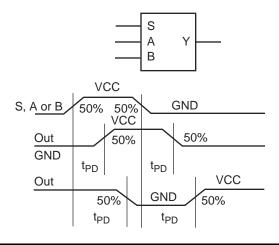

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are as follows:

Table 2-13 • Guidelines	for Predicting	Power Dissipation
	, ioi i ioaioaing	i enter Bioorpatient

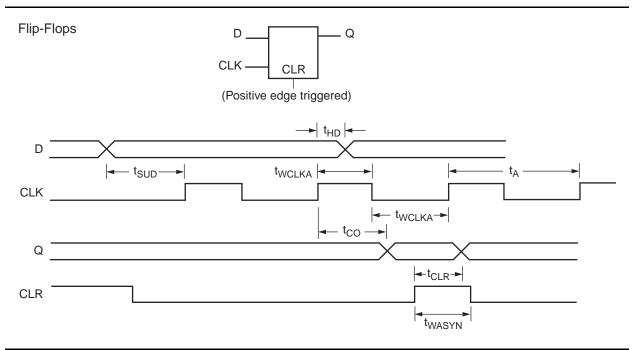

Data	Value				
Logic Modules (m)	80% of modules				
Inputs switching (n)	# inputs/4				
Outputs switching (p)	# output/4				
First routed array clock loads (q1)	40% of sequential modules				
Second routed array clock loads (q2)	40% of sequential modules				
Load capacitance (CL)	35 pF				
Average logic module switching rate (fm)	F/10				
Average input switching rate (fn)	F/5				
Average output switching rate (fp)	F/10				
Average first routed array clock rate (fq1)	F/2				
Average second routed array clock rate (fq2)	F/2				
Average dedicated array clock rate (fs1)	F				
Average dedicated I/O clock rate (fs2)	F				

Figure 2-14 • Module Delays

Figure 2-15 • Sequential Module Timing Characteristics

A1425A, A14V25A Timing Characteristics (continued)

		-3 S	-3 Speed ¹ -2 Sp		beed ¹	eed ¹ –1 Speed		Std. Speed		3.3 V Speed ¹		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	ule Sequential Timing (wrt IOCLK	pad)										
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	1.8		2.0		2.3		2.7		3.0		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns

Notes: *

1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A1425A, A14V25A Timing Characteristics (continued)

Table 2-25 • A1425A.	A14V25A Worst-Case Comme	ercial Conditions, VCC	= 4.75 V. T ₁ = 70°C
TUDIO E EO TATEORI			- + v, ij - 10 0

Dedicated (hardwired) I/O Clock Network		-3 Speed ¹		-2 Speed ¹		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.0		2.3		2.6		3.0		3.5	ns
t _{IOPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{IPOWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	1.9		2.4		3.3		3.8		4.8		ns
t _{IOCKSW}	Maximum Skew		0.4		0.4		0.4		0.4		0.4	ns
t _{IOP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{IOMAX}	Maximum Frequency		250		200		150		125		100	MHz
Dedicate	d (hardwired) Array Clock											
tнскн	Input Low to High (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
^t HCKL	Input High to Low (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{HPWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.3		0.3		0.3		0.3		0.3	ns
t _{HP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{HMAX}	Maximum Frequency		250		200		150		125		100	MHz
Routed A	rray Clock Networks											
t _{RCKH}	Input Low to High (FO = 64)		3.7		4.1		4.7		5.5		9.0	ns
t _{RCKL}	Input High to Low (FO = 64)		4.0		4.5		5.1		6.0		9.0	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RCKSW}	Maximum Skew (FO = 128)		0.7		0.8		0.9		1.0		1.0	ns
t _{RP}	Minimum Period (FO = 64)	6.8		8.0		8.7		10.0		13.4		ns
f _{RMAX}	Maximum Frequency (FO = 64)		150		125		115		100		75	MHz
Clock-to-Clock Skews												
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	1.7	0.0	1.8	0.0	2.0	0.0	2.2	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 80)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	3.0 3.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 80)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes:

1. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

2. Delays based on 35 pF loading.

Detailed Specifications

A14100A, A14V100A Timing Characteristics (continued)

Table 2-36 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Module – TTL Output Timing ¹		-3 Speed ² -		–2 Speed ²		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	DHS Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.5		9.5		10.5		12.0		15.6	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		12.8		12.8		15.3		17.0		22.1	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS} Delta High to Low, Low Slew			0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Moc	ule – CMOS Output Timing ¹				•							
t _{DHS} Data to Pad, High Slew			6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS} Enable to Pad, Z to H/L, High Slew			5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.0		12.0		15.6	ns
t _{ENLSZ} Enable to Pad, H/L to Z, Low Slew			7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		10.4		10.4		12.4		13.8		17.9	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		14.5		14.5		17.4		19.3		25.1	ns
d _{TLHHS} Delta Low to High, High Slew			0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

Detailed Specifications

Pin Descriptions

CLKA Clock A (Input)

Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKB Clock B (Input)

Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

GND Ground

LOW supply voltage.

HCLK Dedicated (Hard-wired) Array Clock (Input)

Clock input for sequential modules. This input is directly wired to each S-Module and offers clock speeds independent of the number of S-Modules being driven. This pin can also be used as an I/O.

I/O Input/Output (Input, Output)

The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are tristated by the Designer Series software.

IOCLK Dedicated (Hard-wired) I/O Clock (Input)

Clock input for I/O modules. This input is directly wired to each I/O module and offers clock speeds independent of the number of I/O modules being driven. This pin can also be used as an I/O.

IOPCL Dedicated (Hard-wired) I/O Preset/Clear (Input)

Input for I/O preset or clear. This global input is directly wired to the preset and clear inputs of all I/O registers. This pin functions as an I/O when no I/O preset or clear macros are used.

MODE Mode (Input)

The MODE pin controls the use of diagnostic pins (DCLK, PRA, PRB, SDI). When the MODE pin is HIGH, the special functions are active. When the MODE pin is LOW, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled high when required.

NC No Connection

This pin is not connected to circuitry within the device.

PRA Probe A (Output)

The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

PRB Probe B (Output)

The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

SDI Serial Data Input (Input)

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

Accelerator Series FPGAs – ACT 3 Family

	VQ100							
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function					
1	GND	GND	GND					
2	SDI, I/O	SDI, I/O	SDI, I/O					
7	MODE	MODE	MODE					
8	VCC	VCC	VCC					
9	GND	GND	GND					
20	VCC	VCC	VCC					
21	NC	I/O	I/O					
34	PRB, I/O	PRB, I/O	PRB, I/O					
35	VCC	VCC	VCC					
36	GND	GND	GND					
37	VCC	VCC	VCC					
39	HCLK, I/O	HCLK, I/O	HCLK, I/O					
49	SDO	SDO	SDO					
50	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O					
51	GND	GND	GND					
57	VCC	VCC	VCC					
58	VCC	VCC	VCC					
67	VCC	VCC	VCC					
68	GND	GND	GND					
69	GND	GND	GND					
74	NC	I/O	I/O					
75	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O					
87	CLKA, I/O	CLKA, I/O	CLKA, I/O					
88	CLKB, I/O	CLKB, I/O	CLKB, I/O					
89	VCC	VCC	VCC					
90	VCC	VCC	VCC					
91	GND	GND	GND					
92	PRA, I/O	PRA, I/O	PRA, I/O					
93	NC	I/O	I/O					
100	DCLK, I/O	DCLK, I/O	DCLK, I/O					

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs – ACT 3 Family

	BG225					
A1460 Function	Location					
CLKA or I/O	C8					
CLKB or I/O	B8					
DCLK or I/O	B2					
GND	A1, A15, D15, F8, G7, G8, G9, H6, H7, H8, H9, H10, J7, J8, J9, K8, P2, R15					
HCLK or I/O	P9					
IOCLK or I/O	B14					
IOPCL or I/O	P14					
MODE	D1					
NC	A11, B5, B7, D8, D12, F6, F11, H1, H12, H14, K11, L1, L13, N8, P5, R1, R8, R11, R14					
PRA or I/O	A7					
PRB or I/O	L7					
SDI or I/O	D4					
SDO	N13					
VCC	A8, B12, D5, D14, E3, E8, E13, H2, H3, H11, H15, K4, L2, L12, M8, M15, P4, P8, R13					

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The BG225 package has been discontinued.

Accelerator Series FPGAs – ACT 3 Family

	PG257					
A14100 Function	Location					
CLKA or I/O	L4					
CLKB or I/O	L5					
DCLK or I/O	E4					
GND	B16, C4, D4, D10, D16, E11, J5, K4, K16, L15, R4, T4, T10, T16, T17, X7					
HCLK or I/O	J16					
IOCLK or I/O	T5					
IOPCL or I/O	R16					
MODE	A5					
NC	E5					
PRA or I/O	J1					
PRB or I/O	J17					
SDI or I/O	B4					
SDO	R17					
VCC	C3, C10, C13, C17, K3, K17, V3, V7, V10, V17, X14					

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

4 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the datasheet.

Revision	Changes	Page
Revision 3 (January 2012)	The description for SDO pins had earlier been removed from the datasheet and has now been included again, in the "Pin Descriptions" section (SAR 35820).	2-21
	SDO pin numbers had earlier been removed from package pin assignment tables in the datasheet, and have now been restored to the pin tables (SAR 35820).	3-1
Revision 2 (September 2011)	The ACT 3 datasheet was formatted newly in the style used for current datasheets. The same information is present (other than noted in the list of changes for this revision) but divided into chapters.	N/A
	The datasheet was revised to note in multiple places that speed grades -2 and -3 have been discontinued. The following device/package combinations have been discontinued for all speed grades and temperatures (SAR 33872): A1415 PG100 A1425 PG133 A1440 PG175 A1460 BG225 Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004.	I and others
	The "Features" section was revised to state the clock-to-ouput time and on-chip performance for –1 speed grade as 9.0 ns and 186 MHz. The "General Description" section was revised in accordance (SAR 33872).	Ι
	The maximum performance values were updated in Table 1 • ACT 3 Family Product Information, and now reflect worst-case commercial for the -1 speed grade (SAR 33872).	Ι
	The "Product Plan" table was updated as follows to conform to current offerings (SAR 33872): The A1415A device is offered in PL84, PG100, and VQ100 packages for Military application. The A1440A device is offered in TQ176 and VQ100 packages for Industrial application.	III
	Table 1-1 • Chip-to-Chip Performance (worst-case commercial) was updated to include data for all speed grades instead of only –3 (SAR 33872).	1-2
	Figure 1-1 • Predictable Performance (worst-case commercial, –1 speed grade) was revised to reflect values for the –1 speed grade (SAR 33872).	1-1
	Figure 2-10 • Timing Model was updated to show data for the –1 speed grade instead of –3 (SAR 33872).	2-16
	Table 2-14 • Logic Module and Routing Delay by Fanout (ns); Worst-Case Commercial Conditions was updated to include data for all speed grades instead of only –3 (SAR 33872).	2-20
	Package names used in the "Package Pin Assignments" section and throughout the document were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	3-1

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.