

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	564
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	140
Number of Gates	4000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	176-LQFP
Supplier Device Package	176-TQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1440a-1tqg176i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Accelerator Series FPGAs - ACT 3 Family

Ordering Information

Notes:

- 1. The -2 and -3 speed grades have been discontinued.
- The Ceramic Pin Grid Array packages PG100, PG133, and PG175 have been discontinued in all device densities, speed grades, and temperature grades.
 The Plastic Ball Grid Array package BG225 has been discontinued in all device densities (specifically for A1460A), all speed
- 3. The Plastic Ball Grid Array package BG225 has been discontinued in all device densities (specifically for A1460A), all speed grades, and all temperature grades.
- 4. Military Grade devices are no longer available for the A1440A device.
- For more information about discontinued devices, refer to the Product Discontinuation Notices (PDNs) listed below, available on the Microsemi SoC Products Group website: PDN March 2001

PDN March 20 PDN 0104 PDN 0203 PDN 0604 PDN 1004

3.3 V Operating Conditions

Table 2-3 • Apsolute Maximum Ratings , Free Air Temperature Rang	Table 2-5 •	Absolute Maximum	Ratings ¹ . Free Air	r Temperature Range
--	-------------	------------------	---------------------------------	---------------------

Symbol	Parameter	Limits	Units
VCC	DC supply voltage	-0.5 to +7.0	V
VI	Input voltage	-0.5 to VCC + 0.5	V
VO	Output voltage	-0.5 to VCC + 0.5	V
IIO	I/O source sink current ²	±20	mA
T _{STG}	Storage temperature	-65 to +150	°C

Notes:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions.

2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND –0.5 V, the internal protection diodes will forward bias and can draw excessive current.

Table 2-6 • Recommended Operating Conditions

Parameter	Commercial	Units
Temperature range*	0 to +70	°C
Power supply tolerance	3.0 to 3.6	V

Note: *Ambient temperature (T_A) is used for commercial.

Table 2-7 • Elec	ctrical Sr	oecifications
------------------	------------	---------------

		C	Commercial				
Parameter		Min.	Max.	Units			
VOH ¹	IOH = -4 mA	2.15	_	V			
	IOH = -3.2 mA	2.4		V			
VOL ¹	IOL = 6 mA		0.4	V			
VIL		-0.3	0.8	V			
VIH		2.0	VCC + 0.3	V			
Input transition time t _R , t _F ²	VI = VCC or GND	-10	+10	μA			
C _{IO} I/O Capacitance ^{2,3}			10	pF			
Standby current, ICC ⁴ (typical = 0).3 mA)		0.75	mA			
Leakage current ⁵		-10	10	μA			

1. Only one output tested at a time. VCC = minimum.

2. Not tested; for information only.

3. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f - 1 MHz.

4. Typical standby current = 0.3 mA. All outputs unloaded. All inputs = VCC or GND.

5. VO, VIN = VCC or GND

Accelerator Series FPGAs – ACT 3 Family

Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used over a wide range of operating conditions. Equivalent capacitance values are shown in Figure 2-10.

Item	CEQ Value
Modules (C _{EQM})	6.7
Input Buffers (C _{EQI})	7.2
Output Buffers (C _{EQO})	10.4
Routed Array Clock Buffer Loads (C _{EQCR})	1.6
Dedicated Clock Buffer Loads (C _{EQCD})	0.7
I/O Clock Buffer Loads (C _{EQCI)}	0.9

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 5 shows a piece-wise linear summation over all components.

Power =VCC² * [(m * C_{EQM} * f_m)_{modules} + (n * C_{EQI} * f_n) inputs

+ ($p * (C_{EQO} + C_L) * f_p$)outputs

+ 0.5 * (q1 * C_{EQCR} * f_{q1})_{routed_Clk1} + (r1 * fq1)_{routed_Clk1}

+ 0.5 * (q2 * C_{EQCR} * fq2)_{routed_Clk2}

+ $(r_2 * f_{q2})_{routed_Clk2}$ + 0.5 * $(s_1 * C_{EQCD} * f_{s1})_{dedicated_Clk}$

+ (s₂ * C_{EQCI} * f_{s2})_{IO_CIk}]

Where: m = Number of logic modules switching at fm n = Number of input buffers switching at fn p = Number of output buffers switching at f_p q1 = Number of clock loads on the first routed array clock q2 = Number of clock loads on the second routed array clock r_1 = Fixed capacitance due to first routed array clock r₂ = Fixed capacitance due to second routed array clock s₁ = Fixed number of clock loads on the dedicated array clock s2 = Fixed number of clock loads on the dedicated I/O clock C_{FOM} = Equivalent capacitance of logic modules in pF C_{EQI} = Equivalent capacitance of input buffers in pF C_{EOO} = Equivalent capacitance of output buffers in pF C_{EOCR} = Equivalent capacitance of routed array clock in pF C_{EQCD} = Equivalent capacitance of dedicated array clock in pF C_{EOCI} = Equivalent capacitance of dedicated I/O clock in pF C₁ = Output lead capacitance in pF f_m = Average logic module switching rate in MHz fn = Average input buffer switching rate in MHz f_p = Average output buffer switching rate in MHz f_{q1} = Average first routed array clock rate in MHz $f_{\alpha 2}$ = Average second routed array clock rate in MHz f_{s1} = Average dedicated array clock rate in MHz f_{s2} = Average dedicated I/O clock rate in MHz

EQ 5

Table 2-11 • Fixed Capacitance Values for Microsemi FPGAs

Device Type	r1, routed_Clk1	r2, routed_Clk2
A1415A	60	60
A14V15A	57	57
A1425A	75	75
A14V25A	72	72
A1440A	105	105
A14V40A	100	100
A1440B	105	105
A1460A	165	165
A14V60A	157	157
A1460B	165	165
A14100A	195	195
A14V100A	185	185
A14100B	195	195

Table 2-12 • Fixed Clock Loads (s1/s2)

Device Type	s1, Clock Loads on Dedicated Array Clock	s2, Clock Loads on Dedicated I/O Clock
A1415A	104	80
A14V15A	104	80
A1425A	160	100
A14V25A	160	100
A1440A	288	140
A14V40A	288	140
A1440B	288	140
A1460A	432	168
A14V60A	432	168
A1460B	432	168
A14100A	697	228
A14V100A	697	228
A14100B	697	228

Tightest Delay Distributions

Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases.

From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer lengths of routing track. The ACT 3 family delivers the tightest fanout delay distribution of any FPGA. This tight distribution is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path.

Microsemi's patented PLICE antifuse offers a very low resistive/capacitive interconnect. The ACT 3 family's antifuses, fabricated in 0.8 micron m lithography, offer nominal levels of 200Ω resistance and 6 femtofarad (fF) capacitance per antifuse. The ACT 3 fanout distribution is also tighter than alternative devices due to the low number of antifuses required per interconnect path. The ACT 3 family's proprietary architecture limits the number of antifuses per path to only four, with 90% of interconnects using only two antifuses.

The ACT 3 family's tight fanout delay distribution offers an FPGA design environment in which fanout can be traded for the increased performance of reduced logic level designs. This also simplifies performance estimates when designing with ACT 3 devices.

Speed Grade	FO = 1	FO = 2	FO = 3	FO = 4	FO = 8
ACT 3 –3	2.9	3.2	3.4	3.7	4.8
ACT 3 –2	3.3	3.7	3.9	4.2	5.5
ACT 3 –1	3.7	4.2	4.4	4.8	6.2
ACT 3 STD	4.3	4.8	5.1	5.5	7.2

Table 2-14 • Logic Module and Routing Delay by Fanout (ns); Worst-Case Commercial Conditions

Notes:

- Obtained by added t_{RD(x=FO)} to t_{PD} from the Logic Module Timing Characteristics Tables found in this datasheet.
- 2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

Timing Characteristics

Timing characteristics for ACT 3 devices fall into three categories: family dependent, device dependent, and design dependent. The input and output buffer characteristics are common to all ACT 3 family members. Internal routing delays are device dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the ALS Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections. This increases capacitance and resistance, result ng in longer net delays for macros connected to long tracks. Typically up to 6% of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 14 ns delay. This additional delay is represented statistically in higher fanout (FO = 8) routing delays in the datasheet specifications section.

A1415A, A14V15A Timing Characteristics (continued)

Table 2-20 • A1415A, A14V15A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	dule – TTL Output Timing ¹	-3 Sp	beed ²	–2 S	beed ²	–1 S	peed	Std.	Speed	3.3 V	Speed ¹	Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		7.5		7.5		9.0		10.0		13.0	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹			-							-	
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.7		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.7		7.5		9.0		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.9		8.9		10.7		11.8		15.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes:

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Please refer to the Product Discontinuation Notices (PDNs) listed below:

PDN March 2001 PDN 0104 PDN 0203 PDN 0604 PDN 1004

A1415A, A14V15A Timing Characteristics (continued)

Table 2-21 • A1415A, A14V15A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

Dedicate	d (hardwired) I/O Clock Network	–3 S	peed	-2 Speed		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.0		2.3		2.6		3.0		3.5	ns
t _{IOPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{IPOWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	1.9		2.4		3.3		3.8		4.8		ns
t _{IOCKSW}	Maximum Skew		0.4		0.4		0.4		0.4		0.4	ns
t _{IOP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{IOMAX}	Maximum Frequency		250		200		150		125		100	MHz
Dedicate	d (hardwired) Array Clock			•			•					
^t нскн	Input Low to High (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{HPWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.3		0.3		0.3		0.3		0.3	ns
t _{HP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{HMAX}	Maximum Frequency		250		200		150		125		100	MHz
Routed A	rray Clock Networks			•			•					
t _{RCKH}	Input Low to High (FO = 64)		3.7		4.1		4.7		5.5		9.0	ns
t _{RCKL}	Input High to Low (FO = 64)		4.0		4.5		5.1		6.0		9.0	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RCKSW}	Maximum Skew (FO = 128)		0.7		0.8		0.9		1.0		1.0	ns
t _{RP}	Minimum Period (FO = 64)	6.8		8.0		8.7		10.0		13.4		ns
f _{RMAX}	Maximum Frequency (FO = 64)		150		125		115		100		75	MHz
Clock-to-	Clock-to-Clock Skews											
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	1.7	0.0	1.8	0.0	2.0	0.0	2.2	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64)	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0	3.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 50% maximum)	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0 0.0	3.0 3.0	ns

Notes:

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1425A, A14V25A Timing Characteristics (continued)

Table 2-24 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	dule – TTL Output Timing ¹	-3 Sp	beed ²	-2 Sp	beed ²	–1 S	peed	Std. Speed		3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		7.5		7.5		9.0		10.0		13.0	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹			-					-	-		
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.7		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.7		7.5		9.0		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.9		8.9		10.7		11.8		15.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1440A, A14V40A Timing Characteristics (continued)

Table 2-28 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	dule – TTL Output Timing ¹	-3 Sp	beed ²	-2 Sp	beed ²	–1 S	peed	Std. Speed		3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.5		8.5		9.5		11.0		14.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹			-					-	-		
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.0		9.0		10.1		11.8		14.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes:

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1460A, A14V60A Timing Characteristics (continued)

Table 2-31 • A1460A.	A14V60A Worst-Case	Commercial Conditions	$VCC = 4.75 V. T_1 = 70^{\circ}C$
		eenneren eran een anterner	

I/O Moo	dule Input Propagation Delays	-3 Sp	beed ¹	-2 Sp	beed ¹	-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²			•	•							
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Moo	dule Sequential Timing (wrt IOCLK	pad)		•	•							
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	1.3		1.5		1.8		2.0		2.0		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns

Notes:

5. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

6. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A1460A, A14V60A Timing Characteristics (continued)

Table 2-33 • A1460A	A14V60A Worst	-Case Commercia	Conditions.	VCC = 4.75 V. T.	= 70°C
$Iable 2-33 \cdot AI + 00A$	A1400A 1013			, voo = + ./5 v , ij	-100

Dedicate	Dedicated (hardwired) I/O Clock Network		beed ¹	–2 Speed ¹		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.3		2.6		3.0		3.5		4.5	ns
t _{IOPWH}	Minimum Pulse Width High	2.4		3.2		3.8		4.8		6.5		ns
t _{IPOWL}	Minimum Pulse Width Low	2.4		3.2		3.8		4.8		6.5		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _{IOCKSW}	Maximum Skew		0.6		0.6		0.6		0.6		0.6	ns
t _{IOP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{IOMAX}	Maximum Frequency		200		150		125		100		75	MHz
Dedicate	d (hardwired) Array Clock			•				•		-		
^t нскн	Input Low to High (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HPWH}	Minimum Pulse Width High	2.4		3.2		3.8		4.8		6.5		ns
t _{HPWL}	Minimum Pulse Width Low	2.4		3.2		3.8		4.8		6.5		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.6		0.6		0.6		0.6		0.6	ns
t _{HP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{HMAX}	Maximum Frequency		200		150		125		100		75	MHz
Routed A	rray Clock Networks											
t _{RCKH}	Input Low to High (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RCKL}	Input High to Low (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RCKSW}	Maximum Skew (FO = 128)		1.2		1.4		1.6		1.8		1.8	ns
t _{RP}	Minimum Period (FO = 64)	8.3		9.3		11.1		12.5		16.7		ns
f _{RMAX}	Maximum Frequency (FO = 64)		120		105		90		80		60	MHz
Clock-to-	Clock Skews							-		-		
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	2.6	0.0	2.7	0.0	2.9	0.0	3.0	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 216)	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	5.0 5.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 216)	0.0 0.0	1.3 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes:

1. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

2. Delays based on 35 pF loading.

Package Pin Assignments

	PL84							
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function					
1	VCC	VCC	VCC					
2	GND	GND	GND					
3	VCC	VCC	VCC					
4	PRA, I/O	PRA, I/O	PRA, I/O					
11	DCLK, I/O	DCLK, I/O	DCLK, I/O					
12	SDI, I/O	SDI, I/O	SDI, I/O					
16	MODE	MODE	MODE					
27	GND	GND	GND					
28	VCC	VCC	VCC					
40	PRB, I/O	PRB, I/O	PRB, I/O					
41	VCC	VCC	VCC					
42	GND	GND	GND					
43	VCC	VCC	VCC					
45	HCLK, I/O	HCLK, I/O	HCLK, I/O					
52	SDO	SDO	SDO					
53	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O					
59	VCC	VCC	VCC					
60	VCC	VCC	VCC					
61	GND	GND	GND					
68	VCC	VCC	VCC					
69	GND	GND	GND					
74	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O					
83	CLKA, I/O	CLKA, I/O	CLKA, I/O					
84	CLKB, I/O	CLKB, I/O	CLKB, I/O					

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PQ100

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Accelerator Series FPGAs - ACT 3 Family

	CQ196		CQ196
Pin Number	A1460 Function	Pin Number	A1460 Function
1	GND	101	GND
2	SDI, I/O	110	VCC
11	MODE	111	VCC
12	VCC	112	GND
13	GND	137	VCC
37	GND	138	GND
38	VCC	139	GND
39	VCC	140	VCC
51	GND	148	IOCLK, I/O
52	GND	149	GND
59	VCC	155	VCC
64	GND	162	GND
77	HCLK, I/O	172	CLKA, I/O
79	PRB, I/O	173	CLKB, I/O
86	GND	174	PRA, I/O
94	VCC	183	GND
98	GND	189	VCC
99	SDO	193	GND
100	IOPCL, I/O	196	DCLK, I/O

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs – ACT 3 Family

	BG313
A14100, A14V100 Function	Location
CLKA or I/O	J13
CLKB or I/O	G13
DCLK or I/O	B2
GND	A1, A25, AD2, AE25, J21, L13, M12, M14, N11, N13, N15, P12, P14, R13
HCLK or I/O	T14
IOCLK or I/O	B24
IOPCL or I/O	AD24
MODE	G3
NC	A3, A13, A23, AA5, AA9, AA23, AB2, AB4, AB20, AC13, AC25, AD22, AE1, AE21, B14, C5, C25, D4, D24, E3, E21, F6, F10, F16, G1, G25, H18, H24, J1, J7, J25, K12, L15, L17, M6, N1, N5, N7, N21, N23, P20, R11, T6, T8, U9, U13, U21, V16, W7, Y20, Y24
PRA or I/O	H12
PRB or I/O	AD12
SDI or I/O	C1
SDO	AE23
VCC	AB18, AD6, AE13, C13, C19, E13, G9, H22, K8, K20, M16, N3, N9, N25, U5, W13, V2, V22, V24

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

PG100

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Package Pin Assignments

PG133

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Accelerator Series FPGAs – ACT 3 Family

	PG207						
A1460 Function	Location						
CLKA or I/O	К1						
CLKB or I/O	J3						
DCLK or I/O	E4						
GND	C14, D4, D5, D9, D14, J4, J14, P3, P4, P7, P9, P14, R15						
HCLK or I/O	J15						
IOCLK or I/O	P5						
IOPCL or I/O	N14						
MODE	D7						
NC	A1, A2, A16, A17, B1, B17, C1, C2, S1, S3, S17, T1, T2, T16, T17						
PRA or I/O	H1						
PRB or I/O	К16						
SDI or I/O	C3						
SDO	P15						
VCC	B2, B9, B16, D11, J2, J16, P12, S2, S9, S16, T5						

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.