


Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Details                        |                                                               |
|--------------------------------|---------------------------------------------------------------|
| Product Status                 | Obsolete                                                      |
| Number of LABs/CLBs            | 564                                                           |
| Number of Logic Elements/Cells | -                                                             |
| Total RAM Bits                 | -                                                             |
| Number of I/O                  | 131                                                           |
| Number of Gates                | 4000                                                          |
| Voltage - Supply               | 4.5V ~ 5.5V                                                   |
| Mounting Type                  | Surface Mount                                                 |
| Operating Temperature          | -40°C ~ 85°C (TA)                                             |
| Package / Case                 | 160-BQFP                                                      |
| Supplier Device Package        | 160-PQFP (28x28)                                              |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microsemi/a1440a-pqg160i |
|                                |                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

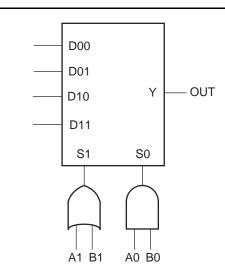
# **Product Plan**

|                                           |                       | Speed | Grade <sup>1</sup> | Application <sup>1</sup> |   |   |   |   |
|-------------------------------------------|-----------------------|-------|--------------------|--------------------------|---|---|---|---|
| Device/Package                            | Std.                  | -1    | -2                 | -3                       | С | I | М | В |
| A1415A Device                             |                       | 1     |                    | 1                        |   |   | • |   |
| 84-Pin Plastic Leaded Chip Carrier (PLCC) | 1                     | 1     | D                  | D                        | ✓ | 1 | 1 | - |
| 100-Pin Plastic Quad Flatpack (PQFP)      | 1                     | ✓     | D                  | D                        | ✓ | 1 | 1 | - |
| 100-Pin Very Thin Quad Flatpack (VQFP)    | 1                     | 1     | D                  | D                        | 1 | 1 | 1 | - |
| 100-Pin Ceramic Pin Grid Array (CPGA)     | D                     | D     | D                  | D                        | D | - | - | - |
| A14V15A Device                            |                       |       |                    |                          |   |   | • |   |
| 84-Pin Plastic Leaded Chip Carrier (PLCC) | 1                     | -     | -                  | —                        | ✓ | - | - | - |
| 100-Pin Very Thin Quad Flatpack (VQFP)    | 1                     | -     | -                  | -                        | 1 | - | - | - |
| A1425A Device                             | •                     | I     |                    | 1                        |   |   | 1 |   |
| 84-Pin Plastic Leaded Chip Carrier (PLCC) | 1                     | ✓     | D                  | D                        | ✓ | 1 |   |   |
| 100-Pin Plastic Quad Flatpack (PQFP)      | 1                     | 1     | D                  | D                        | 1 | ✓ | - | - |
| 100-Pin Very Thin Quad Flatpack (VQFP)    | 1                     | 1     | D                  | D                        | 1 | 1 | - | - |
| 132-Pin Ceramic Quad Flatpack (CQFP)      | 1                     | 1     | -                  | -                        | 1 | - | 1 | 1 |
| 133-Pin Ceramic Pin Grid Array (CPGA)     | D                     | D     | D                  | D                        | D | _ | D | D |
| 160-Pin Plastic Quad Flatpack (PQFP)      | 1                     | ✓     | D                  | D                        | ✓ | ~ | - | - |
| A14V25A Device                            | •                     |       | •                  |                          |   | • |   |   |
| 84-Pin Plastic Leaded Chip Carrier (PLCC) | 1                     | -     | -                  | —                        | ✓ | - | - | - |
| 100-Pin Very Thin Quad Flatpack (VQFP)    | 1                     | -     | -                  | -                        | 1 | - | - | - |
| 160-Pin Plastic Quad Flatpack (PQFP)      | 1                     | -     | -                  | -                        | 1 | - | - | - |
| A1440A Device                             |                       | 1     | L                  | 1                        | J |   | 1 |   |
| 84-Pin Plastic Leaded Chip Carrier (PLCC) | ✓                     | 1     | D                  | D                        | 1 | 1 | - | - |
| 100-Pin Very Thin Quad Flatpack (VQFP)    | 1                     | 1     | D                  | D                        | ✓ | ✓ | - | - |
| 160-Pin Plastic Quad Flatpack (PQFP)      | <ul> <li>✓</li> </ul> | 1     | D                  | D                        | 1 | 1 | - | - |
| 175-Pin Ceramic Pin Grid Array (CPGA)     | D                     | D     | D                  | D                        | D | - | - | - |
| 176-Pin Thin Quad Flatpack (TQFP)         | 1                     | 1     | D                  | D                        | 1 | 1 | - | _ |

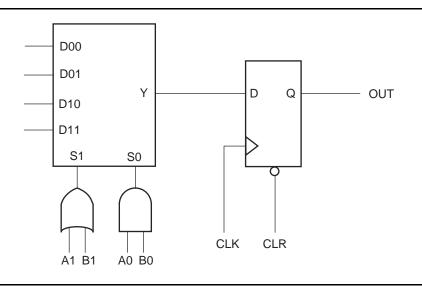
Notes:

 Applications:
 C = Commercial
 I = Industrial M = Military

Availability:  $\checkmark = Available$  P = Planned


- = Not plannedD = Discontinued

Speed Grade: -1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std. -3 = Approx. 35% faster than Std. (-2 and -3 speed grades have been discontinued.)




# **Logic Modules**

ACT 3 logic modules are enhanced versions of the 1200XL family logic modules. As in the 1200XL family, there are two types of modules: C-modules and S-modules (Figure 2-2 and Figure 2-3). The C-module is functionally equivalent to the 1200XL C-module and implements high fanin combinatorial macros, such as 5-input AND, 5-input OR, and so on. It is available for use as the CM8 hard macro. The S-module is designed to implement high-speed sequential functions within a single module.







*Figure 2-3* • S-Module Diagram

S-modules consist of a full C-module driving a flip-flop, which allows an additional level of logic to be implemented without additional propagation delay. It is available for use as the DFM8A/B and DLM8A/B hard macros. C-modules and S-modules are arranged in pairs called module-pairs. Module-pairs are arranged in alternating patterns and make up the bulk of the array. This arrangement allows the placement software to support two-module macros of four types (CC, CS, SC, and SS). The C-module implements the following function:

EQ 1

where: S0 = A0 \* B0 and S1 = A1 + B1

## Dedicated Clocks

Dedicated clock networks support high performance by providing sub-nanosecond skew and guaranteed performance. Dedicated clock networks contain no programming elements in the path from the I/O Pad Driver to the input of S-modules or I/O modules. There are two dedicated clock networks: one for the array registers (HCLK), and one for the I/O registers (IOCLK). The clock networks are accessed by special I/Os.

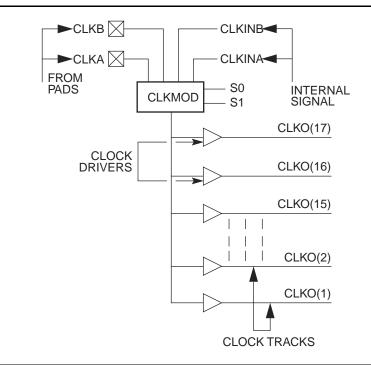



Figure 2-6 • Clock Networks

The routed clock networks are referred to as CLK0 and CLK1. Each network is connected to a clock module (CLKMOD) that selects the source of the clock signal and may be driven as follows (Figure 2-6):

- Externally from the CLKA pad
- Externally from the CLKB pad
- Internally from the CLKINA input
- Internally from the CLKINB input

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel. The function of the clock module is determined by the selection of clock macros from the macro library. The macro CLKBUF is used to connect one of the two external clock pins to a clock network, and the macro CLKINT is used to connect an internally generated clock signal to a clock network. Since both clock networks are identical, the user does not care whether CLK0 or CLK1 is being used. Routed clocks can also be used to drive high fanout nets like resets, output enables, or data enables. This saves logic modules and results in performance increases in some cases.

## **Routing Structure**

The ACT 3 architecture uses vertical and horizontal routing tracks to connect the various logic and I/O modules. These routing tracks are metal interconnects that may either be of continuous length or broken into segments. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track.



## **Horizontal Routing**

Horizontal channels are located between the rows of modules and are composed of several routing tracks. The horizontal routing tracks within the channel are divided into one or more segments. The minimum horizontal segment length is the width of a module-pair, and the maximum horizontal segment length is the full length of the channel. Any segment that spans more than one-third the row length is considered a long horizontal segment. A typical channel is shown in Figure 2-7. Undedicated horizontal routing tracks are used to route signal nets. Dedicated routing tracks are used for the global clock networks and for power and ground tie-off tracks.

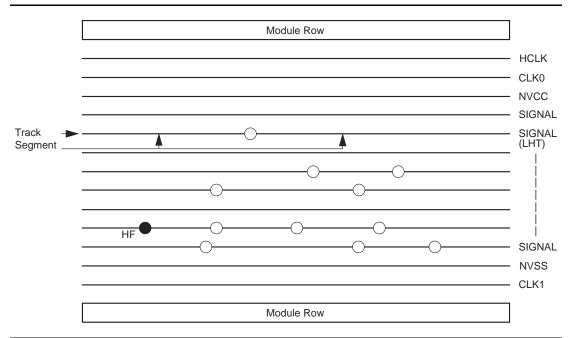



Figure 2-7 • Horizontal Routing Tracks and Segments

## Vertical Routing

Other tracks run vertically through the modules. Vertical tracks are of three types: input, output, and long. Vertical tracks are also divided into one or more segments. Each segment in an input track is dedicated to the input of a particular module. Each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing. Each output segment spans four channels (two above and two below), except near the top and bottom of the array where edge effects occur. LVTs contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 2-8.

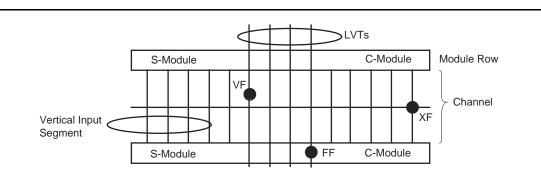



Figure 2-8 • Vertical Routing Tracks and Segments

## **Package Thermal Characteristics**

The device junction to case thermal characteristic is  $\theta$ jc, and the junction to ambient air characteristic is  $\theta$ ja. The thermal characteristics for  $\theta$ ja are shown with two different air flow rates.

Maximum junction temperature is 150°C.

A sample calculation of the absolute maximum power dissipation allowed for a CPGA 175-pin package at commercial temperature and still air is as follows:

$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja} °C/W} = \frac{150°C - 70°C}{25°C/W} = 3.2 \text{ W}$$

EQ 2

| Package Type∗               | Pin Count | θ <sub>jc</sub> | θ <sub>ja</sub><br>Still Air | θ <sub>ja</sub><br>300 ft./min. | Units |
|-----------------------------|-----------|-----------------|------------------------------|---------------------------------|-------|
| Ceramic Pin Grid Array      | 100       | 20              | 35                           | 17                              | °C/W  |
|                             | 133       | 20              | 30                           | 15                              | °C/W  |
|                             | 175       | 20              | 25                           | 14                              | °C/W  |
|                             | 207       | 20              | 22                           | 13                              | °C/W  |
|                             | 257       | 20              | 15                           | 8                               | °C/W  |
| Ceramic Quad Flatpack       | 132       | 13              | 55                           | 30                              | °C/W  |
|                             | 196       | 13              | 36                           | 24                              | °C/W  |
|                             | 256       | 13              | 30                           | 18                              | °C/W  |
| Plastic Quad Flatpack       | 100       | 13              | 51                           | 40                              | °C/W  |
|                             | 160       | 10              | 33                           | 26                              | °C/W  |
|                             | 208       | 10              | 33                           | 26                              | °C/W  |
| Very Thin Quad Flatpack     | 100       | 12              | 43                           | 35                              | °C/W  |
| Thin Quad Flatpack          | 176       | 11              | 32                           | 25                              | °C/W  |
| Power Quad Flatpack         | 208       | 0.4             | 17                           | 13                              | °C/W  |
| Plastic Leaded Chip Carrier | 84        | 12              | 37                           | 28                              | °C/W  |
| Plastic Ball Grid Array     | 225       | 10              | 25                           | 19                              | °C/W  |
|                             | 313       | 10              | 23                           | 17                              | °C/W  |

#### Table 2-8 • Package Thermal Characteristics

Note: Maximum power dissipation in still air:

PQ160 = 2.4 W PQ208 = 2.4 W PQ100 = 1.6 W VQ100 = 1.9 W TQ176 = 2.5 W PL84 = 2.2 W RQ208 = 4.7 W BG225 = 3.2 W BG313 = 3.5 W

Accelerator Series FPGAs – ACT 3 Family

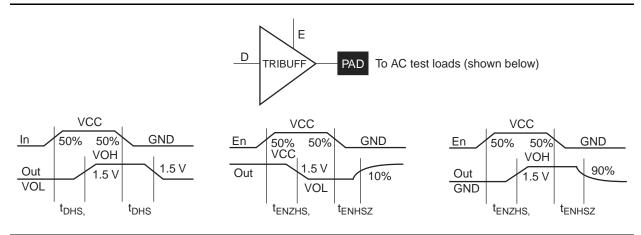



Figure 2-11 • Output Buffers

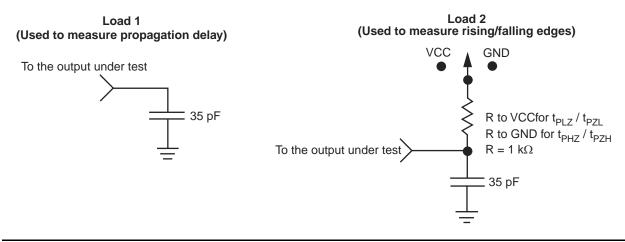
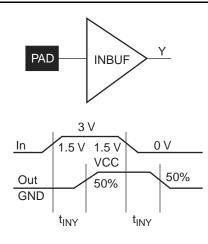




Figure 2-12 • AC Test Loads



### Figure 2-13 • Input Buffer Delays

## **Timing Derating**

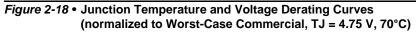
ACT 3 devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

#### Table 2-15 • Timing Derating Factor (Temperature and Voltage)

| (Commercial Minimum/Maximum Specification) x | Indus | strial | Military |      |  |
|----------------------------------------------|-------|--------|----------|------|--|
|                                              | Min.  | Max.   | Min.     | Max. |  |
|                                              | 0.66  | 1.07   | 0.63     | 1.17 |  |


#### Table 2-16 • Timing Derating Factor for Designs at Typical Temperature ( $T_J = 25^{\circ}C$ ) and Voltage (5.0 V)

| (Commercial Maximum Specification) x 0.85 |
|-------------------------------------------|
|-------------------------------------------|


### Table 2-17 • Temperature and Voltage Derating Factors

(normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

|      | -55  | -40  | 0    | 25   | 70   | 85   | 125   |
|------|------|------|------|------|------|------|-------|
| 4.50 | 0.72 | 0.76 | 0.85 | 0.90 | 1.04 | 1.07 | 1.117 |
| 4.75 | 0.70 | 0.73 | 0.82 | 0.87 | 1.00 | 1.03 | 1.12  |
| 5.00 | 0.68 | 0.71 | 0.79 | 0.84 | 0.97 | 1.00 | 1.09  |
| 5.25 | 0.66 | 0.69 | 0.77 | 0.82 | 0.94 | 0.97 | 1.06  |
| 5.50 | 0.63 | 0.66 | 0.74 | 0.79 | 0.90 | 0.93 | 1.01  |



Note: This derating factor applies to all routing and propagation delays.



### A1425A, A14V25A Timing Characteristics (continued)

| I/O Mod               | ule Input Propagation Delays         | -3 S | beed <sup>1</sup> | -2 Sp | beed <sup>1</sup> | -1 Speed |      | Std. Speed |      | 3.3 V Speed <sup>1</sup> |      | Units |
|-----------------------|--------------------------------------|------|-------------------|-------|-------------------|----------|------|------------|------|--------------------------|------|-------|
| Parameter/Description |                                      | Min. | Max.              | Min.  | Max.              | Min.     | Max. | Min.       | Max. | Min.                     | Max. |       |
| t <sub>INY</sub>      | Input Data Pad to Y                  |      | 2.8               |       | 3.2               |          | 3.6  |            | 4.2  |                          | 5.5  | ns    |
| t <sub>ICKY</sub>     | Input Reg IOCLK Pad to Y             |      | 4.7               |       | 5.3               |          | 6.0  |            | 7.0  |                          | 9.2  | ns    |
| t <sub>OCKY</sub>     | Output Reg IOCLK Pad to Y            |      | 4.7               |       | 5.3               |          | 6.0  |            | 7.0  |                          | 9.2  | ns    |
| t <sub>ICLRY</sub>    | Input Asynchronous Clear to Y        |      | 4.7               |       | 5.3               |          | 6.0  |            | 7.0  |                          | 9.2  | ns    |
| t <sub>OCLRY</sub>    | Output Asynchronous Clear to Y       |      | 4.7               |       | 5.3               |          | 6.0  |            | 7.0  |                          | 9.2  | ns    |
| Predict               | ed Input Routing Delays <sup>2</sup> |      |                   |       |                   |          |      |            |      |                          |      |       |
| t <sub>RD1</sub>      | FO = 1 Routing Delay                 |      | 0.9               |       | 1.0               |          | 1.1  |            | 1.3  |                          | 1.7  | ns    |
| t <sub>RD2</sub>      | FO = 2 Routing Delay                 |      | 1.2               |       | 1.4               |          | 1.6  |            | 1.8  |                          | 2.4  | ns    |
| t <sub>RD3</sub>      | FO = 3 Routing Delay                 |      | 1.4               |       | 1.6               |          | 1.8  |            | 2.1  |                          | 2.8  | ns    |
| t <sub>RD4</sub>      | FO = 4 Routing Delay                 |      | 1.7               |       | 1.9               |          | 2.2  |            | 2.5  |                          | 3.3  | ns    |
| t <sub>RD8</sub>      | FO = 8 Routing Delay                 |      | 2.8               |       | 3.2               |          | 3.6  |            | 4.2  |                          | 5.5  | ns    |
| I/O Mod               | ule Sequential Timing (wrt IOCLK     | pad) |                   |       |                   |          |      |            |      |                          |      |       |
| t <sub>INH</sub>      | Input F-F Data Hold                  | 0.0  |                   | 0.0   |                   | 0.0      |      | 0.0        |      | 0.0                      |      | ns    |
| t <sub>INSU</sub>     | Input F-F Data Setup                 | 1.8  |                   | 2.0   |                   | 2.3      |      | 2.7        |      | 3.0                      |      | ns    |
| t <sub>IDEH</sub>     | Input Data Enable Hold               | 0.0  |                   | 0.0   |                   | 0.0      |      | 0.0        |      | 0.0                      |      | ns    |
| t <sub>IDESU</sub>    | Input Data Enable Setup              | 5.8  |                   | 6.5   |                   | 7.5      |      | 8.6        |      | 8.6                      |      | ns    |
| t <sub>OUTH</sub>     | Output F-F Data hold                 | 0.7  |                   | 0.8   |                   | 0.9      |      | 1.0        |      | 1.0                      |      | ns    |
| t <sub>OUTSU</sub>    | Output F-F Data Setup                | 0.7  |                   | 0.8   |                   | 0.9      |      | 1.0        |      | 1.0                      |      | ns    |
| t <sub>ODEH</sub>     | Output Data Enable Hold              | 0.3  |                   | 0.4   |                   | 0.4      |      | 0.5        |      | 0.5                      |      | ns    |
| f <sub>ODESU</sub>    | Output Data Enable Setup             | 1.3  |                   | 1.5   |                   | 1.7      |      | 2.0        |      | 2.0                      |      | ns    |

Notes: \*

1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.



### A1440A, A14V40A Timing Characteristics

Table 2-26 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, T<sub>J</sub> = 70°C<sup>1</sup>

| Logic N               | Iodule Propagation Delays <sup>2</sup> | -3 Sp | beed <sup>3</sup> | -2 S | peed <sup>3</sup> | -1 S | peed | Std. S | Speed | 3.3 V | Speed <sup>1</sup> | Units |
|-----------------------|----------------------------------------|-------|-------------------|------|-------------------|------|------|--------|-------|-------|--------------------|-------|
| Parameter/Description |                                        | Min.  | Max.              | Min. | Max.              | Min. | Max. | Min.   | Max.  | Min.  | Max.               |       |
| t <sub>PD</sub>       | Internal Array Module                  |       | 2.0               |      | 2.3               |      | 2.6  |        | 3.0   |       | 3.9                | ns    |
| t <sub>CO</sub>       | Sequential Clock to Q                  |       | 2.0               |      | 2.3               |      | 2.6  |        | 3.0   |       | 3.9                | ns    |
| t <sub>CLR</sub>      | Asynchronous Clear to Q                |       | 2.0               |      | 2.3               |      | 2.6  |        | 3.0   |       | 3.9                | ns    |
| Predict               | ed Routing Delays <sup>4</sup>         |       |                   |      |                   |      |      |        |       |       | 1                  |       |
| t <sub>RD1</sub>      | FO = 1 Routing Delay                   |       | 0.9               |      | 1.0               |      | 1.1  |        | 1.3   |       | 1.7                | ns    |
| t <sub>RD2</sub>      | FO = 2 Routing Delay                   |       | 1.2               |      | 1.4               |      | 1.6  |        | 1.8   |       | 2.4                | ns    |
| t <sub>RD3</sub>      | FO = 3 Routing Delay                   |       | 1.4               |      | 1.6               |      | 1.8  |        | 2.1   |       | 2.8                | ns    |
| t <sub>RD4</sub>      | FO = 4 Routing Delay                   |       | 1.7               |      | 1.9               |      | 2.2  |        | 2.5   |       | 3.3                | ns    |
| t <sub>RD8</sub>      | FO = 8 Routing Delay                   |       | 2.8               |      | 3.2               |      | 3.6  |        | 4.2   |       | 5.5                | ns    |
| Logic N               | Nodule Sequential Timing               |       |                   |      |                   |      |      |        |       |       |                    |       |
| t <sub>SUD</sub>      | Flip-Flop Data Input Setup             | 0.5   |                   | 0.6  |                   | 0.7  |      | 0.8    |       | 0.8   |                    | ns    |
| t <sub>HD</sub>       | Flip-Flop Data Input Hold              | 0.0   |                   | 0.0  |                   | 0.0  |      | 0.0    |       | 0.0   |                    | ns    |
| t <sub>SUD</sub>      | Latch Data Input Setup                 | 0.5   |                   | 0.6  |                   | 0.7  |      | 0.8    |       | 0.8   |                    | ns    |
| t <sub>HD</sub>       | Latch Data Input Hold                  | 0.0   |                   | 0.0  |                   | 0.0  |      | 0.0    |       | 0.0   |                    | ns    |
| t <sub>WASYN</sub>    | Asynchronous Pulse Width               | 1.9   |                   | 2.4  |                   | 3.2  |      | 3.8    |       | 4.8   |                    | ns    |
| t <sub>WCLKA</sub>    | Flip-Flop Clock Pulse Width            | 1.9   |                   | 2.4  |                   | 3.2  |      | 3.8    |       | 4.8   |                    | ns    |
| t <sub>A</sub>        | Flip-Flop Clock Input Period           | 4.0   |                   | 5.0  |                   | 6.8  |      | 8.0    |       | 10.0  |                    | ns    |
| f <sub>MAX</sub>      | Flip-Flop Clock Frequency              |       | 250               |      | 200               |      | 150  |        | 125   |       | 100                | MHz   |

Notes:

1. VCC = 3.0 V for 3.3 V specifications.

2. For dual-module macros, use  $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$  or  $t_{PD1} + t_{RD1} + t_{SUD}$ , whichever is appropriate.

3. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.



### A1440A, A14V40A Timing Characteristics (continued)

Table 2-28 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, T<sub>J</sub> = 70°C

| I/O Moo            | dule – TTL Output Timing <sup>1</sup>  | -3 S | beed <sup>2</sup> | -2 Sp | beed <sup>2</sup> | –1 S | peed | Std. | Speed | 3.3 V | Units |       |
|--------------------|----------------------------------------|------|-------------------|-------|-------------------|------|------|------|-------|-------|-------|-------|
| Parame             | eter/Description                       | Min. | Max.              | Min.  | Max.              | Min. | Max. | Min. | Max.  | Min.  | Max.  | 1     |
| t <sub>DHS</sub>   | Data to Pad, High Slew                 |      | 5.0               |       | 5.6               |      | 6.4  |      | 7.5   |       | 9.8   | ns    |
| t <sub>DLS</sub>   | Data to Pad, Low Slew                  |      | 8.0               |       | 9.0               |      | 10.2 |      | 12.0  |       | 15.6  | ns    |
| t <sub>ENZHS</sub> | Enable to Pad, Z to H/L, High Slew     |      | 4.0               |       | 4.5               |      | 5.1  |      | 6.0   |       | 7.8   | ns    |
| t <sub>ENZLS</sub> | Enable to Pad, Z to H/L, Low Slew      |      | 7.4               |       | 8.3               |      | 9.4  |      | 11.0  |       | 14.3  | ns    |
| t <sub>ENHSZ</sub> | Enable to Pad, H/L to Z, High Slew     |      | 7.4               |       | 8.3               |      | 9.4  |      | 11.0  |       | 14.3  | ns    |
| t <sub>ENLSZ</sub> | Enable to Pad, H/L to Z, Low Slew      |      | 7.4               |       | 8.3               |      | 9.4  |      | 11.0  |       | 14.3  | ns    |
| t <sub>CKHS</sub>  | IOCLK Pad to Pad H/L, High Slew        |      | 8.5               |       | 8.5               |      | 9.5  |      | 11.0  |       | 14.3  | ns    |
| t <sub>CKLS</sub>  | IOCLK Pad to Pad H/L, Low Slew         |      | 11.3              |       | 11.3              |      | 13.5 |      | 15.0  |       | 19.5  | ns    |
| d <sub>TLHHS</sub> | Delta Low to High, High Slew           |      | 0.02              |       | 0.02              |      | 0.03 |      | 0.03  |       | 0.04  | ns/pF |
| d <sub>TLHLS</sub> | Delta Low to High, Low Slew            |      | 0.05              |       | 0.05              |      | 0.06 |      | 0.07  |       | 0.09  | ns/pF |
| d <sub>THLHS</sub> | Delta High to Low, High Slew           |      | 0.04              |       | 0.04              |      | 0.04 |      | 0.05  |       | 0.07  | ns/pF |
| d <sub>THLLS</sub> | Delta High to Low, Low Slew            |      | 0.05              |       | 0.05              |      | 0.06 |      | 0.07  |       | 0.09  | ns/pF |
| I/O Moo            | dule – CMOS Output Timing <sup>1</sup> |      |                   |       |                   |      |      |      |       |       |       |       |
| t <sub>DHS</sub>   | Data to Pad, High Slew                 |      | 6.2               |       | 7.0               |      | 7.9  |      | 9.3   |       | 12.1  | ns    |
| t <sub>DLS</sub>   | Data to Pad, Low Slew                  |      | 11.7              |       | 13.1              |      | 14.9 |      | 17.5  |       | 22.8  | ns    |
| t <sub>ENZHS</sub> | Enable to Pad, Z to H/L, High Slew     |      | 5.2               |       | 5.9               |      | 6.6  |      | 7.8   |       | 10.1  | ns    |
| t <sub>ENZLS</sub> | Enable to Pad, Z to H/L, Low Slew      |      | 8.9               |       | 10.0              |      | 11.3 |      | 13.3  |       | 17.3  | ns    |
| t <sub>ENHSZ</sub> | Enable to Pad, H/L to Z, High Slew     |      | 7.4               |       | 8.3               |      | 9.4  |      | 11.0  |       | 14.3  | ns    |
| t <sub>ENLSZ</sub> | Enable to Pad, H/L to Z, Low Slew      |      | 7.4               |       | 8.3               |      | 9.4  |      | 11.0  |       | 14.3  | ns    |
| t <sub>CKHS</sub>  | IOCLK Pad to Pad H/L, High Slew        |      | 9.0               |       | 9.0               |      | 10.1 |      | 11.8  |       | 14.3  | ns    |
| t <sub>CKLS</sub>  | IOCLK Pad to Pad H/L, Low Slew         |      | 13.0              |       | 13.0              |      | 15.6 |      | 17.3  |       | 22.5  | ns    |
| d <sub>TLHHS</sub> | Delta Low to High, High Slew           |      | 0.04              |       | 0.04              |      | 0.05 |      | 0.06  |       | 0.08  | ns/pF |
| d <sub>TLHLS</sub> | Delta Low to High, Low Slew            |      | 0.07              |       | 0.08              |      | 0.09 |      | 0.11  |       | 0.14  | ns/pF |
| d <sub>THLHS</sub> | Delta High to Low, High Slew           |      | 0.03              |       | 0.03              |      | 0.03 |      | 0.04  |       | 0.05  | ns/pF |
| d <sub>THLLS</sub> | Delta High to Low, Low Slew            |      | 0.04              |       | 0.04              |      | 0.04 |      | 0.05  |       | 0.07  | ns/pF |

Notes:

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.



### A1460A, A14V60A Timing Characteristics (continued)

Table 2-32 • A1460A, A14V60A Worst-Case Commercial Conditions, VCC = 4.75 V, T<sub>J</sub> = 70°C

| I/O Mod            | dule – TTL Output Timing <sup>1</sup>  | -3 Sp | beed <sup>2</sup> | beed <sup>2</sup> | –1 S | peed | Std. | Speed | 3.3 V | Units |      |       |
|--------------------|----------------------------------------|-------|-------------------|-------------------|------|------|------|-------|-------|-------|------|-------|
| Parame             | eter/Description                       | Min.  | Max.              | Min.              | Max. | Min. | Max. | Min.  | Max.  | Min.  | Max. |       |
| t <sub>DHS</sub>   | Data to Pad, High Slew                 |       | 5.0               |                   | 5.6  |      | 6.4  |       | 7.5   |       | 9.8  | ns    |
| t <sub>DLS</sub>   | Data to Pad, Low Slew                  |       | 8.0               |                   | 9.0  |      | 10.2 |       | 12.0  |       | 15.6 | ns    |
| t <sub>ENZHS</sub> | Enable to Pad, Z to H/L, High Slew     |       | 4.0               |                   | 4.5  |      | 5.1  |       | 6.0   |       | 7.8  | ns    |
| t <sub>ENZLS</sub> | Enable to Pad, Z to H/L, Low Slew      |       | 7.4               |                   | 8.3  |      | 9.4  |       | 11.0  |       | 14.3 | ns    |
| t <sub>ENHSZ</sub> | Enable to Pad, H/L to Z, High Slew     |       | 7.8               |                   | 8.7  |      | 9.9  |       | 11.6  |       | 15.1 | ns    |
| t <sub>ENLSZ</sub> | Enable to Pad, H/L to Z, Low Slew      |       | 7.4               |                   | 8.3  |      | 9.4  |       | 11.0  |       | 14.3 | ns    |
| t <sub>CKHS</sub>  | IOCLK Pad to Pad H/L, High Slew        |       | 9.0               |                   | 9.0  |      | 10.0 |       | 11.5  |       | 15.0 | ns    |
| t <sub>CKLS</sub>  | IOCLK Pad to Pad H/L, Low Slew         |       | 12.8              |                   | 12.8 |      | 15.3 |       | 17.0  |       | 22.1 | ns    |
| d <sub>TLHHS</sub> | Delta Low to High, High Slew           |       | 0.02              |                   | 0.02 |      | 0.03 |       | 0.03  |       | 0.04 | ns/pF |
| d <sub>TLHLS</sub> | Delta Low to High, Low Slew            |       | 0.05              |                   | 0.05 |      | 0.06 |       | 0.07  |       | 0.09 | ns/pF |
| d <sub>THLHS</sub> | Delta High to Low, High Slew           |       | 0.04              |                   | 0.04 |      | 0.04 |       | 0.05  |       | 0.07 | ns/pF |
| d <sub>THLLS</sub> | Delta High to Low, Low Slew            |       | 0.05              |                   | 0.05 |      | 0.06 |       | 0.07  |       | 0.09 | ns/pF |
| I/O Moo            | dule – CMOS Output Timing <sup>1</sup> |       |                   |                   | •    |      |      |       |       |       |      |       |
| t <sub>DHS</sub>   | Data to Pad, High Slew                 |       | 6.2               |                   | 7.0  |      | 7.9  |       | 9.3   |       | 12.1 | ns    |
| t <sub>DLS</sub>   | Data to Pad, Low Slew                  |       | 11.7              |                   | 13.1 |      | 14.9 |       | 17.5  |       | 22.8 | ns    |
| t <sub>ENZHS</sub> | Enable to Pad, Z to H/L, High Slew     |       | 5.2               |                   | 5.9  |      | 6.6  |       | 7.8   |       | 10.1 | ns    |
| t <sub>ENZLS</sub> | Enable to Pad, Z to H/L, Low Slew      |       | 8.9               |                   | 10.0 |      | 11.3 |       | 13.3  |       | 17.3 | ns    |
| t <sub>ENHSZ</sub> | Enable to Pad, H/L to Z, High Slew     |       | 7.4               |                   | 8.3  |      | 9.4  |       | 11.0  |       | 14.3 | ns    |
| t <sub>ENLSZ</sub> | Enable to Pad, H/L to Z, Low Slew      |       | 7.4               |                   | 8.3  |      | 9.4  |       | 11.0  |       | 14.3 | ns    |
| t <sub>CKHS</sub>  | IOCLK Pad to Pad H/L, High Slew        |       | 10.4              |                   | 10.4 |      | 12.1 |       | 13.8  |       | 17.9 | ns    |
| t <sub>CKLS</sub>  | IOCLK Pad to Pad H/L, Low Slew         |       | 14.5              |                   | 14.5 |      | 17.4 |       | 19.3  |       | 25.1 | ns    |
| d <sub>TLHHS</sub> | Delta Low to High, High Slew           |       | 0.04              |                   | 0.04 |      | 0.05 |       | 0.06  |       | 0.08 | ns/pF |
| d <sub>TLHLS</sub> | Delta Low to High, Low Slew            |       | 0.07              |                   | 0.08 |      | 0.09 |       | 0.11  |       | 0.14 | ns/pF |
| d <sub>THLHS</sub> | Delta High to Low, High Slew           |       | 0.03              |                   | 0.03 |      | 0.03 |       | 0.04  |       | 0.05 | ns/pF |
| d <sub>THLLS</sub> | Delta High to Low, Low Slew            |       | 0.04              |                   | 0.04 |      | 0.04 |       | 0.05  |       | 0.07 | ns/pF |

Notes:

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

### A14100A, A14V100A Timing Characteristics (continued)

| Table 2-37 • A14100A, A14V100A Worst-Case Commercial Condition | ns, VCC = 4.75 V, T <sub>J</sub> = 70°C |
|----------------------------------------------------------------|-----------------------------------------|
|----------------------------------------------------------------|-----------------------------------------|

| Dedicated (hardwired) I/O Clock Network |                                                   | -3 Speed <sup>1</sup> |            | –2 Speed <sup>1</sup> |            | -1 Speed   |            | Std. Speed |            | 3.3 V Speed <sup>1</sup> |            | Units |
|-----------------------------------------|---------------------------------------------------|-----------------------|------------|-----------------------|------------|------------|------------|------------|------------|--------------------------|------------|-------|
| Parameter/Description                   |                                                   | Min.                  | Max.       | Min.                  | Max.       | Min.       | Max.       | Min.       | Max.       | Min.                     | Max.       |       |
| t <sub>IOCKH</sub>                      | Input Low to High (pad to I/O module input)       |                       | 2.3        |                       | 2.6        |            | 3.0        |            | 3.5        |                          | 4.5        | ns    |
| t <sub>IOPWH</sub>                      | Minimum Pulse Width High                          | 2.4                   |            | 3.3                   |            | 3.8        |            | 4.8        |            | 6.5                      |            | ns    |
| t <sub>IPOWL</sub>                      | Minimum Pulse Width Low                           | 2.4                   |            | 3.3                   |            | 3.8        |            | 4.8        |            | 6.5                      |            | ns    |
| t <sub>IOSAPW</sub>                     | Minimum Asynchronous Pulse Width                  | 2.4                   |            | 3.3                   |            | 3.8        |            | 4.8        |            | 6.5                      |            | ns    |
| t <sub>IOCKSW</sub>                     | Maximum Skew                                      |                       | 0.6        |                       | 0.6        |            | 0.7        |            | 0.8        |                          | 0.6        | ns    |
| t <sub>IOP</sub>                        | Minimum Period                                    | 5.0                   |            | 6.8                   |            | 8.0        |            | 10.0       |            | 13.4                     |            | ns    |
| f <sub>IOMAX</sub>                      | Maximum Frequency                                 |                       | 200        |                       | 150        |            | 125        |            | 100        |                          | 75         | MHz   |
| Dedicated (hardwired) Array Clock       |                                                   |                       |            |                       |            |            |            |            |            |                          |            |       |
| t <sub>HCKH</sub>                       | Input Low to High (pad to S-module input)         |                       | 3.7        |                       | 4.1        |            | 4.7        |            | 5.5        |                          | 7.0        | ns    |
| t <sub>HCKL</sub>                       | Input High to Low (pad to S-module input)         |                       | 3.7        |                       | 4.1        |            | 4.7        |            | 5.5        |                          | 7.0        | ns    |
| t <sub>HPWH</sub>                       | Minimum Pulse Width High                          | 2.4                   |            | 3.3                   |            | 3.8        |            | 4.8        |            | 6.5                      |            | ns    |
| t <sub>HPWL</sub>                       | Minimum Pulse Width Low                           | 2.4                   |            | 3.3                   |            | 3.8        |            | 4.8        |            | 6.5                      |            | ns    |
| t <sub>HCKSW</sub>                      | Delta High to Low, Low Slew                       |                       | 0.6        |                       | 0.6        |            | 0.7        |            | 0.8        |                          | 0.6        | ns    |
| t <sub>HP</sub>                         | Minimum Period                                    | 5.0                   |            | 6.8                   |            | 8.0        |            | 10.0       |            | 13.4                     |            | ns    |
| f <sub>HMAX</sub>                       | Maximum Frequency                                 |                       | 200        |                       | 150        |            | 125        |            | 100        |                          | 75         | MHz   |
| Routed A                                | rray Clock Networks                               |                       |            |                       |            |            |            |            |            | -                        | -          |       |
| t <sub>RCKH</sub>                       | Input Low to High (FO = 64)                       |                       | 6.0        |                       | 6.8        |            | 7.7        |            | 9.0        |                          | 11.8       | ns    |
| t <sub>RCKL</sub>                       | Input High to Low (FO = 64)                       |                       | 6.0        |                       | 6.8        |            | 7.7        |            | 9.0        |                          | 11.8       | ns    |
| t <sub>RPWH</sub>                       | Min. Pulse Width High (FO = 64)                   | 4.1                   |            | 4.5                   |            | 5.4        |            | 6.1        |            | 8.2                      |            | ns    |
| t <sub>RPWL</sub>                       | Min. Pulse Width Low (FO = 64)                    | 4.1                   |            | 4.5                   |            | 5.4        |            | 6.1        |            | 8.2                      |            | ns    |
| t <sub>RCKSW</sub>                      | Maximum Skew (FO = 128)                           |                       | 1.2        |                       | 1.4        |            | 1.6        |            | 1.8        |                          | 1.8        | ns    |
| t <sub>RP</sub>                         | Minimum Period (FO = 64)                          | 8.3                   |            | 9.3                   |            | 11.1       |            | 12.5       |            | 16.7                     |            | ns    |
| f <sub>RMAX</sub>                       | Maximum Frequency (FO = 64)                       |                       | 120        |                       | 105        |            | 90         |            | 80         |                          | 60         | MHz   |
| Clock-to-                               | Clock Skews                                       |                       |            |                       |            |            |            |            |            |                          |            |       |
| t <sub>IOHCKSW</sub>                    | I/O Clock to H-Clock Skew                         | 0.0                   | 2.6        | 0.0                   | 2.7        | 0.0        | 2.9        | 0.0        | 3.0        | 0.0                      | 3.0        | ns    |
| t <sub>IORCKSW</sub>                    | I/O Clock to R-Clock Skew (FO = 64)<br>(FO = 350) | 0.0<br>0.0            | 1.7<br>5.0 | 0.0<br>0.0            | 1.7<br>5.0 | 0.0<br>0.0 | 1.7<br>5.0 | 0.0<br>0.0 | 1.7<br>5.0 | 0.0<br>0.0               | 5.0<br>5.0 | ns    |
| t <sub>HRCKSW</sub>                     | H-Clock to R-Clock Skew (FO = 64)<br>(FO = 350)   | 0.0<br>0.0            | 1.3<br>3.0 | 0.0<br>0.0            | 1.0<br>3.0 | 0.0<br>0.0 | 1.0<br>3.0 | 0.0<br>0.0 | 1.0<br>3.0 | 0.0<br>0.0               | 1.0<br>3.0 | ns    |

Notes: \*

1. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

2. Delays based on 35 pF loading.

Accelerator Series FPGAs – ACT 3 Family

### SDO Serial Data Output (Output)

Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as an I/O when the MODE pin is Low.

### DCLK Diagnostic Clock (Input)

Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

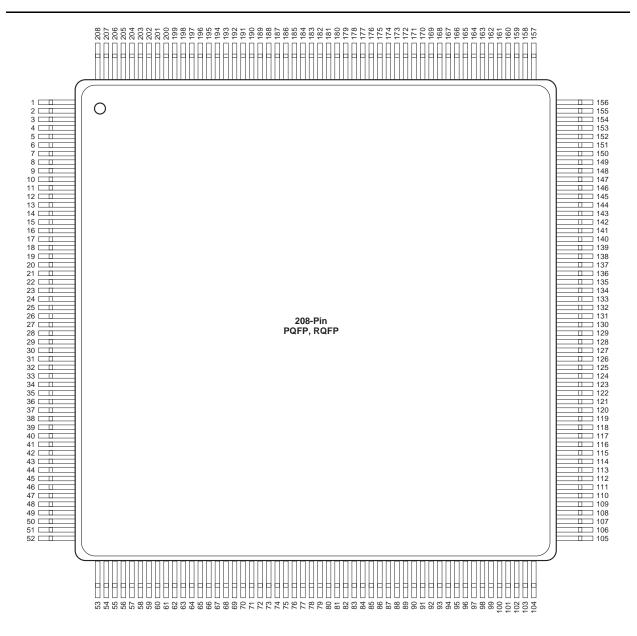
### VCC 5 V Supply Voltage

HIGH supply voltage.

Microsemi

Accelerator Series FPGAs – ACT 3 Family

| PQ160      |                        |            |            |  |  |
|------------|------------------------|------------|------------|--|--|
| Pin Number | A1460, A14V60 Function |            |            |  |  |
| 92         | NC                     | I/O        | I/O        |  |  |
| 93         | NC                     | I/O        | I/O        |  |  |
| 98         | GND                    | GND        | GND        |  |  |
| 99         | VCC                    | VCC        | VCC        |  |  |
| 100        | NC                     | I/O        | I/O        |  |  |
| 103        | GND                    | GND        | GND        |  |  |
| 107        | NC                     | I/O        | I/O        |  |  |
| 109        | NC                     | I/O        | I/O        |  |  |
| 110        | VCC                    | VCC        | VCC        |  |  |
| 111        | GND                    | GND        | GND        |  |  |
| 112        | VCC                    | VCC        | VCC        |  |  |
| 113        | NC                     | I/O        | I/O        |  |  |
| 119        | NC                     | I/O        | I/O        |  |  |
| 120        | IOCLK, I/O             | IOCLK, I/O | IOCLK, I/O |  |  |
| 121        | GND                    | GND        | GND        |  |  |
| 124        | NC                     | I/O        | I/O        |  |  |
| 127        | NC                     | I/O        | I/O        |  |  |
| 136        | CLKA, I/O              | CLKA, I/O  | CLKA, I/O  |  |  |
| 137        | CLKB, I/O              | CLKB, I/O  | CLKB, I/O  |  |  |
| 138        | VCC                    | VCC        | VCC        |  |  |
| 139        | GND                    | GND        | GND        |  |  |
| 140        | VCC                    | VCC        | VCC        |  |  |
| 141        | GND                    | GND        | GND        |  |  |
| 142        | PRA, I/O               | PRA, I/O   | PRA, I/O   |  |  |
| 143        | NC                     | I/O        | I/O        |  |  |
| 145        | NC                     | I/O        | I/O        |  |  |
| 147        | NC                     | I/O        | I/O        |  |  |
| 149        | NC                     | I/O        | I/O        |  |  |
| 151        | NC                     | I/O I/O    |            |  |  |
| 153        | NC                     | I/O I/O    |            |  |  |
| 154        | VCC                    | VCC        | VCC        |  |  |
| 160        | DCLK, I/O              | DCLK, I/O  | DCLK, I/O  |  |  |


Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

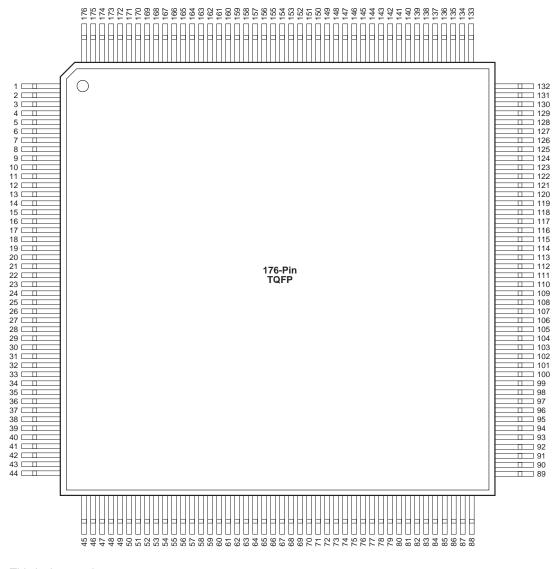


Package Pin Assignments

# PQ208, RQ208



Note: This is the top view of the package


### Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

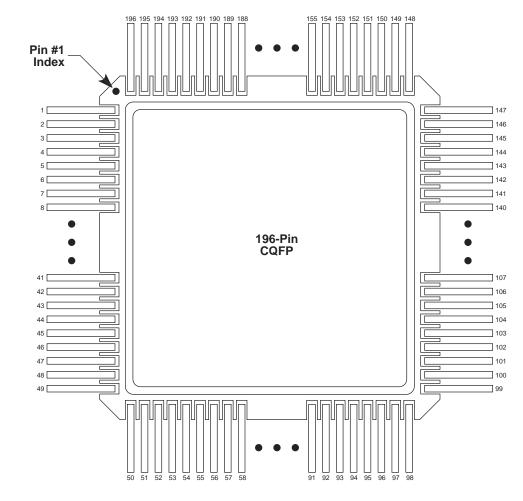


Package Pin Assignments

# **TQ176**



Note: This is the top view.


### Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx



Package Pin Assignments

## CQ196



Note: This is the top view.

### Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Microsemi

Accelerator Series FPGAs - ACT 3 Family

|            | CQ196          | CQ196      |                |  |  |
|------------|----------------|------------|----------------|--|--|
| Pin Number | A1460 Function | Pin Number | A1460 Function |  |  |
| 1          | GND            | 101        | GND            |  |  |
| 2          | SDI, I/O       | 110        | VCC            |  |  |
| 11         | MODE           | 111        | VCC            |  |  |
| 12         | VCC            | 112        | GND            |  |  |
| 13         | GND            | 137        | VCC            |  |  |
| 37         | GND            | 138        | GND            |  |  |
| 38         | VCC            | 139        | GND            |  |  |
| 39         | VCC            | 140        | VCC            |  |  |
| 51         | GND            | 148        | IOCLK, I/O     |  |  |
| 52         | GND            | 149        | GND            |  |  |
| 59         | VCC            | 155        | VCC            |  |  |
| 64         | GND            | 162        | GND            |  |  |
| 77         | HCLK, I/O      | 172        | CLKA, I/O      |  |  |
| 79         | PRB, I/O       | 173        | CLKB, I/O      |  |  |
| 86         | GND            | 174        | PRA, I/O       |  |  |
| 94         | VCC            | 183        | GND            |  |  |
| 98         | GND            | 189        | VCC            |  |  |
| 99         | SDO            | 193        | GND            |  |  |
| 100        | IOPCL, I/O     | 196        | DCLK, I/O      |  |  |

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Microsemi

Accelerator Series FPGAs – ACT 3 Family

|                | PG100                                     |  |  |  |  |
|----------------|-------------------------------------------|--|--|--|--|
| A1415 Function | Location                                  |  |  |  |  |
| CLKA or I/O    | C7                                        |  |  |  |  |
| CLKB or I/O    | D6                                        |  |  |  |  |
| DCLK or I/O    | C4                                        |  |  |  |  |
| GND            | ND C3, C6, C9, E9, F3, F9, J3, J6, J8, J9 |  |  |  |  |
| HCLK or I/O    | H6                                        |  |  |  |  |
| IOCLK or I/O   | C10                                       |  |  |  |  |
| IOPCL or I/O   | К9                                        |  |  |  |  |
| MODE           | C2                                        |  |  |  |  |
| PRA or I/O     | A6                                        |  |  |  |  |
| PRB or I/O     | L3                                        |  |  |  |  |
| SDI or I/O     | B3                                        |  |  |  |  |
| SDO            | L9                                        |  |  |  |  |
| VCC            | B6, B10, E11, F2, F10, G2, K2, K6, K10    |  |  |  |  |

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG100 package has been discontinued.