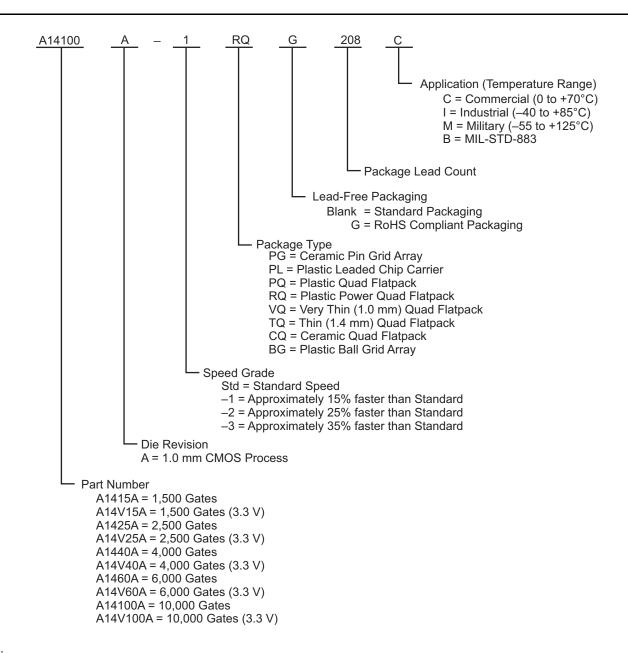


Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs


The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	564
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	83
Number of Gates	4000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1440a-vq100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Notes:

- 1. The –2 and –3 speed grades have been discontinued.
- The Ceramic Pin Grid Array packages PG100, PG133, and PG175 have been discontinued in all device densities, speed grades, and temperature grades.
 3. The Plastic Ball Grid Array package BG225 has been discontinued in all device densities (specifically for A1460A), all speed
- grades, and all temperature grades.
- 4. Military Grade devices are no longer available for the A1440A device.
- 5. For more information about discontinued devices, refer to the Product Discontinuation Notices (PDNs) listed below, available on the Microsemi SoC Products Group website:

PDN March 2001 PDN 0104 PDN 0203

PDN 0604 PDN 1004

Revision 3

Product Plan

		Speed	Grade ¹			Applic	ation ¹	
Device/Package	Std.	-1	-2	-3	С	I	М	В
A1415A Device	•	•		•	•	•	•	•
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	✓	D	D	✓	1	1	_
100-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	✓	✓	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	✓	D	D	✓	1	✓	-
100-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	_	_	-
A14V15A Device								
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	-	_	_	✓	_	-	_
100-Pin Very Thin Quad Flatpack (VQFP)	✓	-	-	_	✓	-	-	_
A1425A Device							•	•
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	✓	D	D	✓	1		
100-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	1	-	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	✓	✓	-	_
132-Pin Ceramic Quad Flatpack (CQFP)	✓	✓	-	_	✓	-	✓	1
133-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	_	D	D
160-Pin Plastic Quad Flatpack (PQFP)	✓	✓	D	D	✓	1	-	_
A14V25A Device								
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	-	_	_	✓	_	_	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	-	-	_	✓	-	-	-
160-Pin Plastic Quad Flatpack (PQFP)	1	-	_	_	✓	-	-	-
A1440A Device		.•						
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	✓	D	D	✓	1	_	_
100-Pin Very Thin Quad Flatpack (VQFP)	✓	1	D	D	✓	✓	-	-
160-Pin Plastic Quad Flatpack (PQFP)	1	1	D	D	✓	✓	-	-
175-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	-	-
176-Pin Thin Quad Flatpack (TQFP)	✓	✓	D	D	✓	1	-	-

Notes:

1. Applications: C = Commercial I = Industrial M = Military

2. Commercial only

Availability: **√** = Available P = Planned-= Not planned D = Discontinued

Speed Grade:

-1 = Approx. 15% faster than Std.

-2 = Approx. 25% faster than Std.

-3 = Approx. 35% faster than Std.

(-2 and -3 speed grades have been discontinued.)

Revision 3 Ш

ACT 3 Family Overview

Table 1-1 • Chip-to-Chip Performance (worst-case commercial)

Device and Speed Grade	t _{CKHS} (ns)	t _{TRACE} (ns)	t _{INSU} (ns)	Total (ns)	MHz
A1425A -3	7.5	1.0	1.8	10.3	97
A1460A -3	9.0	1.0	1.3	11.3	88
A1425A -2	7.5	1.0	2.0	10.5	95
A1460A -2	9.0	1.0	1.5	11.5	87
A1425A -1	9.0	1.0	2.3	12.3	81
A1460A -1	10.0	1.0	1.8	12.8	78
A1425A STD	10.0	1.0	2.7	13.7	73
A1460A STD	11.5	1.0	2.0	14.5	69

Note: The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

1-2 Revision 3

Determining Average Switching Frequency

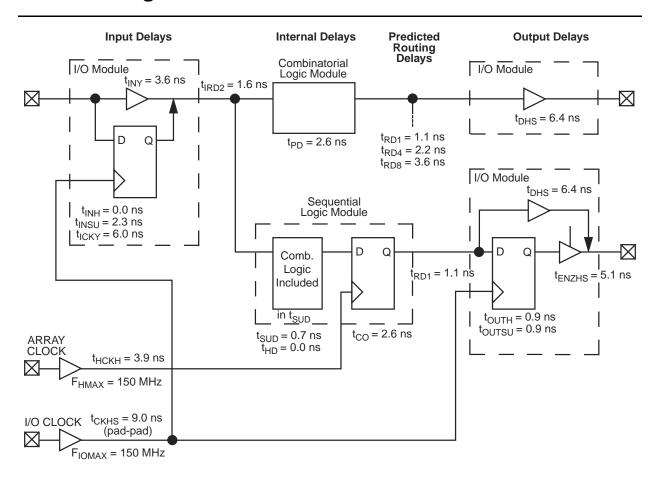

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are as follows:

Table 2-13 • Guidelines for Predicting Power Dissipation

Data	Value
Logic Modules (m)	80% of modules
Inputs switching (n)	# inputs/4
Outputs switching (p)	# output/4
First routed array clock loads (q1)	40% of sequential modules
Second routed array clock loads (q2)	40% of sequential modules
Load capacitance (CL)	35 pF
Average logic module switching rate (fm)	F/10
Average input switching rate (fn)	F/5
Average output switching rate (fp)	F/10
Average first routed array clock rate (fq1)	F/2
Average second routed array clock rate (fq2)	F/2
Average dedicated array clock rate (fs1)	F
Average dedicated I/O clock rate (fs2)	F

ACT 3 Timing Model

Note: Values shown for A1425A -1 speed grade device.

Figure 2-10 • Timing Model

2-16 Revision 3

Timing Derating

ACT 3 devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Table 2-15 • Timing Derating Factor (Temperature and Voltage)

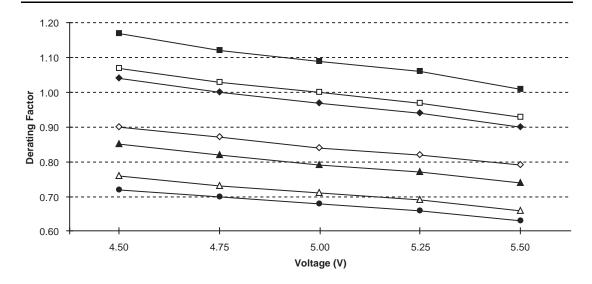

(Commercial Minimum/Maximum Specification) x	Indus	strial	Mili	tary
	Min.	Max.	Min.	Max.
	0.66	1.07	0.63	1.17

Table 2-16 • Timing Derating Factor for Designs at Typical Temperature ($T_J = 25$ °C) and Voltage (5.0 V)

(Commercial Maximum Specification) x	0.85
--------------------------------------	------

Table 2-17 • Temperature and Voltage Derating Factors (normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

	-55	-40	0	25	70	85	125
4.50	0.72	0.76	0.85	0.90	1.04	1.07	1.117
4.75	0.70	0.73	0.82	0.87	1.00	1.03	1.12
5.00	0.68	0.71	0.79	0.84	0.97	1.00	1.09
5.25	0.66	0.69	0.77	0.82	0.94	0.97	1.06
5.50	0.63	0.66	0.74	0.79	0.90	0.93	1.01

Note: This derating factor applies to all routing and propagation delays.

Figure 2-18 • Junction Temperature and Voltage Derating Curves (normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

A1415A, A14V15A Timing Characteristics (continued)

Table 2-19 • A1415A, A14V15A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	dule Input Propagation Delays	-3 S _I	peed ¹	-2 Sp	peed ¹	-1 S	peed	Std.	Speed	3.3 V	Speed ²	Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	dule Sequential Timing (wrt IOCLK	pad)	•			•						
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	2.0		2.3		2.5		3.0		3.0		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns
Notos:	1											

Notes:

1. The -2 and -3 speed grades have been discontinued. Please refer to the Product Discontinuation Notices (PDNs) listed below:

PDN March 2001

PDN 0104

PDN 0203

PDN 0604

PDN 1004

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Detailed Specifications

A1415A, A14V15A Timing Characteristics (continued)

Table 2-20 • A1415A, A14V15A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C

I/O Mod	lule – TTL Output Timing ¹	-3 Sp	peed ²	-2 S	peed ²	-1 S	peed	Std.	Speed	3.3 V	Units	
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		7.5		7.5		9.0		10.0		13.0	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	lule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.7		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.7		7.5		9.0		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.9		8.9		10.7		11.8		15.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d_TLHHS	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes:

1. Delays based on 35 pF loading.

2. The -2 and -3 speed grades have been discontinued. Please refer to the Product Discontinuation Notices (PDNs) listed below:

PDN March 2001

PDN 0104

PDN 0203

PDN 0604

PDN 1004

2-24 Revision 3

Detailed Specifications

A1440A, A14V40A Timing Characteristics

Table 2-26 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C¹

Logic N	Module Propagation Delays ²	-3 Sp	peed 3	-2 S _l	peed ³	-1 S	peed	Std. S	peed	3.3 V	Speed ¹	Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴						•					
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Module Sequential Timing						•					
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _A	Flip-Flop Clock Input Period	4.0		5.0		6.8		8.0		10.0		ns
f _{MAX}	Flip-Flop Clock Frequency		250		200		150		125		100	MHz

Notes:

- 1. VCC = 3.0 V for 3.3 V specifications.
- 2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.
- 3. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
- 4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

2-30 Revision 3

Detailed Specifications

A1440A, A14V40A Timing Characteristics (continued)

Table 2-28 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	dule – TTL Output Timing ¹	-3 Sp	oeed ²	-2 Sp	peed ²	-1 S	peed	Std.	Speed	3.3 V	Speed ¹	Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.5		8.5		9.5		11.0		14.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.0		9.0		10.1		11.8		14.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d_{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d_{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes:

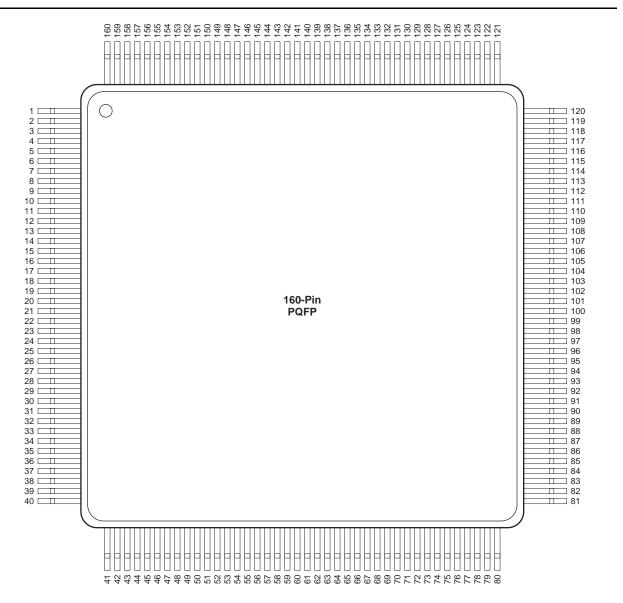
2-32 Revision 3

^{1.} Delays based on 35 pF loading.

^{2.} The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1440A, A14V40A Timing Characteristics (continued)

Table 2-29 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C


Dedicate	d (hardwired) I/O Clock Network	–3 Sp	eed ¹	–2 Sp	oeed ¹	–1 S	peed	Std.	Speed	3.3 V	Speed ¹	Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.0		2.3		2.6		3.0		3.5	ns
t _{IOPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{IPOWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	1.9		2.4		3.3		3.8		4.8		ns
t _{iocksw}	Maximum Skew		0.4		0.4		0.4		0.4		0.4	ns
t _{IOP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{IOMAX}	Maximum Frequency		250		200		150		125		100	MHz
Dedicate	d (hardwired) Array Clock											
t _{HCKH}	Input Low to High (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{HPWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.3		0.3		0.3		0.3		0.3	ns
t _{HP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{HMAX}	Maximum Frequency		250		200		150		125		100	MHz
Routed A	rray Clock Networks											
t _{RCKH}	Input Low to High (FO = 64)		3.7		4.1		4.7		5.5		9.0	ns
t _{RCKL}	Input High to Low (FO = 64)		4.0		4.5		5.1		6.0		9.0	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RCKSW}	Maximum Skew (FO = 128)		0.7		0.8		0.9		1.0		1.0	ns
t _{RP}	Minimum Period (FO = 64)	6.8		8.0		8.7		10.0		13.4		ns
f _{RMAX}	Maximum Frequency (FO = 64)		150		125		115		100		75	MHz
Clock-to-	Clock Skews											
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	1.7	0.0	1.8	0.0	2.0	0.0	2.2	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 144)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	3.0 3.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 144)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

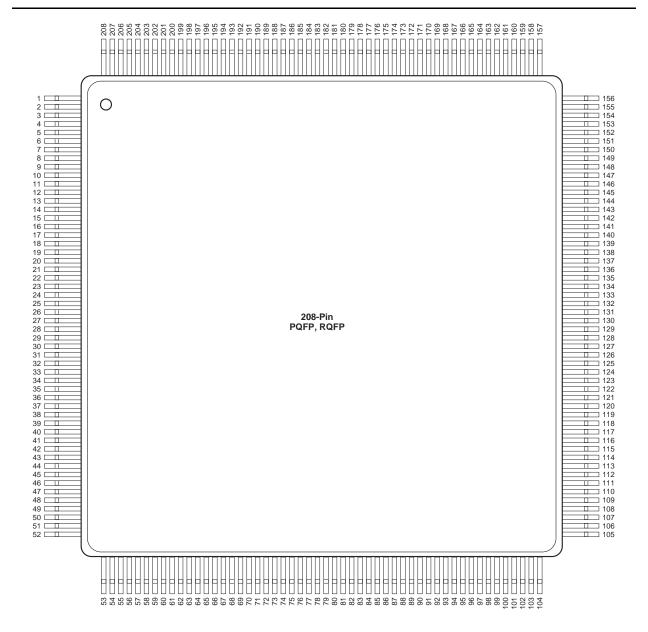
Notes:

^{1.} The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

^{2.} Delays based on 35 pF loading.

PQ160

Note: This is the top view of the package


Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Package Pin Assignments

PQ208, RQ208

Note: This is the top view of the package

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-8 Revision 3

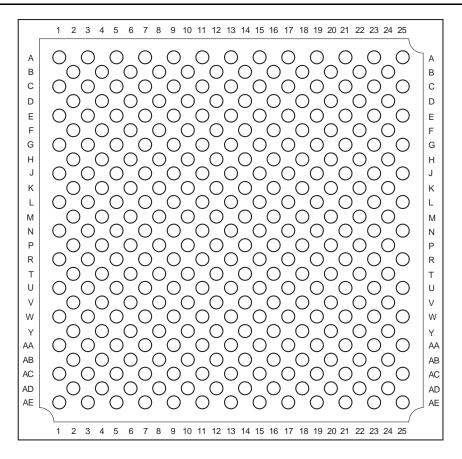
	PQ208, RQ20	8
Pin Number	A1460, A14V60 Function	A14100, A14V100 Function
1	GND	GND
2	SDI, I/O	SDI, I/O
11	MODE	MODE
12	VCC	VCC
25	VCC	VCC
26	GND	GND
27	VCC	VCC
28	GND	GND
40	VCC	VCC
41	VCC	VCC
52	GND	GND
53	NC	I/O
60	VCC	VCC
65	NC	I/O
76	PRB, I/O	PRB, I/O
77	GND	GND
78	VCC	VCC
79	GND	GND
80	VCC	VCC
82	HCLK, I/O	HCLK, I/O
98	VCC	VCC
102	NC	I/O
103	SDO	SDO
104	IOPCL, I/O	IOPCL, I/O
105	GND	GND
114	VCC	VCC

PQ208, RQ208				
Pin Number	A1460, A14V60 Function	A14100, A14V100 Function		
115	VCC	VCC		
116	NC	I/O		
129	GND	GND		
130	VCC	VCC		
131	GND	GND		
132	VCC	VCC		
145	VCC	VCC		
146	GND	GND		
147	NC	I/O		
148	VCC	VCC		
156	IOCLK, I/O	IOCLK, I/O		
157	GND	GND		
158	NC	I/O		
164	VCC	VCC		
180	CLKA, I/O	CLKA, I/O		
181	CLKB, I/O	CLKB, I/O		
182	VCC	VCC		
183	GND	GND		
184	VCC	VCC		
185	GND	GND		
186	PRA, I/O	PRA, I/O		
195	NC	I/O		
201	VCC	VCC		
205	NC	I/O		
208	DCLK, I/O	DCLK, I/O		

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

VQ100				
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function	
1	GND	GND	GND	
2	SDI, I/O	SDI, I/O	SDI, I/O	
7	MODE	MODE	MODE	
8	VCC	VCC	VCC	
9	GND	GND	GND	
20	VCC	VCC	VCC	
21	NC	I/O	I/O	
34	PRB, I/O	PRB, I/O	PRB, I/O	
35	VCC	VCC	VCC	
36	GND	GND	GND	
37	VCC	VCC	VCC	
39	HCLK, I/O	HCLK, I/O	HCLK, I/O	
49	SDO	SDO	SDO	
50	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O	
51	GND	GND	GND	
57	VCC	VCC	VCC	
58	VCC	VCC	VCC	
67	VCC	VCC	VCC	
68	GND	GND	GND	
69	GND	GND	GND	
74	NC	I/O	I/O	
75	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O	
87	CLKA, I/O	CLKA, I/O	CLKA, I/O	
88	CLKB, I/O	CLKB, I/O	CLKB, I/O	
89	VCC	VCC	VCC	
90	VCC	VCC	VCC	
91	GND	GND	GND	
92	PRA, I/O	PRA, I/O	PRA, I/O	
93	NC	I/O	I/O	
100	DCLK, I/O	DCLK, I/O	DCLK, I/O	


Notes:

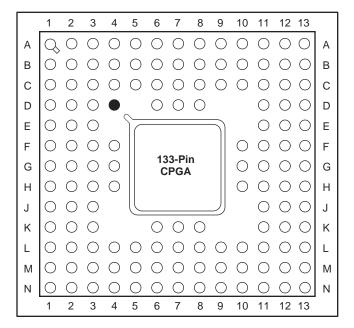
- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

BG313

Note: This is the top view.

Note


For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-22 Revision 3

Package Pin Assignments

PG133

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-26 Revision 3

4 - Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the datasheet.

Revision	Changes	Page
Revision 3 (January 2012)	The description for SDO pins had earlier been removed from the datasheet and has now been included again, in the "Pin Descriptions" section (SAR 35820).	2-21
	SDO pin numbers had earlier been removed from package pin assignment tables in the datasheet, and have now been restored to the pin tables (SAR 35820).	3-1
Revision 2 (September 2011)	The ACT 3 datasheet was formatted newly in the style used for current datasheets. The same information is present (other than noted in the list of changes for this revision) but divided into chapters.	N/A
	The datasheet was revised to note in multiple places that speed grades –2 and –3 have been discontinued. The following device/package combinations have been discontinued for all speed grades and temperatures (SAR 33872): A1415 PG100 A1425 PG133 A1440 PG175 A1460 BG225 Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004.	I and others
	The "Features" section was revised to state the clock-to-ouput time and on-chip performance for -1 speed grade as 9.0 ns and 186 MHz. The "General Description" section was revised in accordance (SAR 33872).	I
	The maximum performance values were updated in Table 1 • ACT 3 Family Product Information, and now reflect worst-case commercial for the -1 speed grade (SAR 33872).	I
	The "Product Plan" table was updated as follows to conform to current offerings (SAR 33872): The A1415A device is offered in PL84, PG100, and VQ100 packages for Military application. The A1440A device is offered in TQ176 and VQ100 packages for Industrial application.	III
	Table 1-1 • Chip-to-Chip Performance (worst-case commercial) was updated to include data for all speed grades instead of only –3 (SAR 33872).	1-2
	Figure 1-1 • Predictable Performance (worst-case commercial, -1 speed grade) was revised to reflect values for the -1 speed grade (SAR 33872).	1-1
	Figure 2-10 • Timing Model was updated to show data for the -1 speed grade instead of -3 (SAR 33872).	2-16
	Table 2-14 • Logic Module and Routing Delay by Fanout (ns); Worst-Case Commercial Conditions was updated to include data for all speed grades instead of only –3 (SAR 33872).	2-20
	Package names used in the "Package Pin Assignments" section and throughout the document were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	3-1