

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	848
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	168
Number of Gates	6000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Through Hole
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	207-BCPGA
Supplier Device Package	207-CPGA (44.96x44.96)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1460a-1pg207b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ACT 3 Family Overview

General Description

Microsemi's ACT 3 Accelerator Series of FPGAs offers the industry's fastest high-capacity programmable logic device. ACT 3 FPGAs offer a high performance, PCI compliant programmable solution capable of 186 MHz on-chip performance and 9.0 nanosecond clock-to-output (–1 speed grade), with capacities spanning from 1,500 to 10,000 gate array equivalent gates.

The ACT 3 family builds on the proven two-module architecture consisting of combinatorial and sequential logic modules used in Microsemi's 3200DX and 1200XL families. In addition, the ACT 3 I/O modules contain registers which deliver 9.0 nanosecond clock-to-out times (–1 speed grade). The devices contain four clock distribution networks, including dedicated array and I/O clocks, supporting very fast synchronous and asynchronous designs. In addition, routed clocks can be used to drive high fanout signals such as flip-flop resets and output.

The ACT 3 family is supported by Microsemi's Designer Series Development System which offers automatic placement and routing (with automatic or fixed pin assignments), static timing analysis, user programming, and debug and diagnostic probe capabilities.

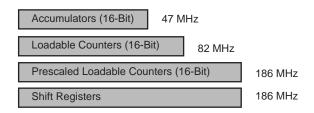
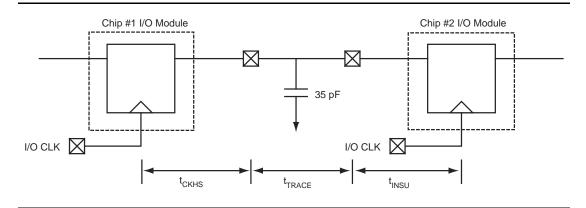



Figure 1-1 • Predictable Performance (worst-case commercial, -1 speed grade)

System Performance Model

The S-module contains a full implementation of the C-module plus a clearable sequential element that can either implement a latch or flip-flop function. The S-module can therefore implement any function implemented by the C-module. This allows complex combinatorial-sequential functions to be implemented with no delay penalty. The Designer Series Development System will automatically combine any C-module macro driving an S-module macro into the S-module, thereby freeing up a logic module and eliminating a module delay.

The clear input CLR is accessible from the routing channel. In addition, the clock input may be connected to one of three clock networks: CLKA, CLKB, or HCLK. The C-module and S-module functional descriptions are shown in Figure 2-2 and Figure 2-3 on page 2-2. The clock selection is determined by a multiplexer select at the clock input to the S-module.

I/Os

I/O Modules

I/O modules provide an interface between the array and the I/O Pad Drivers. I/O modules are located in the array and access the routing channels in a similar fashion to logic modules. The I/O module schematic is shown in Figure 4. The signals DataIn and DataOut connect to the I/O pad driver.

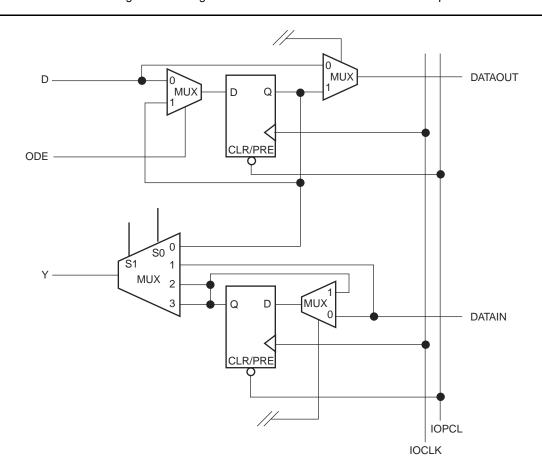


Figure 2-4 • Functional Diagram for I/O Module

Each I/O module contains two D-type flip-flops. Each flip-flop is connected to the dedicated I/O clock (IOCLK). Each flip-flop can be bypassed by nonsequential I/Os. In addition, each flip-flop contains a data enable input that can be accessed from the routing channels (ODE and IDE). The asynchronous preset/clear input is driven by the dedicated preset/clear network (IOPCL). Either preset or clear can be selected individually on an I/O module by I/O module basis.

Module Output Connections

Module outputs have dedicated output segments. Output segments extend vertically two channels above and two channels below, except at the top or bottom of the array. Output segments twist, as shown in Figure 10, so that only four vertical tracks are required.

LVT Connections

Outputs may also connect to nondedicated segments called Long Vertical Tracks (LVTs). Each module pair in the array shares four LVTs that span the length of the column. Any module in the column pair can connect to one of the LVTs in the column using an FF connection. The FF connection uses antifuses connected directly to the driver stage of the module output, bypassing the isolation transistor. FF antifuses are programmed at a higher current level than HF, VF, or XF antifuses to produce a lower resistance value.

Antifuse Connections

In general every intersection of a vertical segment and a horizontal segment contains an unprogrammed antifuse (XF-type). One exception is in the case of the clock networks.

Clock Connections

To minimize loading on the clock networks, a subset of inputs has antifuses on the clock tracks. Only a few of the C-module and S-module inputs can be connected to the clock networks. To further reduce loading on the clock network, only a subset of the horizontal routing tracks can connect to the clock inputs of the S-module.

Programming and Test Circuits

The array of logic and I/O modules is surrounded by test and programming circuits controlled by the temporary special I/O pins MODE, SDI, and DCLK. The function of these pins is similar to all ACT family devices. The ACT 3 family also includes support for two Actionprobe[®] circuits, allowing complete observability of any logic or I/O module in the array using the temporary special I/O pins, PRA and PRB.

2-8 Revision 3

Table 2-11 • Fixed Capacitance Values for Microsemi FPGAs

Device Type	r1, routed_Clk1	r2, routed_Clk2
A1415A	60	60
A14V15A	57	57
A1425A	75	75
A14V25A	72	72
A1440A	105	105
A14V40A	100	100
A1440B	105	105
A1460A	165	165
A14V60A	157	157
A1460B	165	165
A14100A	195	195
A14V100A	185	185
A14100B	195	195

Table 2-12 • Fixed Clock Loads (s1/s2)

Device Type	s1, Clock Loads on Dedicated Array Clock	s2, Clock Loads on Dedicated I/O Clock
A1415A	104	80
A14V15A	104	80
A1425A	160	100
A14V25A	160	100
A1440A	288	140
A14V40A	288	140
A1440B	288	140
A1460A	432	168
A14V60A	432	168
A1460B	432	168
A14100A	697	228
A14V100A	697	228
A14100B	697	228

2-14 Revision 3

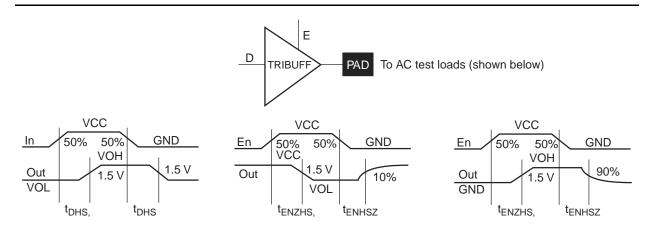


Figure 2-11 • Output Buffers

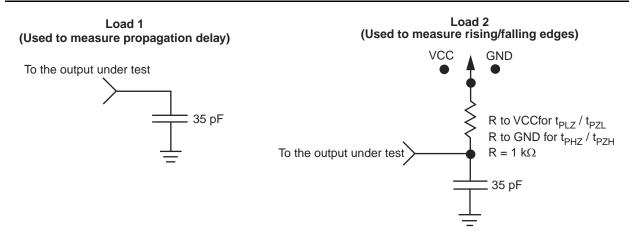


Figure 2-12 • AC Test Loads

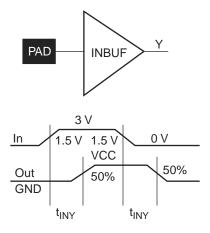


Figure 2-13 • Input Buffer Delays

A1415A, A14V15A Timing Characteristics (continued)

Table 2-20 • A1415A, A14V15A Worst-Case Commercial Conditions, VCC = 4.75 V, $T_J = 70^{\circ}$ C

I/O Module – TTL Output Timing ¹		-3 Sp	peed ²	-2 Speed ²		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		7.5		7.5		9.0		10.0		13.0	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	lule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.7		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.7		7.5		9.0		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.9		8.9		10.7		11.8		15.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d_TLHHS	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes:

1. Delays based on 35 pF loading.

2. The -2 and -3 speed grades have been discontinued. Please refer to the Product Discontinuation Notices (PDNs) listed below:

PDN March 2001

PDN 0104

PDN 0203

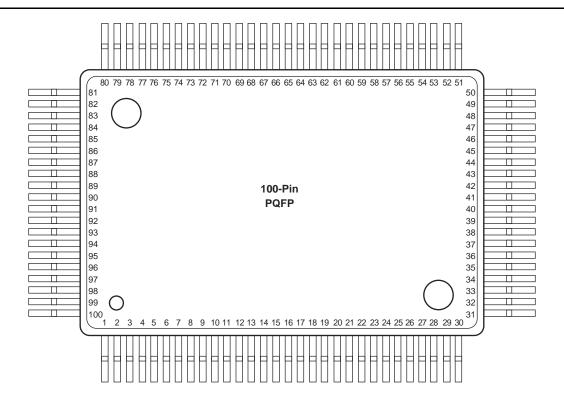
PDN 0604

PDN 1004

2-24 Revision 3

A1425A, A14V25A Timing Characteristics

Table 2-22 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C¹


Logic Module Propagation Delays ²		−3 S	peed ³	-2 S _l	peed ³	-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Module Sequential Timing											•
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _A	Flip-Flop Clock Input Period	4.0		5.0		6.8		8.0		10.0		ns
f _{MAX}	Flip-Flop Clock Frequency		250		200		150		125		100	MHz

Notes:

- 1. VCC = 3.0 V for 3.3 V specifications.
- 2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.
- 3. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
- 4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

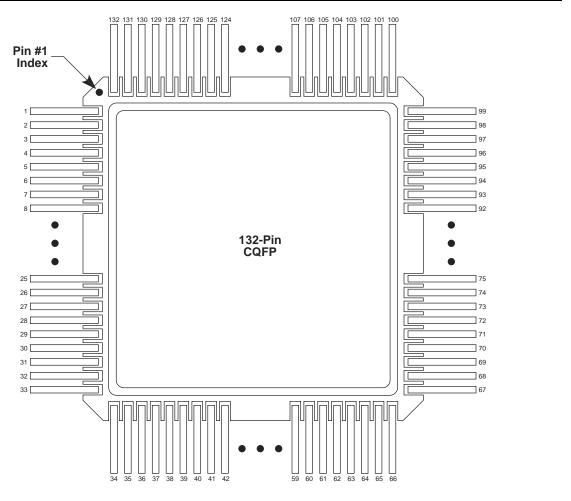
2-26 Revision 3

PQ100

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx


	PQ160				
Pin Number	A1425, A14V25 Function	A1440, A14V40 Function	A1460, A14V60 Function		
92	NC	I/O	I/O		
93	NC	I/O	I/O		
98	GND	GND	GND		
99	VCC	VCC	VCC		
100	NC	I/O	I/O		
103	GND	GND	GND		
107	NC	I/O	I/O		
109	NC	I/O	I/O		
110	VCC	VCC	VCC		
111	GND	GND	GND		
112	VCC	VCC	VCC		
113	NC	I/O	I/O		
119	NC	I/O	I/O		
120	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O		
121	GND	GND	GND		
124	NC	I/O	I/O		
127	NC	I/O	I/O		
136	CLKA, I/O	CLKA, I/O	CLKA, I/O		
137	CLKB, I/O	CLKB, I/O	CLKB, I/O		
138	VCC	VCC	VCC		
139	GND	GND	GND		
140	VCC	VCC	VCC		
141	GND	GND	GND		
142	PRA, I/O	PRA, I/O	PRA, I/O		
143	NC	I/O	I/O		
145	NC	I/O	I/O		
147	NC	I/O	I/O		
149	NC	I/O	I/O		
151	NC	I/O	I/O		
153	NC	I/O	I/O		
154	VCC	VCC	VCC		
160	DCLK, I/O	DCLK, I/O	DCLK, I/O		

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

VQ100				
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function	
1	GND	GND	GND	
2	SDI, I/O	SDI, I/O	SDI, I/O	
7	MODE	MODE	MODE	
8	VCC	VCC	VCC	
9	GND	GND	GND	
20	VCC	VCC	VCC	
21	NC	I/O	I/O	
34	PRB, I/O	PRB, I/O	PRB, I/O	
35	VCC	VCC	VCC	
36	GND	GND	GND	
37	VCC	VCC	VCC	
39	HCLK, I/O	HCLK, I/O	HCLK, I/O	
49	SDO	SDO	SDO	
50	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O	
51	GND	GND	GND	
57	VCC	VCC	VCC	
58	VCC	VCC	VCC	
67	VCC	VCC	VCC	
68	GND	GND	GND	
69	GND	GND	GND	
74	NC	I/O	I/O	
75	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O	
87	CLKA, I/O	CLKA, I/O	CLKA, I/O	
88	CLKB, I/O	CLKB, I/O	CLKB, I/O	
89	VCC	VCC	VCC	
90	VCC	VCC	VCC	
91	GND	GND	GND	
92	PRA, I/O	PRA, I/O	PRA, I/O	
93	NC	I/O	I/O	
100	DCLK, I/O	DCLK, I/O	DCLK, I/O	

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

CQ132

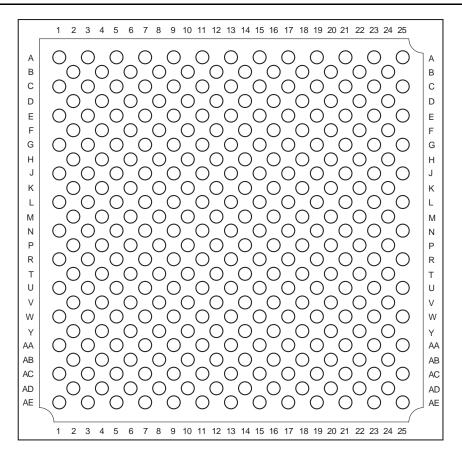
Note: This is the top view

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-14 Revision 3

Accelerator Series FPGAs – ACT 3 Family


	BG225		
A1460 Function	Location		
CLKA or I/O	C8		
CLKB or I/O	B8		
DCLK or I/O	B2		
GND	A1, A15, D15, F8, G7, G8, G9, H6, H7, H8, H9, H10, J7, J8, J9, K8, P2, R15		
HCLK or I/O	P9		
IOCLK or I/O	B14		
IOPCL or I/O	P14		
MODE	D1		
NC	A11, B5, B7, D8, D12, F6, F11, H1, H12, H14, K11, L1, L13, N8, P5, R1, R8, R11, R14		
PRA or I/O	A7		
PRB or I/O	L7		
SDI or I/O	D4		
SDO	N13		
VCC	A8, B12, D5, D14, E3, E8, E13, H2, H3, H11, H15, K4, L2, L12, M8, M15, P4, P8, R13		

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The BG225 package has been discontinued.

BG313

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-22 Revision 3

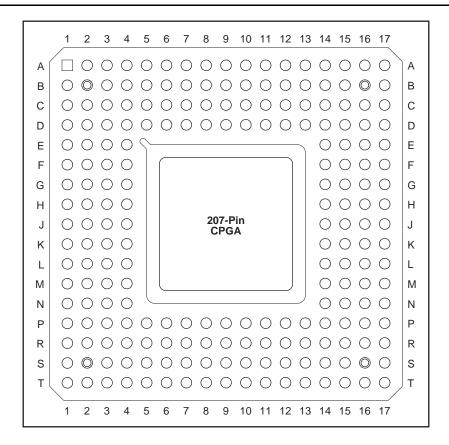
	BG313		
A14100, A14V100 Function	Location		
CLKA or I/O	J13		
CLKB or I/O	G13		
DCLK or I/O	B2		
GND	A1, A25, AD2, AE25, J21, L13, M12, M14, N11, N13, N15, P12, P14, R13		
HCLK or I/O	T14		
IOCLK or I/O	B24		
IOPCL or I/O	AD24		
MODE	G3		
NC	A3, A13, A23, AA5, AA9, AA23, AB2, AB4, AB20, AC13, AC25, AD22, AE1, AE21, B14, C5, C25, D4, D24, E3, E21, F6, F10, F16, G1, G25, H18, H24, J1, J7, J25, K12, L15, L17, M6, N1, N5, N7, N21, N23, P20, R11, T6, T8, U9, U13, U21, V16, W7, Y20, Y24		
PRA or I/O	H12		
PRB or I/O	AD12		
SDI or I/O	C1		
SDO	AE23		
VCC	AB18, AD6, AE13, C13, C19, E13, G9, H22, K8, K20, M16, N3, N9, N25, U5, W13, V2, V24		

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

	PG133			
A1425 Function	Location			
CLKA or I/O	D7			
CLKB or I/O	B6			
DCLK or I/O	D4			
GND	A2, C3, C7, C11, C12, F10, G3, G11, L3, L7, L11, M3, N12			
HCLK or I/O	K7			
IOCLK or I/O	C10			
IOPCL or I/O	L10			
MODE	E3			
NC	A1, A7, A13, G1, G13, N1, N7, N13			
PRA or I/O	A6			
PRB or I/O	L6			
SDI or I/O	C2			
SDO	M11			
VCC	B2, B7, B12, E11, G2, G12, J2, J12, M2, M7, M12			

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG133 package has been discontinued.

Accelerator Series FPGAs - ACT 3 Family

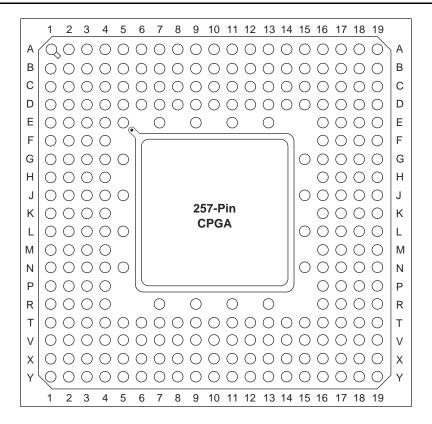

	PG175			
A1440 Function	Location			
CLKA or I/O	C9			
CLKB or I/O	A9			
DCLK or I/O	D5			
GND	D4, D8, D11, D12, E4, E14, H4, H12, L4, L12, M4, M8, M12			
HCLK or I/O	R8			
IOCLK or I/O	E12			
IOPCL or I/O	P13			
MODE	F3			
NC	A1, A2, A15, B2, B3, P2, P14, R1, R2, R14, R15			
PRA or I/O	B8			
PRB or I/O	R7			
SDI or I/O	D3			
SDO	N12			
VCC	C3, C8, C13, E15, H3, H13, L1, L14, N3, N8, N13			

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG175 package has been discontinued.

PG207

Note: This is the top view.


Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-30 Revision 3

PG257

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-32 Revision 3

Datasheet Information

Revision	Changes	Page
Revision 2 (continued)	In the "Package Pin Assignments" section, notes were added to the pin tables for the following packages, stating that they are discontinued:	
	"BG225"	3-20
	"PG100"	3-24
	"PG133"	3-26
	"PG175"	3-28
Revision 1 (June 2006)	RoHS compliant information was added to the "Ordering Information" section.	II

4-2 Revision 3