

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	848
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	168
Number of Gates	6000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Through Hole
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	207-BCPGA
Supplier Device Package	207-CPGA (44.96x44.96)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1460a-pg207b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – ACT 3 Family Overview

General Description

Microsemi's ACT 3 Accelerator Series of FPGAs offers the industry's fastest high-capacity programmable logic device. ACT 3 FPGAs offer a high performance, PCI compliant programmable solution capable of 186 MHz on-chip performance and 9.0 nanosecond clock-to-output (–1 speed grade), with capacities spanning from 1,500 to 10,000 gate array equivalent gates.

The ACT 3 family builds on the proven two-module architecture consisting of combinatorial and sequential logic modules used in Microsemi's 3200DX and 1200XL families. In addition, the ACT 3 I/O modules contain registers which deliver 9.0 nanosecond clock-to-out times (–1 speed grade). The devices contain four clock distribution networks, including dedicated array and I/O clocks, supporting very fast synchronous and asynchronous designs. In addition, routed clocks can be used to drive high fanout signals such as flip-flop resets and output.

The ACT 3 family is supported by Microsemi's Designer Series Development System which offers automatic placement and routing (with automatic or fixed pin assignments), static timing analysis, user programming, and debug and diagnostic probe capabilities.

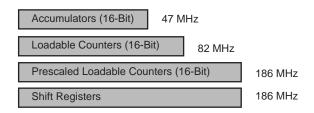
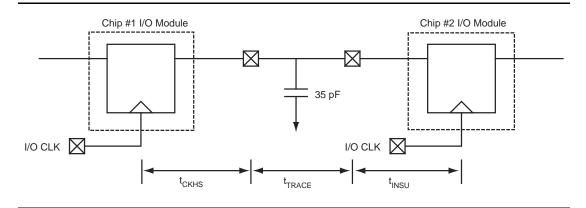



Figure 1-1 • Predictable Performance (worst-case commercial, -1 speed grade)

System Performance Model

3.3 V Operating Conditions

Table 2-5 • Absolute Maximum Ratings¹, Free Air Temperature Range

Symbol	Parameter	Limits	Units
VCC	DC supply voltage	−0.5 to +7.0	V
VI	Input voltage	-0.5 to VCC + 0.5	V
VO	Output voltage	-0.5 to VCC + 0.5	V
IIO	I/O source sink current ²	±20	mA
T _{STG}	Storage temperature	-65 to +150	°C

Notes:

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions.
- 2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND -0.5 V, the internal protection diodes will forward bias and can draw excessive current.

Table 2-6 • Recommended Operating Conditions

Parameter	Commercial	Units
Temperature range*	0 to +70	°C
Power supply tolerance	3.0 to 3.6	V

Note: *Ambient temperature (T_A) is used for commercial.

Table 2-7 • Electrical Specifications

		С	ommercial	
Parameter		Min.	Max.	Units
VOH ¹	IOH = -4 mA	2.15	_	V
	IOH = −3.2 mA	2.4		V
VOL ¹	IOL = 6 mA		0.4	V
VIL		-0.3	0.8	V
VIH		2.0	VCC + 0.3	V
Input transition time t _R , t _F ²	VI = VCC or GND	-10	+10	μA
C _{IO} I/O Capacitance ^{2,3}			10	pF
Standby current, ICC ⁴ (typical =	0.3 mA)		0.75	mA
Leakage current ⁵		-10	10	μA

- 1. Only one output tested at a time. VCC = minimum.
- 2. Not tested; for information only.
- 3. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f 1 MHz.
- 4. Typical standby current = 0.3 mA. All outputs unloaded. All inputs = VCC or GND.
- 5. VO, VIN = VCC or GND

2-10 Revision 3

Table 2-11 • Fixed Capacitance Values for Microsemi FPGAs

Device Type	r1, routed_Clk1	r2, routed_Clk2
A1415A	60	60
A14V15A	57	57
A1425A	75	75
A14V25A	72	72
A1440A	105	105
A14V40A	100	100
A1440B	105	105
A1460A	165	165
A14V60A	157	157
A1460B	165	165
A14100A	195	195
A14V100A	185	185
A14100B	195	195

Table 2-12 • Fixed Clock Loads (s1/s2)

Device Type	s1, Clock Loads on Dedicated Array Clock	s2, Clock Loads on Dedicated I/O Clock
A1415A	104	80
A14V15A	104	80
A1425A	160	100
A14V25A	160	100
A1440A	288	140
A14V40A	288	140
A1440B	288	140
A1460A	432	168
A14V60A	432	168
A1460B	432	168
A14100A	697	228
A14V100A	697	228
A14100B	697	228

2-14 Revision 3

Determining Average Switching Frequency

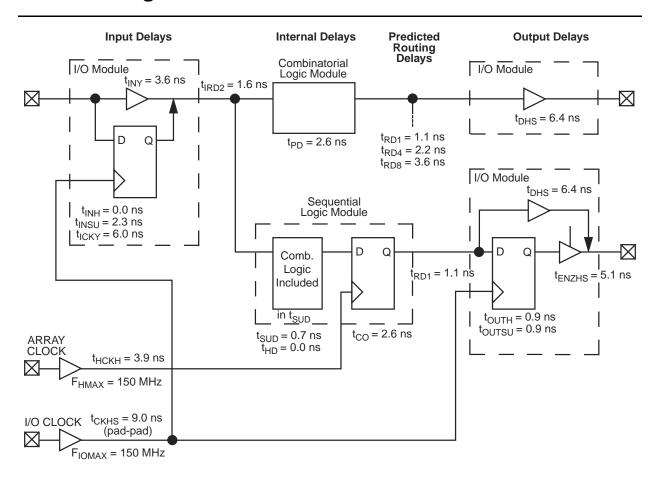

To determine the switching frequency for a design, you must have a detailed understanding of the data input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that they can be generally used to predict the upper limits of power dissipation. These guidelines are as follows:

Table 2-13 • Guidelines for Predicting Power Dissipation

Data	Value				
Logic Modules (m)	80% of modules				
Inputs switching (n)	# inputs/4				
Outputs switching (p)	# output/4				
First routed array clock loads (q1)	40% of sequential modules				
Second routed array clock loads (q2)	40% of sequential modules				
Load capacitance (CL)	35 pF				
Average logic module switching rate (fm)	F/10				
Average input switching rate (fn)	F/5				
Average output switching rate (fp)	F/10				
Average first routed array clock rate (fq1)	F/2				
Average second routed array clock rate (fq2)	F/2				
Average dedicated array clock rate (fs1)	F				
Average dedicated I/O clock rate (fs2)	F				

ACT 3 Timing Model

Note: Values shown for A1425A -1 speed grade device.

Figure 2-10 • Timing Model

2-16 Revision 3

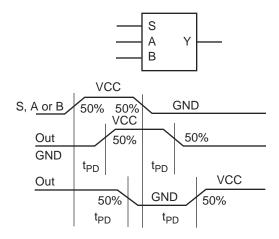


Figure 2-14 • Module Delays

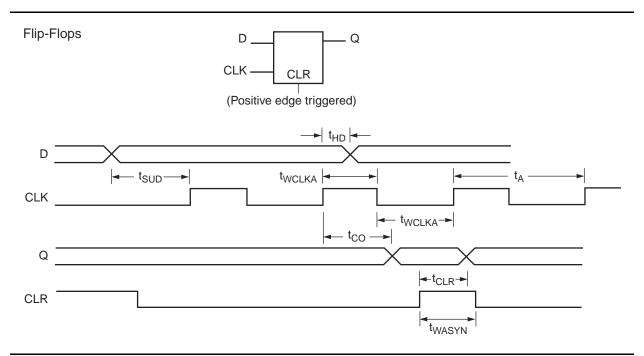


Figure 2-15 • Sequential Module Timing Characteristics

2-18 Revision 3

Timing Derating

ACT 3 devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Table 2-15 • Timing Derating Factor (Temperature and Voltage)

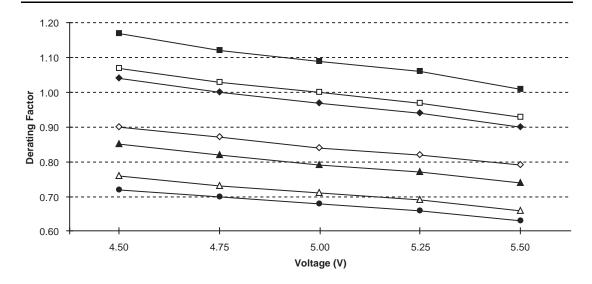

(Commercial Minimum/Maximum Specification) x	Indus	Industrial N		tary
	Min.	Max.	Min.	Max.
	0.66	1.07	0.63	1.17

Table 2-16 • Timing Derating Factor for Designs at Typical Temperature ($T_J = 25$ °C) and Voltage (5.0 V)

(Commercial Maximum Specification) x	0.85
--------------------------------------	------

Table 2-17 • Temperature and Voltage Derating Factors (normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

	-55	-40	0	25	70	85	125
4.50	0.72	0.76	0.85	0.90	1.04	1.07	1.117
4.75	0.70	0.73	0.82	0.87	1.00	1.03	1.12
5.00	0.68	0.71	0.79	0.84	0.97	1.00	1.09
5.25	0.66	0.69	0.77	0.82	0.94	0.97	1.06
5.50	0.63	0.66	0.74	0.79	0.90	0.93	1.01

Note: This derating factor applies to all routing and propagation delays.

Figure 2-18 • Junction Temperature and Voltage Derating Curves (normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

A1425A, A14V25A Timing Characteristics

Table 2-22 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C¹

Logic Module Propagation Delays ²		−3 S	peed ³	ed ³ -2 Speed ³		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Module Sequential Timing											•
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	1.9		2.4		3.2		3.8		4.8		ns
t _A	Flip-Flop Clock Input Period	4.0		5.0		6.8		8.0		10.0		ns
f _{MAX}	Flip-Flop Clock Frequency		250		200		150		125		100	MHz

Notes:

- 1. VCC = 3.0 V for 3.3 V specifications.
- 2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.
- 3. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.
- 4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

2-26 Revision 3

A14100A, A14V100A Timing Characteristics (continued)

Table 2-36 • A14100A, A14V100A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Module – TTL Output Timing ¹		-3 S _I	peed ²	-2 Sp	peed ²	-1 S	peed	Std. Speed		3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.5		9.5		10.5		12.0		15.6	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		12.8		12.8		15.3		17.0		22.1	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		8.0		9.0		10.0		12.0		15.6	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		10.4		10.4		12.4		13.8		17.9	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		14.5		14.5		17.4		19.3		25.1	ns
d_TLHHS	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

2-40 Revision 3

^{1.} Delays based on 35 pF loading.

^{2.} The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

Pin Descriptions

CLKA Clock A (Input)

Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

CLKB Clock B (Input)

Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic modules. This pin can also be used as an I/O.

GND Ground

LOW supply voltage.

HCLK Dedicated (Hard-wired) Array Clock (Input)

Clock input for sequential modules. This input is directly wired to each S-Module and offers clock speeds independent of the number of S-Modules being driven. This pin can also be used as an I/O.

I/O Input/Output (Input, Output)

The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are compatible with standard TTL and CMOS specifications. Unused I/O pins are tristated by the Designer Series software.

IOCLK Dedicated (Hard-wired) I/O Clock (Input)

Clock input for I/O modules. This input is directly wired to each I/O module and offers clock speeds independent of the number of I/O modules being driven. This pin can also be used as an I/O.

IOPCL Dedicated (Hard-wired) I/O Preset/Clear (Input)

Input for I/O preset or clear. This global input is directly wired to the preset and clear inputs of all I/O registers. This pin functions as an I/O when no I/O preset or clear macros are used.

MODE Mode (Input)

The MODE pin controls the use of diagnostic pins (DCLK, PRA, PRB, SDI). When the MODE pin is HIGH, the special functions are active. When the MODE pin is LOW, the pins function as I/Os. To provide Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the MODE pin can be pulled high when required.

NC No Connection

This pin is not connected to circuitry within the device.

PRA Probe A (Output)

The Probe A pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRA is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

PRB Probe B (Output)

The Probe B pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when debugging has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality. PRB is accessible when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

SDI Serial Data Input (Input)

Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is HIGH. This pin functions as an I/O when the MODE pin is LOW.

2-42 Revision 3

Package Pin Assignments

PQ160			
Pin Number	A1425, A14V25 Function	A1440, A14V40 Function	A1460, A14V60 Function
1	GND	GND	GND
2	SDI, I/O	SDI, I/O	SDI, I/O
5	NC	I/O	I/O
9	MODE	MODE	MODE
10	VCC	VCC	VCC
14	NC	I/O	I/O
15	GND	GND	GND
18	VCC	VCC	VCC
19	GND	GND	GND
20	NC	I/O	I/O
24	NC	I/O	I/O
27	NC	I/O	I/O
28	VCC	VCC	VCC
29	VCC	VCC	VCC
40	GND	GND	GND
41	NC	I/O	I/O
43	NC	I/O	I/O
45	NC	I/O	I/O
46	VCC	VCC	VCC
47	NC	I/O	I/O
49	NC	I/O	I/O
51	NC	I/O	I/O
53	NC	I/O	I/O
58	PRB, I/O	PRB, I/O	PRB, I/O
59	GND	GND	GND
60	VCC	VCC	VCC
62	HCLK, I/O	HCLK, I/O	HCLK, I/O
63	GND	GND	GND
74	NC	I/O	I/O
75	VCC	VCC	VCC
76	NC	I/O	I/O
77	NC	I/O	I/O
78	NC	I/O	I/O
79	SDO	SDO	SDO
80	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O
81	GND	GND	GND
90	VCC	VCC	VCC
91	VCC	VCC	VCC

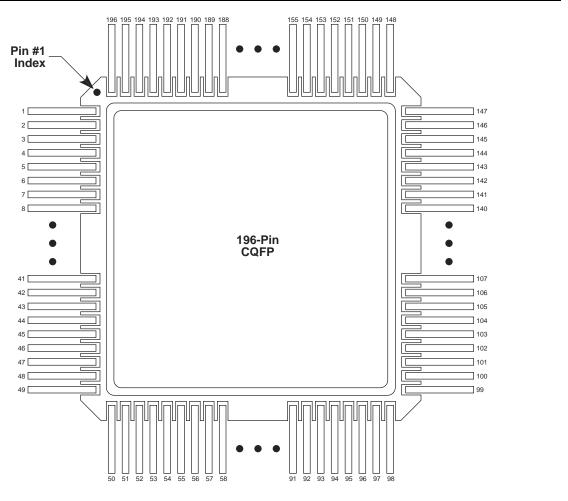
3-6 Revision 3

	PQ160		
Pin Number	A1425, A14V25 Function	A1440, A14V40 Function	A1460, A14V60 Function
92	NC	I/O	I/O
93	NC	I/O	I/O
98	GND	GND	GND
99	VCC	VCC	VCC
100	NC	I/O	I/O
103	GND	GND	GND
107	NC	I/O	I/O
109	NC	I/O	I/O
110	VCC	VCC	VCC
111	GND	GND	GND
112	VCC	VCC	VCC
113	NC	I/O	I/O
119	NC	I/O	I/O
120	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O
121	GND	GND	GND
124	NC	I/O	I/O
127	NC	I/O	I/O
136	CLKA, I/O	CLKA, I/O	CLKA, I/O
137	CLKB, I/O	CLKB, I/O	CLKB, I/O
138	VCC	VCC	VCC
139	GND	GND	GND
140	VCC	VCC	VCC
141	GND	GND	GND
142	PRA, I/O	PRA, I/O	PRA, I/O
143	NC	I/O	I/O
145	NC	I/O	I/O
147	NC	I/O	I/O
149	NC	I/O	I/O
151	NC	I/O	I/O
153	NC	I/O	I/O
154	VCC	VCC	VCC
160	DCLK, I/O	DCLK, I/O	DCLK, I/O

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

TQ176		
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function
1	GND	GND
2	SDI, I/O	SDI, I/O
10	MODE	MODE
11	VCC	VCC
20	NC	I/O
21	GND	GND
22	VCC	VCC
23	GND	GND
32	VCC	VCC
33	VCC	VCC
44	GND	GND
49	NC	I/O
51	NC	I/O
63	NC	I/O
64	PRB, I/O	PRB, I/O
65	GND	GND
66	VCC	VCC
67	VCC	VCC
69	HCLK, I/O	HCLK, I/O
82	NC	I/O
83	NC	I/O
87	SDO	SDO
88	IOPCL, I/O	IOPCL, I/O


TQ176		
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function
89	GND	GND
98	VCC	VCC
99	VCC	VCC
108	GND	GND
109	VCC	VCC
110	GND	GND
119	NC	I/O
121	NC	I/O
122	VCC	VCC
123	GND	GND
124	VCC	VCC
132	IOCLK, I/O	IOCLK, I/O
133	GND	GND
138	NC	I/O
152	CLKA, I/O	CLKA, I/O
153	CLKB, I/O	CLKB, I/O
154	VCC	VCC
155	GND	GND
156	VCC	VCC
157	PRA, I/O	PRA, I/O
158	NC	I/O
170	NC	I/O
176	DCLK, I/O	DCLK, I/O

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

CQ196

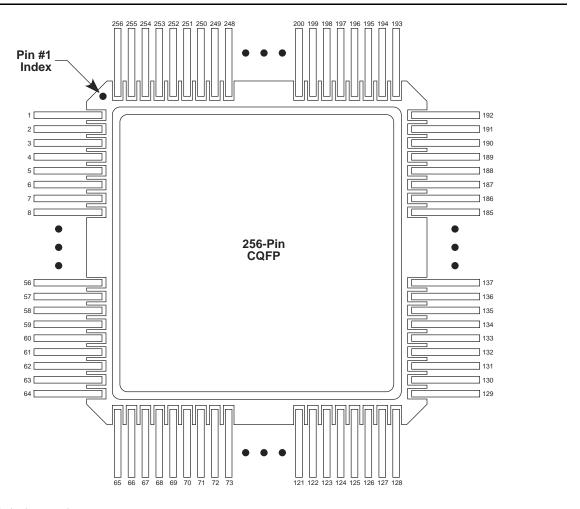
Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-16 Revision 3

Accelerator Series FPGAs – ACT 3 Family


CQ196		
Pin Number	A1460 Function	
1	GND	
2	SDI, I/O	
11	MODE	
12	VCC	
13	GND	
37	GND	
38	VCC	
39	VCC	
51	GND	
52	GND	
59	VCC	
64	GND	
77	HCLK, I/O	
79	PRB, I/O	
86	GND	
94	VCC	
98	GND	
99	SDO	
100	IOPCL, I/O	

CQ196		
Pin Number	A1460 Function	
101	GND	
110	VCC	
111	VCC	
112	GND	
137	VCC	
138	GND	
139	GND	
140	VCC	
148	IOCLK, I/O	
149	GND	
155	VCC	
162	GND	
172	CLKA, I/O	
173	CLKB, I/O	
174	PRA, I/O	
183	GND	
189	VCC	
193	GND	
196	DCLK, I/O	

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

CQ256

Note: This is the top view.

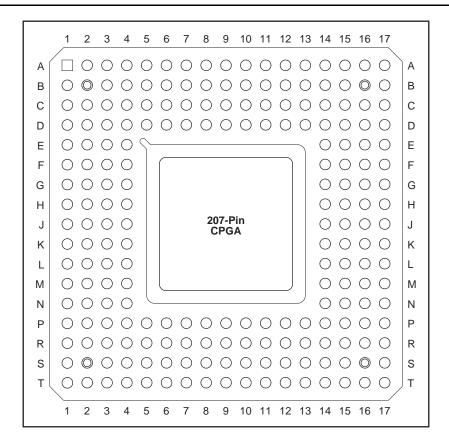
Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-18 Revision 3

Accelerator Series FPGAs – ACT 3 Family

	BG225		
A1460 Function	Location		
CLKA or I/O	C8		
CLKB or I/O	B8		
DCLK or I/O	B2		
GND	A1, A15, D15, F8, G7, G8, G9, H6, H7, H8, H9, H10, J7, J8, J9, K8, P2, R15		
HCLK or I/O	P9		
IOCLK or I/O	B14		
IOPCL or I/O	P14		
MODE	D1		
NC	A11, B5, B7, D8, D12, F6, F11, H1, H12, H14, K11, L1, L13, N8, P5, R1, R8, R11, R14		
PRA or I/O	A7		
PRB or I/O	L7		
SDI or I/O	D4		
SDO	N13		
VCC	A8, B12, D5, D14, E3, E8, E13, H2, H3, H11, H15, K4, L2, L12, M8, M15, P4, P8, R13		


Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The BG225 package has been discontinued.

Package Pin Assignments

PG207

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

3-30 Revision 3

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.