
E·XFL

Welcome to E-XFL.COM

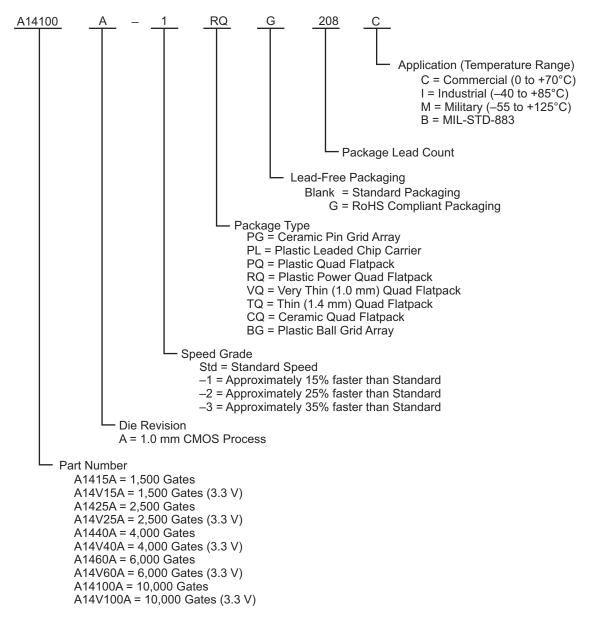
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


Details	
Product Status	Obsolete
Number of LABs/CLBs	848
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	131
Number of Gates	6000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	160-BQFP
Supplier Device Package	160-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1460a-pq160i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

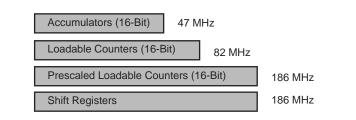
Accelerator Series FPGAs - ACT 3 Family

Ordering Information

Notes:

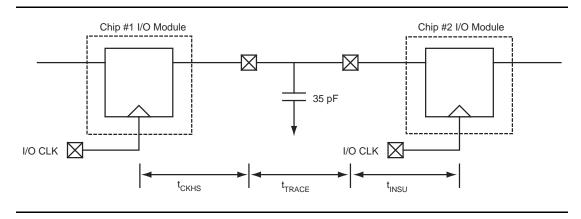
- 1. The -2 and -3 speed grades have been discontinued.
- The Ceramic Pin Grid Array packages PG100, PG133, and PG175 have been discontinued in all device densities, speed grades, and temperature grades.
 The Plastic Ball Grid Array package BG225 has been discontinued in all device densities (specifically for A1460A), all speed
- 3. The Plastic Ball Grid Array package BG225 has been discontinued in all device densities (specifically for A1460A), all speed grades, and all temperature grades.
- 4. Military Grade devices are no longer available for the A1440A device.
- For more information about discontinued devices, refer to the Product Discontinuation Notices (PDNs) listed below, available on the Microsemi SoC Products Group website: PDN March 2001

PDN March 20 PDN 0104 PDN 0203 PDN 0604 PDN 1004


1 – ACT 3 Family Overview

General Description

Microsemi's ACT 3 Accelerator Series of FPGAs offers the industry's fastest high-capacity programmable logic device. ACT 3 FPGAs offer a high performance, PCI compliant programmable solution capable of 186 MHz on-chip performance and 9.0 nanosecond clock-to-output (-1 speed grade), with capacities spanning from 1,500 to 10,000 gate array equivalent gates.


The ACT 3 family builds on the proven two-module architecture consisting of combinatorial and sequential logic modules used in Microsemi's 3200DX and 1200XL families. In addition, the ACT 3 I/O modules contain registers which deliver 9.0 nanosecond clock-to-out times (-1 speed grade). The devices contain four clock distribution networks, including dedicated array and I/O clocks, supporting very fast synchronous and asynchronous designs. In addition, routed clocks can be used to drive high fanout signals such as flip-flop resets and output.

The ACT 3 family is supported by Microsemi's Designer Series Development System which offers automatic placement and routing (with automatic or fixed pin assignments), static timing analysis, user programming, and debug and diagnostic probe capabilities.

Figure 1-1 • Predictable Performance (worst-case commercial, –1 speed grade)

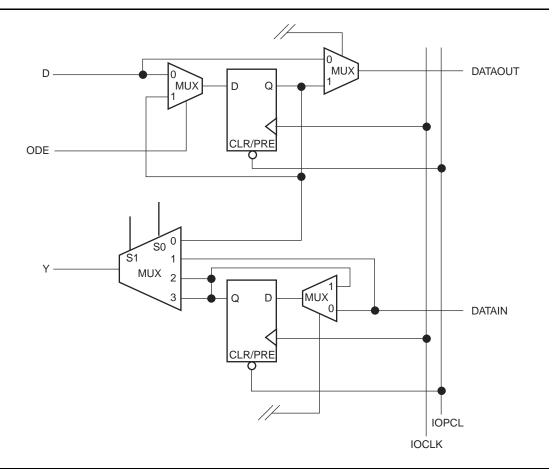
System Performance Model

ACT 3 Family Overview

Device and Speed Grade	t _{CKHS} (ns)	t _{TRACE} (ns)	t _{INSU} (ns)	Total (ns)	MHz
A1425A -3	7.5	1.0	1.8	10.3	97
A1460A -3	9.0	1.0	1.3	11.3	88
A1425A -2	7.5	1.0	2.0	10.5	95
A1460A -2	9.0	1.0	1.5	11.5	87
A1425A -1	9.0	1.0	2.3	12.3	81
A1460A -1	10.0	1.0	1.8	12.8	78
A1425A STD	10.0	1.0	2.7	13.7	73
A1460A STD	11.5	1.0	2.0	14.5	69

Table 1-1 • Chip-to-Chip Performance (worst-case commercial)

Note: The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.


The S-module contains a full implementation of the C-module plus a clearable sequential element that can either implement a latch or flip-flop function. The S-module can therefore implement any function implemented by the C-module. This allows complex combinatorial-sequential functions to be implemented with no delay penalty. The Designer Series Development System will automatically combine any C-module macro driving an S-module macro into the S-module, thereby freeing up a logic module and eliminating a module delay.

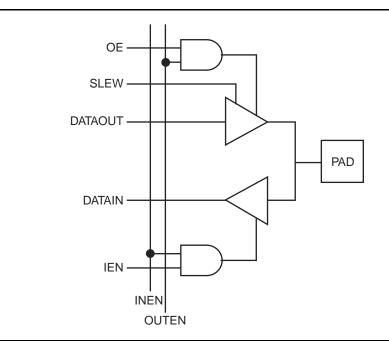
The clear input CLR is accessible from the routing channel. In addition, the clock input may be connected to one of three clock networks: CLKA, CLKB, or HCLK. The C-module and S-module functional descriptions are shown in Figure 2-2 and Figure 2-3 on page 2-2. The clock selection is determined by a multiplexer select at the clock input to the S-module.

I/Os

I/O Modules

I/O modules provide an interface between the array and the I/O Pad Drivers. I/O modules are located in the array and access the routing channels in a similar fashion to logic modules. The I/O module schematic is shown in Figure 4. The signals DataIn and DataOut connect to the I/O pad driver.

Figure 2-4 • Functional Diagram for I/O Module


Each I/O module contains two D-type flip-flops. Each flip-flop is connected to the dedicated I/O clock (IOCLK). Each flip-flop can be bypassed by nonsequential I/Os. In addition, each flip-flop contains a data enable input that can be accessed from the routing channels (ODE and IDE). The asynchronous preset/clear input is driven by the dedicated preset/clear network (IOPCL). Either preset or clear can be selected individually on an I/O module by I/O module basis.

The I/O module output Y is used to bring Pad signals into the array or to feed the output register back into the array. This allows the output register to be used in high-speed state machine applications. Side I/O modules have a dedicated output segment for Y extending into the routing channels above and below (similar to logic modules). Top/Bottom I/O modules have no dedicated output segment. Signals coming into the chip from the top or bottom are routed using F-fuses and LVTs (F-fuses and LVTs are explained in detail in the routing section).

I/O Pad Drivers

All pad drivers are capable of being tristate. Each buffer connects to an associated I/O module with four signals: OE (Output Enable), IE (Input Enable), DataOut, and DataIn. Certain special signals used only during programming and test also connect to the pad drivers: OUTEN (global output enable), INEN (global input enable), and SLEW (individual slew selection). See Figure 2-5.

Figure 2-5 • Function Diagram for I/O Pad Driver

Special I/Os

The special I/Os are of two types: temporary and permanent. Temporary special I/Os are used during programming and testing. They function as normal I/Os when the MODE pin is inactive. Permanent special I/Os are user programmed as either normal I/Os or special I/Os. Their function does not change once the device has been programmed. The permanent special I/Os consist of the array clock input buffers (CLKA and CLKB), the hard-wired array clock input buffer (HCLK), the hard-wired I/O clock input buffer (IOCLK), and the hard-wired I/O register preset/clear input buffer (IOPCL). Their function is determined by the I/O macros selected.

Clock Networks

The ACT 3 architecture contains four clock networks: two high-performance dedicated clock networks and two general purpose routed networks. The high-performance networks function up to 200 MHz, while the general purpose routed networks function up to 150 MHz.

Accelerator Series FPGAs – ACT 3 Family

Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used over a wide range of operating conditions. Equivalent capacitance values are shown in Figure 2-10.

Item	CEQ Value
Modules (C _{EQM})	6.7
Input Buffers (C _{EQI})	7.2
Output Buffers (C _{EQO})	10.4
Routed Array Clock Buffer Loads (C _{EQCR})	1.6
Dedicated Clock Buffer Loads (C _{EQCD})	0.7
I/O Clock Buffer Loads (C _{EQCI)}	0.9

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 5 shows a piece-wise linear summation over all components.

Power =VCC² * [(m * C_{EQM} * f_m)_{modules} + (n * C_{EQI} * f_n) inputs

+ ($p * (C_{EQO} + C_L) * f_p$)outputs

+ 0.5 * (q1 * C_{EQCR} * f_{q1})_{routed_Clk1} + (r1 * fq1)_{routed_Clk1}

+ 0.5 * (q2 * C_{EQCR} * fq2)_{routed_Clk2}

+ $(r_2 * f_{q2})_{routed_Clk2}$ + 0.5 * $(s_1 * C_{EQCD} * f_{s1})_{dedicated_Clk}$

+ (s₂ * C_{EQCI} * f_{s2})_{IO_CIk}]

Where: m = Number of logic modules switching at fm n = Number of input buffers switching at fn p = Number of output buffers switching at f_p q1 = Number of clock loads on the first routed array clock q2 = Number of clock loads on the second routed array clock r_1 = Fixed capacitance due to first routed array clock r₂ = Fixed capacitance due to second routed array clock s₁ = Fixed number of clock loads on the dedicated array clock s2 = Fixed number of clock loads on the dedicated I/O clock C_{FOM} = Equivalent capacitance of logic modules in pF C_{EQI} = Equivalent capacitance of input buffers in pF C_{EOO} = Equivalent capacitance of output buffers in pF C_{EOCR} = Equivalent capacitance of routed array clock in pF C_{EQCD} = Equivalent capacitance of dedicated array clock in pF C_{EOCI} = Equivalent capacitance of dedicated I/O clock in pF C₁ = Output lead capacitance in pF f_m = Average logic module switching rate in MHz fn = Average input buffer switching rate in MHz f_p = Average output buffer switching rate in MHz f_{q1} = Average first routed array clock rate in MHz $f_{\alpha 2}$ = Average second routed array clock rate in MHz f_{s1} = Average dedicated array clock rate in MHz f_{s2} = Average dedicated I/O clock rate in MHz

EQ 5

Accelerator Series FPGAs – ACT 3 Family

Figure 2-11 • Output Buffers

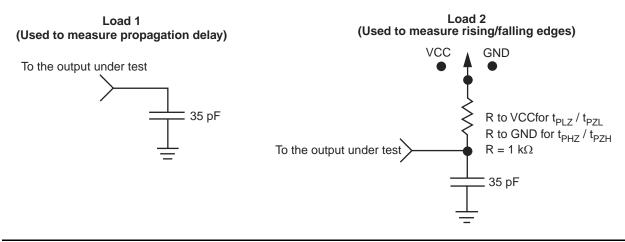
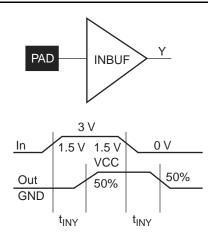



Figure 2-12 • AC Test Loads

Figure 2-13 • Input Buffer Delays

Detailed Specifications

A1415A, A14V15A Timing Characteristics (continued)

Table 2-20 • A1415A, A14V15A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Module – TTL Output Timing ¹		-3 Sp	beed ²	–2 S	peed ²	–1 S	peed	Std.	Speed	3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		7.5		7.5		9.0		10.0		13.0	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Moc	ule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.7		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.7		7.5		9.0		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.9		8.9		10.7		11.8		15.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes:

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Please refer to the Product Discontinuation Notices (PDNs) listed below:

PDN March 2001 PDN 0104 PDN 0203 PDN 0604 PDN 1004

Detailed Specifications

A14100A, A14V100A Timing Characteristics

Logic N	Iodule Propagation Delays ²	-3 S	peed ³	-2 Speed ³		-1 Speed		Std. S	Speed	3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min. Max.		Min. Max.		Min. Max.		Min. Max.		
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Nodule Sequential Timing											
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.8		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.5		0.5		0.5		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.8		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.5		0.5		0.5		ns
t _{WASYN}	Asynchronous Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _A	Flip-Flop Clock Input Period	5.0		6.8		8.0		10.0		13.4		ns
f _{MAX}	Flip-Flop Clock Frequency		200		150		125		100		75	MHz

Notes:

1. VCC = 3.0 V for 3.3 V specifications.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

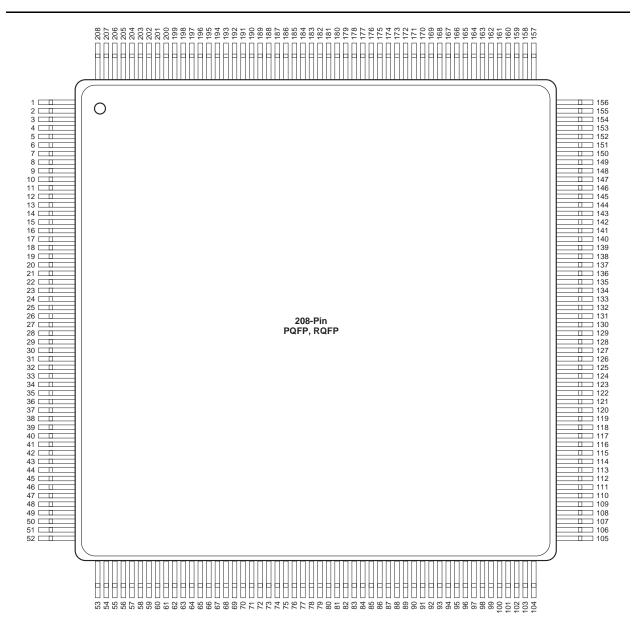
A14100A, A14V100A Timing Characteristics (continued)

Dedicate	d (hardwired) I/O Clock Network	-3 Sp	beed ¹	-2 Sp	–2 Speed ¹		-1 Speed		Std. Speed		3.3 V Speed ¹	
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.3		2.6		3.0		3.5		4.5	ns
t _{IOPWH}	Minimum Pulse Width High	2.4		3.3		3.8		4.8		6.5		ns
t _{IPOWL}	Minimum Pulse Width Low	2.4		3.3		3.8		4.8		6.5		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	2.4		3.3		3.8		4.8		6.5		ns
t _{IOCKSW}	Maximum Skew		0.6		0.6		0.7		0.8		0.6	ns
t _{IOP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{IOMAX}	Maximum Frequency		200		150		125		100		75	MHz
Dedicated	d (hardwired) Array Clock	•						•				
t _{HCKH}	Input Low to High (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.7		4.1		4.7		5.5		7.0	ns
t _{HPWH}	Minimum Pulse Width High	2.4		3.3		3.8		4.8		6.5		ns
t _{HPWL}	Minimum Pulse Width Low	2.4		3.3		3.8		4.8		6.5		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.6		0.6		0.7		0.8		0.6	ns
t _{HP}	Minimum Period	5.0		6.8		8.0		10.0		13.4		ns
f _{HMAX}	Maximum Frequency		200		150		125		100		75	MHz
Routed A	rray Clock Networks									-	-	
t _{RCKH}	Input Low to High (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RCKL}	Input High to Low (FO = 64)		6.0		6.8		7.7		9.0		11.8	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	4.1		4.5		5.4		6.1		8.2		ns
t _{RCKSW}	Maximum Skew (FO = 128)		1.2		1.4		1.6		1.8		1.8	ns
t _{RP}	Minimum Period (FO = 64)	8.3		9.3		11.1		12.5		16.7		ns
f _{RMAX}	Maximum Frequency (FO = 64)		120		105		90		80		60	MHz
Clock-to-	Clock Skews									-	-	
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	2.6	0.0	2.7	0.0	2.9	0.0	3.0	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 350)	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	1.7 5.0	0.0 0.0	5.0 5.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 350)	0.0 0.0	1.3 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes: *

1. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

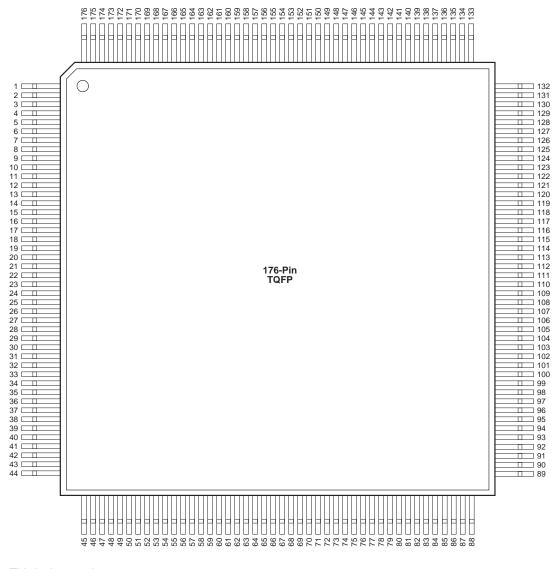
2. Delays based on 35 pF loading.



	PL84							
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function					
1	VCC	VCC	VCC					
2	GND	GND	GND					
3	VCC	VCC	VCC					
4	PRA, I/O	PRA, I/O	PRA, I/O					
11	DCLK, I/O	DCLK, I/O	DCLK, I/O					
12	SDI, I/O	SDI, I/O	SDI, I/O					
16	MODE	MODE	MODE					
27	GND	GND	GND					
28	VCC	VCC	VCC					
40	PRB, I/O	PRB, I/O	PRB, I/O					
41	VCC	VCC	VCC					
42	GND	GND	GND					
43	VCC	VCC	VCC					
45	HCLK, I/O	HCLK, I/O	HCLK, I/O					
52	SDO	SDO	SDO					
53	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O					
59	VCC	VCC	VCC					
60	VCC	VCC	VCC					
61	GND	GND	GND					
68	VCC	VCC	VCC					
69	GND	GND	GND					
74	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O					
83	CLKA, I/O	CLKA, I/O	CLKA, I/O					
84	CLKB, I/O	CLKB, I/O	CLKB, I/O					

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

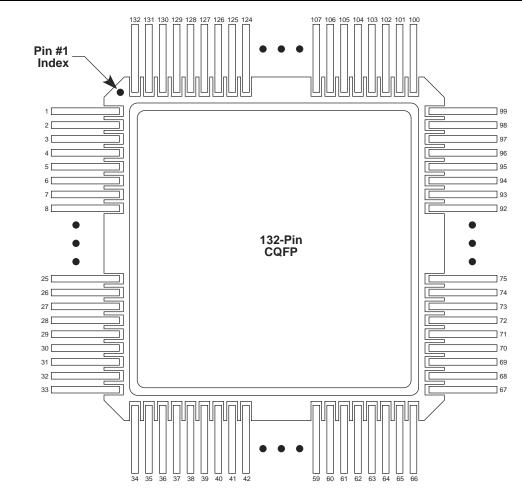
PQ208, RQ208


Note: This is the top view of the package

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

TQ176


Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

CQ132

Note: This is the top view

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Accelerator Series FPGAs - ACT 3 Family

	CQ132	CQ132					
Pin Number	A1425 Function	Pin Number	A1425 Function				
1	NC	67	NC				
2	GND	74	GND				
3	SDI, I/O	75	VCC				
9	MODE	78	VCC				
10	GND	89	VCC				
11	VCC	90	GND				
22	VCC	91	VCC				
26	GND	92	GND				
27	VCC	98	IOCLK, I/O				
34	NC	99	NC				
36	GND	100	NC				
42	GND	101	GND				
43	VCC	106	GND				
48	PRB, I/O	107	VCC				
50	HCLK, I/O	116	CLKA, I/O				
58	GND	117	CLKB, I/O				
59	VCC	118	PRA, I/O				
63	SDO	122	GND				
64	IOPCL, I/O	123	VCC				
65	GND	131	DCLK, I/O				
66	NC	132	NC				

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs - ACT 3 Family

	CQ196		CQ196		
Pin Number	A1460 Function	Pin Number	A1460 Function		
1	GND	101	GND		
2	SDI, I/O	110	VCC		
11	MODE	111	VCC		
12	VCC	112	GND		
13	GND	137	VCC		
37	GND	138	GND		
38	VCC	139	GND		
39	VCC	140	VCC		
51	GND	148	IOCLK, I/O		
52	GND	149	GND		
59	VCC	155	VCC		
64	GND	162	GND		
77	HCLK, I/O	172	CLKA, I/O		
79	PRB, I/O	173	CLKB, I/O		
86	GND	174	PRA, I/O		
94	VCC	183	GND		
98	GND	189	VCC		
99	SDO	193	GND		
100	IOPCL, I/O	196	DCLK, I/O		

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs – ACT 3 Family

	BG313		
A14100, A14V100 Function	Location		
CLKA or I/O	J13		
CLKB or I/O	G13		
DCLK or I/O	B2		
GND	A1, A25, AD2, AE25, J21, L13, M12, M14, N11, N13, N15, P12, P14, R13		
HCLK or I/O	T14		
IOCLK or I/O	B24		
IOPCL or I/O	AD24		
MODE	G3		
NC	A3, A13, A23, AA5, AA9, AA23, AB2, AB4, AB20, AC13, AC25, AD22, AE1, AE21, B14, C5, C25, D4, D24, E3, E21, F6, F10, F16, G1, G25, H18, H24, J1, J7, J25, K12, L15, L17, M6, N1, N5, N7, N21, N23, P20, R11, T6, T8, U9, U13, U21, V16, W7, Y20, Y24		
PRA or I/O	H12		
PRB or I/O	AD12		
SDI or I/O	C1		
SDO	AE23		
VCC	AB18, AD6, AE13, C13, C19, E13, G9, H22, K8, K20, M16, N3, N9, N25, U5, W13, V2, V22, V24		

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Accelerator Series FPGAs – ACT 3 Family

PG100		
A1415 Function	Location	
CLKA or I/O	C7	
CLKB or I/O	D6	
DCLK or I/O	C4	
GND	C3, C6, C9, E9, F3, F9, J3, J6, J8, J9	
HCLK or I/O	H6	
IOCLK or I/O	C10	
IOPCL or I/O	К9	
MODE	C2	
PRA or I/O	A6	
PRB or I/O	L3	
SDI or I/O	B3	
SDO	L9	
VCC	B6, B10, E11, F2, F10, G2, K2, K6, K10	

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG100 package has been discontinued.

Accelerator Series FPGAs – ACT 3 Family

PG175		
A1440 Function	Location	
CLKA or I/O	C9	
CLKB or I/O	А9	
DCLK or I/O	D5	
GND	D4, D8, D11, D12, E4, E14, H4, H12, L4, L12, M4, M8, M12	
HCLK or I/O	R8	
IOCLK or I/O	E12	
IOPCL or I/O	P13	
MODE	F3	
NC	A1, A2, A15, B2, B3, P2, P14, R1, R2, R14, R15	
PRA or I/O	B8	
PRB or I/O	R7	
SDI or I/O	D3	
SDO	N12	
VCC	C3, C8, C13, E15, H3, H13, L1, L14, N3, N8, N13	

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.
- 4. The PG175 package has been discontinued.