E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	848
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	151
Number of Gates	6000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	176-LQFP
Supplier Device Package	176-TQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a1460a-tq176i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Plan

		Speed	Grade ¹					
Device/Package	Std.	-1	-2	-3	С	I	м	В
A1415A Device						•		
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	1	D	D	1	~	1	_
100-Pin Plastic Quad Flatpack (PQFP)	1	1	D	D	1	1	1	_
100-Pin Very Thin Quad Flatpack (VQFP)	✓	1	D	D	1	1	✓	-
100-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	_	_
A14V15A Device								
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	-	_	_	1	_	_	_
100-Pin Very Thin Quad Flatpack (VQFP)	1	-	-	-	1	_	-	_
A1425A Device					1			
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	1	D	D	1	~		
100-Pin Plastic Quad Flatpack (PQFP)	✓	1	D	D	1	1	-	-
100-Pin Very Thin Quad Flatpack (VQFP)	✓	1	D	D	1	1	-	-
132-Pin Ceramic Quad Flatpack (CQFP)	1	✓	-	-	✓	_	✓	✓
133-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	D	D
160-Pin Plastic Quad Flatpack (PQFP)	1	1	D	D	1	~	_	_
A14V25A Device								
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	-	_	_	1	_	_	_
100-Pin Very Thin Quad Flatpack (VQFP)	✓	-	-	-	1	_	-	-
160-Pin Plastic Quad Flatpack (PQFP)	1	-	-	-	✓	_	-	-
A1440A Device				•				
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	1	D	D	1	~	_	_
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	✓	1	-	_
160-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	1	-	-
175-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	-	-
176-Pin Thin Quad Flatpack (TQFP)	1	1	D	D	1	1	_	_

Notes:

 Applications:
 C = Commercial
 I = Industrial M = Military

Availability: $\checkmark = Available$ P = Planned

- = Not plannedD = Discontinued

Speed Grade: -1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std. -3 = Approx. 35% faster than Std. (-2 and -3 speed grades have been discontinued.)

Dedicated Clocks

Dedicated clock networks support high performance by providing sub-nanosecond skew and guaranteed performance. Dedicated clock networks contain no programming elements in the path from the I/O Pad Driver to the input of S-modules or I/O modules. There are two dedicated clock networks: one for the array registers (HCLK), and one for the I/O registers (IOCLK). The clock networks are accessed by special I/Os.

Figure 2-6 • Clock Networks

The routed clock networks are referred to as CLK0 and CLK1. Each network is connected to a clock module (CLKMOD) that selects the source of the clock signal and may be driven as follows (Figure 2-6):

- Externally from the CLKA pad
- Externally from the CLKB pad
- Internally from the CLKINA input
- Internally from the CLKINB input

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel. The function of the clock module is determined by the selection of clock macros from the macro library. The macro CLKBUF is used to connect one of the two external clock pins to a clock network, and the macro CLKINT is used to connect an internally generated clock signal to a clock network. Since both clock networks are identical, the user does not care whether CLK0 or CLK1 is being used. Routed clocks can also be used to drive high fanout nets like resets, output enables, or data enables. This saves logic modules and results in performance increases in some cases.

Routing Structure

The ACT 3 architecture uses vertical and horizontal routing tracks to connect the various logic and I/O modules. These routing tracks are metal interconnects that may either be of continuous length or broken into segments. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track.

5 V Operating Conditions

Symbol	Parameter	Limits	Units
VCC	DC supply voltage	-0.5 to +7.0	V
VI	Input voltage	-0.5 to VCC + 0.5	V
VO	Output voltage	-0.5 to VCC + 0.5	V
IIO	I/O source sink current ²	±20	mA
T _{STG}	Storage temperature	-65 to +150	°C

Table 2-2 • Absolute Maximum Ratings¹, Free Air Temperature Range

Notes:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions.

2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND –0.5 V, the internal protection diodes will forward bias and can draw excessive current.

Table 2-3 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature range*	0 to +70	-40 to +85	-55 to +125	°C
5 V power supply tolerance	±5	±10	±10	%VCC

Note: *Ambient temperature (T_A) is used for commercial and industrial; case temperature (T_C) is used for military.

			Cor	nmercial	In	dustrial	Ν	Ailitary	
Symbol	Parameter	Test Condition	Min.	Max.	Min.	Max.	Min.	Max.	Units
VOH ^{1,2}	High level output	IOH = -4 mA (CMOS)	_	-	3.7	_	3.7	-	V
		IOH = –6 mA (CMOS)	3.84						V
		IOH = –10 mA (TTL) ³	2.40						V
VOL ^{1,2}	Low level output	IOL = +6 mA (CMOS)		0.33		0.4		0.4	V
		IOL = +12 mA (TTL) ³		0.50					
VIH	High level input	TTL inputs	2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	V
VIL	Low level input	TTL inputs	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
IIN	Input leakage	VI = VCC or GND	-10	+10	-10	+10	-10	+10	μΑ
IOZ	3-state output leakage	VO = VCC or GND	-10	+10	-10	+10	-10	+10	μA
C _{IO}	I/O capacitance ^{3,4}			10		10		10	pF
ICC(S)	Standby VCC supply cu	irrent (typical = 0.7 mA)		2		10		20	mA
ICC(D)	Dynamic VCC supply c	urrent. See the Power Dis	ssipatio	on section.					

Table 2-4 • Electrical Specifications

Notes:

1. Microsemi devices can drive and receive either CMOS or TTL signal levels. No assignment of I/Os as TTL or CMOS is required.

2. Tested one output at a time, VCC = minimum.

3. Not tested; for information only.

4. VOUT = 0 V, f = 1 MHz

5. Typical standby current = 0.7 mA. All outputs unloaded. All inputs = VCC or GND.

Accelerator Series FPGAs – ACT 3 Family

Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used over a wide range of operating conditions. Equivalent capacitance values are shown in Figure 2-10.

Item	CEQ Value
Modules (C _{EQM})	6.7
Input Buffers (C _{EQI})	7.2
Output Buffers (C _{EQO})	10.4
Routed Array Clock Buffer Loads (C _{EQCR})	1.6
Dedicated Clock Buffer Loads (C _{EQCD})	0.7
I/O Clock Buffer Loads (C _{EQCI)}	0.9

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. EQ 5 shows a piece-wise linear summation over all components.

Power =VCC² * [(m * C_{EQM} * f_m)_{modules} + (n * C_{EQI} * f_n) inputs

+ ($p * (C_{EQO} + C_L) * f_p$)outputs

+ 0.5 * (q1 * C_{EQCR} * f_{q1})_{routed_Clk1} + (r1 * fq1)_{routed_Clk1}

+ 0.5 * (q2 * C_{EQCR} * fq2)_{routed_Clk2}

+ $(r_2 * f_{q2})_{routed_Clk2}$ + 0.5 * $(s_1 * C_{EQCD} * f_{s1})_{dedicated_Clk}$

+ (s₂ * C_{EQCI} * f_{s2})_{IO_CIk}]

Where: m = Number of logic modules switching at fm n = Number of input buffers switching at fn p = Number of output buffers switching at f_p q1 = Number of clock loads on the first routed array clock q2 = Number of clock loads on the second routed array clock r_1 = Fixed capacitance due to first routed array clock r₂ = Fixed capacitance due to second routed array clock s₁ = Fixed number of clock loads on the dedicated array clock s2 = Fixed number of clock loads on the dedicated I/O clock C_{FOM} = Equivalent capacitance of logic modules in pF C_{EQI} = Equivalent capacitance of input buffers in pF C_{EOO} = Equivalent capacitance of output buffers in pF C_{EOCR} = Equivalent capacitance of routed array clock in pF C_{EQCD} = Equivalent capacitance of dedicated array clock in pF C_{EOCI} = Equivalent capacitance of dedicated I/O clock in pF C₁ = Output lead capacitance in pF f_m = Average logic module switching rate in MHz fn = Average input buffer switching rate in MHz f_p = Average output buffer switching rate in MHz f_{q1} = Average first routed array clock rate in MHz $f_{\alpha 2}$ = Average second routed array clock rate in MHz f_{s1} = Average dedicated array clock rate in MHz f_{s2} = Average dedicated I/O clock rate in MHz

EQ 5

Accelerator Series FPGAs – ACT 3 Family

Figure 2-17 • I/O Module: Sequential Output Timing Characteristics

Tightest Delay Distributions

Propagation delay between logic modules depends on the resistive and capacitive loading of the routing tracks, the interconnect elements, and the module inputs being driven. Propagation delay increases as the length of routing tracks, the number of interconnect elements, or the number of inputs increases.

From a design perspective, the propagation delay can be statistically correlated or modeled by the fanout (number of loads) driven by a module. Higher fanout usually requires some paths to have longer lengths of routing track. The ACT 3 family delivers the tightest fanout delay distribution of any FPGA. This tight distribution is achieved in two ways: by decreasing the delay of the interconnect elements and by decreasing the number of interconnect elements per path.

Microsemi's patented PLICE antifuse offers a very low resistive/capacitive interconnect. The ACT 3 family's antifuses, fabricated in 0.8 micron m lithography, offer nominal levels of 200Ω resistance and 6 femtofarad (fF) capacitance per antifuse. The ACT 3 fanout distribution is also tighter than alternative devices due to the low number of antifuses required per interconnect path. The ACT 3 family's proprietary architecture limits the number of antifuses per path to only four, with 90% of interconnects using only two antifuses.

The ACT 3 family's tight fanout delay distribution offers an FPGA design environment in which fanout can be traded for the increased performance of reduced logic level designs. This also simplifies performance estimates when designing with ACT 3 devices.

Speed Grade	FO = 1	FO = 2	FO = 3	FO = 4	FO = 8
ACT 3 –3	2.9	3.2	3.4	3.7	4.8
ACT 3 –2	3.3	3.7	3.9	4.2	5.5
ACT 3 –1	3.7	4.2	4.4	4.8	6.2
ACT 3 STD	4.3	4.8	5.1	5.5	7.2

Table 2-14 • Logic Module and Routing Delay by Fanout (ns); Worst-Case Commercial Conditions

Notes:

- Obtained by added t_{RD(x=FO)} to t_{PD} from the Logic Module Timing Characteristics Tables found in this datasheet.
- 2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

Timing Characteristics

Timing characteristics for ACT 3 devices fall into three categories: family dependent, device dependent, and design dependent. The input and output buffer characteristics are common to all ACT 3 family members. Internal routing delays are device dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design is complete. Delay values may then be determined by using the ALS Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most time-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6% of the nets in a design may be designated as critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three and sometimes four antifuse connections. This increases capacitance and resistance, result ng in longer net delays for macros connected to long tracks. Typically up to 6% of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 14 ns delay. This additional delay is represented statistically in higher fanout (FO = 8) routing delays in the datasheet specifications section.

Timing Derating

ACT 3 devices are manufactured in a CMOS process. Therefore, device performance varies according to temperature, voltage, and process variations. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Table 2-15 • Timing Derating Factor (Temperature and Voltage)

(Commercial Minimum/Maximum Specification) x	Indus	strial	Military		
	Min.	Max.	Min.	Max.	
	0.66	1.07	0.63	1.17	

Table 2-16 • Timing Derating Factor for Designs at Typical Temperature ($T_J = 25^{\circ}C$) and Voltage (5.0 V)

(Commercial Maximum Specification) x	0.85

Table 2-17 • Temperature and Voltage Derating Factors

(normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

	-55	-40	0	25	70	85	125
4.50	0.72	0.76	0.85	0.90	1.04	1.07	1.117
4.75	0.70	0.73	0.82	0.87	1.00	1.03	1.12
5.00	0.68	0.71	0.79	0.84	0.97	1.00	1.09
5.25	0.66	0.69	0.77	0.82	0.94	0.97	1.06
5.50	0.63	0.66	0.74	0.79	0.90	0.93	1.01

Note: This derating factor applies to all routing and propagation delays.

Detailed Specifications

A1425A, A14V25A Timing Characteristics (continued)

Table 2-24 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Module – TTL Output Timing ¹		-3 Sp	beed ²	-2 Sp	beed ²	–1 S	peed	Std. Speed		I 3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		7.5		7.5		9.0		10.0		13.0	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Mod	dule – CMOS Output Timing ¹			-					-	-		
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.7		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.7		7.5		9.0		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.9		8.9		10.7		11.8		15.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1440A, A14V40A Timing Characteristics (continued)

Table 2-27 • A1440A.	A14V40A Worst-Case	Commercial Conditions	VCC = 4.75 V. T ₁ = 70°C
TUDIO E EL TRITTORY	A14140A 110101 0000		, 100 - 10 1, 1j - 10 0

I/O Module Input Propagation Delays		-3 Speed ¹		–2 Speed ¹		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²						•					
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	dule Sequential Timing (wrt IOCLK	pad)		•								•
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	1.8		1.7		2.0		2.3		2.3		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns

Notes:

1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

A1440A, A14V40A Timing Characteristics (continued)

Table 2-29 • Δ1440Δ	A14V40A Worst	-Case Commercia	al Conditions	$VCC = 4.75 V T_{12}$	= 70°C
1 abie 2-23 · A 1440A,	A14040A 10015		al contaitions,	, VCC = 4.75 V, IJ.	- /0 0

Dedicated (hardwired) I/O Clock Network		-3 Speed ¹		-2 Speed ¹		-1 Speed		Std. Speed		I 3.3 V Speed ¹		Units
Paramete	er/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.0		2.3		2.6		3.0		3.5	ns
t _{IOPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{IPOWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	1.9		2.4		3.3		3.8		4.8		ns
t _{IOCKSW}	Maximum Skew		0.4		0.4		0.4		0.4		0.4	ns
t _{IOP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{IOMAX}	Maximum Frequency		250		200		150		125		100	MHz
Dedicate	d (hardwired) Array Clock						•	•	-			
t _{нскн}	Input Low to High (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{HPWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.3		0.3		0.3		0.3		0.3	ns
t _{HP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{HMAX}	Maximum Frequency		250		200		150		125		100	MHz
Routed A	rray Clock Networks							•	-			
t _{RCKH}	Input Low to High (FO = 64)		3.7		4.1		4.7		5.5		9.0	ns
t _{RCKL}	Input High to Low (FO = 64)		4.0		4.5		5.1		6.0		9.0	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RCKSW}	Maximum Skew (FO = 128)		0.7		0.8		0.9		1.0		1.0	ns
t _{RP}	Minimum Period (FO = 64)	6.8		8.0		8.7		10.0		13.4		ns
f _{RMAX}	Maximum Frequency (FO = 64)		150		125		115		100		75	MHz
Clock-to-Clock Skews												
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	1.7	0.0	1.8	0.0	2.0	0.0	2.2	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 144)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	3.0 3.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 144)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

Notes:

1. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

2. Delays based on 35 pF loading.

Detailed Specifications

A1460A, A14V60A Timing Characteristics

Table 2-30 • A1460A, A14V60A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C¹

Logic Module Propagation Delays ²		-3 Speed ³		-2 Speed ³		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{PD}	Internal Array Module		2.0		2.3		2.6		3.0		3.9	ns
t _{CO}	Sequential Clock to Q		2.0		2.3		2.6		3.0		3.9	ns
t _{CLR}	Asynchronous Clear to Q		2.0		2.3		2.6		3.0		3.9	ns
Predict	ed Routing Delays ⁴	-									-	
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
Logic N	Iodule Sequential Timing	-									-	
t _{SUD}	Flip-Flop Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{SUD}	Latch Data Input Setup	0.5		0.6		0.7		0.8		0.8		ns
t _{HD}	Latch Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _{WCLKA}	Flip-Flop Clock Pulse Width	2.4		3.2		3.8		4.8		6.5		ns
t _A	Flip-Flop Clock Input Period	5.0		6.8		8.0		10.0		13.4		ns
f _{MAX}	Flip-Flop Clock Frequency		200		150		125		100		75	MHz

Notes:

1. VCC = 3.0 V for 3.3 V specifications.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn} + t_{CO} + t_{RD1} + t_{PDn}$ or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

4. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

3 – Package Pin Assignments

PL84

Note: This is the top view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Package Pin Assignments

	PL84						
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function				
1	VCC	VCC	VCC				
2	GND	GND	GND				
3	VCC	VCC	VCC				
4	PRA, I/O	PRA, I/O	PRA, I/O				
11	DCLK, I/O	DCLK, I/O	DCLK, I/O				
12	SDI, I/O	SDI, I/O	SDI, I/O				
16	MODE	MODE	MODE				
27	GND	GND	GND				
28	VCC	VCC	VCC				
40	PRB, I/O	PRB, I/O	PRB, I/O				
41	VCC	VCC	VCC				
42	GND	GND	GND				
43	VCC	VCC	VCC				
45	HCLK, I/O	HCLK, I/O	HCLK, I/O				
52	SDO	SDO	SDO				
53	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O				
59	VCC	VCC	VCC				
60	VCC	VCC	VCC				
61	GND	GND	GND				
68	VCC	VCC	VCC				
69	GND	GND	GND				
74	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O				
83	CLKA, I/O	CLKA, I/O	CLKA, I/O				
84	CLKB, I/O	CLKB, I/O	CLKB, I/O				

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

PQ160

Note: This is the top view of the package

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Accelerator Series FPGAs – ACT 3 Family

	PQ208, RQ208	3		PQ208, RQ208	3
Pin Number	A1460, A14V60 Function	A14100, A14V100 Function	Pin Number	A1460, A14V60 Function	A14100, A14V100 Function
1	GND	GND	115	VCC	VCC
2	SDI, I/O	SDI, I/O	116	NC	I/O
11	MODE	MODE	129	GND	GND
12	VCC	VCC	130	VCC	VCC
25	VCC	VCC	131	GND	GND
26	GND	GND	132	VCC	VCC
27	VCC	VCC	145	VCC	VCC
28	GND	GND	146	GND	GND
40	VCC	VCC	147	NC	I/O
41	VCC	VCC	148	VCC	VCC
52	GND	GND	156	IOCLK, I/O	IOCLK, I/O
53	NC	I/O	157	GND	GND
60	VCC	VCC	158	NC	I/O
65	NC	I/O	164	VCC	VCC
76	PRB, I/O	PRB, I/O	180	CLKA, I/O	CLKA, I/O
77	GND	GND	181	CLKB, I/O	CLKB, I/O
78	VCC	VCC	182	VCC	VCC
79	GND	GND	183	GND	GND
80	VCC	VCC	184	VCC	VCC
82	HCLK, I/O	HCLK, I/O	185	GND	GND
98	VCC	VCC	186	PRA, I/O	PRA, I/O
102	NC	I/O	195	NC	I/O
103	SDO	SDO	201	VCC	VCC
104	IOPCL, I/O	IOPCL, I/O	205	NC	I/O
105	GND	GND	208	DCLK, I/O	DCLK, I/O
114	VCC	VCC			

Notes:

1. All unlisted pin numbers are user I/Os.

2. NC denotes no connection.

3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Microsemi

Accelerator Series FPGAs – ACT 3 Family

	TQ176			TQ176	
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function	Pin Number	A1440, A14V40 Function	A1460, A14V60 Function
1	GND	GND	89	GND	GND
2	SDI, I/O	SDI, I/O	98	VCC	VCC
10	MODE	MODE	99	VCC	VCC
11	VCC	VCC	108	GND	GND
20	NC	I/O	109	VCC	VCC
21	GND	GND	110	GND	GND
22	VCC	VCC	119	NC	I/O
23	GND	GND	121	NC	I/O
32	VCC	VCC	122	VCC	VCC
33	VCC	VCC	123	GND	GND
44	GND	GND	124	VCC	VCC
49	NC	I/O	132	IOCLK, I/O	IOCLK, I/O
51	NC	I/O	133	GND	GND
63	NC	I/O	138	NC	I/O
64	PRB, I/O	PRB, I/O	152	CLKA, I/O	CLKA, I/O
65	GND	GND	153	CLKB, I/O	CLKB, I/O
66	VCC	VCC	154	VCC	VCC
67	VCC	VCC	155	GND	GND
69	HCLK, I/O	HCLK, I/O	156	VCC	VCC
82	NC	I/O	157	PRA, I/O	PRA, I/O
83	NC	I/O	158	NC	I/O
87	SDO	SDO	170	NC	I/O
88	IOPCL, I/O	IOPCL, I/O	176	DCLK, I/O	DCLK, I/O

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

CQ256

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Package Pin Assignments

PG257

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

4 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the datasheet.

Revision	Changes	Page
Revision 3 (January 2012)	The description for SDO pins had earlier been removed from the datasheet and has now been included again, in the "Pin Descriptions" section (SAR 35820).	2-21
	SDO pin numbers had earlier been removed from package pin assignment tables in the datasheet, and have now been restored to the pin tables (SAR 35820).	3-1
Revision 2 (September 2011)	The ACT 3 datasheet was formatted newly in the style used for current datasheets. The same information is present (other than noted in the list of changes for this revision) but divided into chapters.	N/A
	The datasheet was revised to note in multiple places that speed grades -2 and -3 have been discontinued. The following device/package combinations have been discontinued for all speed grades and temperatures (SAR 33872): A1415 PG100 A1425 PG133 A1440 PG175 A1460 BG225 Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004.	l and others
	The "Features" section was revised to state the clock-to-ouput time and on-chip performance for -1 speed grade as 9.0 ns and 186 MHz. The "General Description" section was revised in accordance (SAR 33872).	I
	The maximum performance values were updated in Table 1 \cdot ACT 3 Family Product Information, and now reflect worst-case commercial for the -1 speed grade (SAR 33872).	I
	The "Product Plan" table was updated as follows to conform to current offerings (SAR 33872): The A1415A device is offered in PL84, PG100, and VQ100 packages for Military application. The A1440A device is offered in TQ176 and VQ100 packages for Industrial application.	Ξ
	Table 1-1 • Chip-to-Chip Performance (worst-case commercial) was updated to include data for all speed grades instead of only –3 (SAR 33872).	1-2
	Figure 1-1 • Predictable Performance (worst-case commercial, –1 speed grade) was revised to reflect values for the –1 speed grade (SAR 33872).	1-1
	Figure 2-10 • Timing Model was updated to show data for the -1 speed grade instead of -3 (SAR 33872).	2-16
	Table 2-14 • Logic Module and Routing Delay by Fanout (ns); Worst-Case Commercial Conditions was updated to include data for all speed grades instead of only –3 (SAR 33872).	2-20
	Package names used in the "Package Pin Assignments" section and throughout the document were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	3-1